UCLA

Posters

Title

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions

Permalink https://escholarship.org/uc/item/296532bf

Authors

Smith, Ryan Das, Jnaneshwar Heidarsson, Hordur <u>et al.</u>

Publication Date

2009-05-12

5 Center for Embedded Networked Sensing

Trajectory Design and Implementation for Multiple Autonomous Underwater Vehicles Based on Ocean Model Predictions

Ryan N. Smith¹, Jnaneshwar Das¹, Hordur Heidarsson¹, Arvind Pereira¹, Yi Chao², Ivona Cetinic ³, Carl Oberg⁴,

Matthew Ragan³, Burton H. Jones³, David A. Caron⁴ and Gaurav S. Sukhatme¹

¹Robotic Embedded Systems Laboratory, University of Southern California - http://www.robotics.usc.edu/resl ²Jet Propulsion Laboratory (JPL), California Institute of Technology - http://www.jpl.nasa.gov

³usCLAB, University of Southern California - http://www.usclab.usc.edu

⁴Caron Lab, University of Southern California - http://www.usc.edu/dept/LAS/biosci/Caron_lab/

Introduction: AUV Trajectory Design based on Ocean Model Predictions

Trajectory Design based on Model Predictions

- Single or Multiple Vehicle Applications
- Paths are not predetermined patterns, but adaptive strategies
- Effective tracking of ocean features
- Gather specific in situ data based on the type of feature
- Improve model skill via near real-time data assimilation
- Increases the likelihood of the vehicle sampling in a point of scientific importance

Ocean Prediction Tool

- Regional Ocean Modeling System (ROMS)
 - Split-explicit, free-surface, topography-following-coordinate oceanic model Model research and execution is carried out by the JPL under a contract with the National Aeronautics and Space Administration (NASA)

Oceanography Application and Motivation

- Harmful Algal Blooms
 - Large concern for coastal communities in southern California
 - Generally occur from nutrient-rich, freshwater runoff into the ocean
 - Wish to track monitor observe and predict their generation and evolution

Problem Description: Observe, Track and Monitor a Dynamic Ocean Feature

Problem Statement

- Given
 - One or many mobile ocean sensor platforms (AUVs)
 - · Autonomous Underwater Vehicles
 - Evolving ocean feature of scientific interest
 - · Freshwater plume
 - Complex ocean model and prediction tool
 - ROMS

collect data

Proposed Solution: Trajectory Design Based on a Regional Ocean Model

Summary

Webb SLOCUM Glider

- Identify a feature of interest Remote sensing tools Autonomous glider Predict the evolution of the feature by use of ROMS **Buoyancy driven** 12-16 hour prediction Long-term deployments Obs - 1st Input prediction to trajectory generation algorithm Up to one month 14 16 19 20 Obs - Analy and create a sampling mission Slow operational velocity Centroid tracking Salinity Profiles ~ 0.75 km/hr Boundary tracking Execute the mission with available AUV(s) and Assimilate collected data into ROMS and generate updated prediction **Single Vehicle Deployment** Iterate process until the feature is out of range, or no longer of interest Region A **Centroid Tracking** Delineated plume Area of Study
- Southern California Bight (SCB)
- 32° N to 34.5° N and -117° E to -121° E

- Preset survey pattern (Feb. 17 - Apr. 17, 2009) 20 m isobath 30 m isobath
- Implementation region

- Planned trajectory
- 20 m isobath
- 30 m isobath
- #1.3.5 Sampling location (centroid)
- #2,4,6 Sampling location (extra)
- Glider surfacing location

Multiple Vehicle Deployment - Centroid & Boundary Tracking

UCLA – UCR – Caltech – USC – UC Merced

- Use the collected in situ data to increase model skill and improve future predictions, as well as provide ocean scientists with meaningful bloom to occur.
- areas of interest within a freshwater plume, based upon a ROMS prediction. measurements to adequately predict or asses the potential for a harmful algal

ROMS Data Assimilation

nity Difference

- Design a set of trajectories that track the centroid, boundary and additional
- Goals