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Abstract

Agents trained using deep reinforcement learning (DRL) are
capable of meeting or exceeding human-levels of performance
in multi-agent tasks. However, the behaviors exhibited
by these agents are not guaranteed to be human-like or
human-compatible. This poses a problem if the goal is
to design agents capable of collaborating with humans in
cooperative or team-based tasks. Previous approaches to
encourage the development of human-compatible agents have
relied on pre-recorded human data during training. However,
such data is not available for the majority of everyday tasks.
Importantly, research on human perceptual-motor behavior has
found that task-directed behavior is often low-dimensional
and can be decomposed into a defined set of dynamical
perceptual-motor primitives (DPMPs). Accordingly, we
propose a hierarchical approach to simplify DRL training by
defining the action dynamics of agents using DPMPs at the
lower level, while using DRL to train the decision-making
dynamics of agents at the higher level. We evaluate our
approach using a multi-agent shepherding task used to study
human and multi-agent coordination. Our hierarchical,
DRL-DPMP approach resulted in agents which trained faster
than vanilla, black-box DRL agents. Further, the hierarchical
agents reached higher levels of performance not only when
interacting with each other during self-play, but also when
completing the task alongside agents embodying models of
novice and expert human behavior. Finally, the hierarchical
DRL-DPMP agents developed decision-making policies that
outperformed heuristic-based agents used in previous research
in human-agent coordination.
Keywords: hierarchical deep reinforcement learning;
dynamical perceptual-motor primitives (DPMPs); multi-agent
coordination; emergent coordination; shepherding

Introduction
Recent advances in model-free Artificial Intelligence (AI)
and Deep Reinforcement Learning (DRL) techniques (Berner
et al., 2019; Mnih et al., 2015; Pohlen et al., 2018; Vinyals
et al., 2019) have resulted in artificial agents capable of
meeting or exceeding human levels of performance. Most
notable has been the success of DRL agents learning to

perform complex individual or multi-agent video games
(e.g., Atari 2600 games (Bellemare, Naddaf, Veness, &
Bowling, 2013), DOTA (Berner et al., 2019), Starcraft
II (Vinyals et al., 2019)). In many cases, however, the
success of these DRL agents requires a complex, highly
tuned, and task-specific structure of DRL methodologies
and neural-network architectures, along with long and
computationally intensive self-play training schemes (Berner
et al., 2019; Vinyals et al., 2019). Moreover, even after
constraining the action space of DRL agents to match human
response limitations (Berner et al., 2019), the behavior
of the DRL agents is often qualitatively different from
humans (Shek, 2019; Carroll et al., 2019; Rigoli, Patil,
Stening, Kallen, & Richardson, 2021), resulting in less
fluid patterns of interaction (Nalepka, Gregory-Dunsmore,
Simpson, Patil, & Richardson, 2021). Although this is not a
problem if the goal is to achieve optimal task performance,
it poses a major challenge when the aim is to develop
DRL agents capable of effective human-AI agent interaction.
Indeed, effective human performance in multi-agent task
contexts requires that co-actors behave reciprocally, can
anticipate each other’s behaviors, and can readily perceive
each other’s behavioral intentions (Carroll et al., 2019).
Thus, developing methods that produce DRL agents that are
capable of human-like behavior and robust human-centered
coordination and collaboration is often essential.

One way to improve the “human-like” quality of DRL
agents is to employ pre-recorded human data or real-time
human gameplay during the training process; e.g., behavior
cloning (Bain & Sammut, 1999), generative adversarial
imitation learning (GAIL) (Ho & Ermon, 2016), or oracle
learning (Maclin, Shavlik, Torrey, Walker, & Wild, 2005).
The use of human data to pre-train AI agents helps to scaffold
the essential “dynamics of gameplay” (e.g., basic action and
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coordination patterns that lead to preliminary levels of task
success), both ensuring effective task learning and decreasing
training time (Amodei et al., 2016). Alternatively, human
data can be used indirectly by exposing DRL agents to
agents embodying models of human gameplay data during
training (Carroll et al., 2019). In this way, DRL agents are
encouraged to develop policies that complement human-like
constraints. Unfortunately, these methods and approaches
rely on the availability of large datasets of human gameplay,
which are not readily available for most tasks (both real and
computer based) and can suffer sharp performance declines
when expert data is sparse or imperfect (Osa et al., 2018),
or if agents interact with humans whose behaviors are not
consistent with the distribution of the training data (Carroll et
al., 2019).

Dynamical Perceptual-Motor Primitives
Research on human behavioral dynamics, however, has
revealed that human movements typically reflect the
context-specific realization of low-dimensional principles.
Specifically, a growing body of research (Kelso, 1995;
Nalepka et al., 2019; Nalepka, Silva, et al., 2021; Patil,
Nalepka, Kallen, & Richardson, 2020; M. J. Richardson et
al., 2016; Warren, 2006) has revealed that the spatiotemporal
patterning of the actions that define human performance and
decision-making can be modelled using a small, fundamental
set of dynamical primitives (i.e., nonlinear dynamical
functions). For instance, research has shown that these
dynamical primitives can be employed to model human
reaching, object passing, rhythmic wiping, cranking tasks
(Kay, Kelso, Saltzman, & Schöner, 1987), goal-directed
human navigation within an obstacle-ridden environment
(Fajen, Warren, Temizer, & Kaelbing, 2003; Rigoli et al.,
2021), and drumming (Ijspeert, Nakanishi, Hoffmann, Pastor,
& Schaal, 2013) and racket ball tasks (Sternad, Duarte,
Katsumata, & Schaal, 2001). The dynamical primitives
used specifically to model human perceptual-motor behaviors
are hereby termed as dynamical perceptual-motor primitives
(DPMPs).

Relatedly, previous research has also shown how
reinforcement learning can be used to model and
parameterize dynamical primitives that can generate
simple human motor behaviors (Ijspeert et al., 2013; Peters
& Schaal, 2008). In multi-agent task contexts which
require individuals to coordinate their actions physically
and temporally to collectively influence the environment
(Repp & Keller, 2004; R. C. Schmidt & Richardson,
2008), previous research has shown how stable patterns
of such coordination naturally emerge as a result of the
changing physical and informational couplings between the
agents and the environmental constraints (Lagarde, 2013;
M. Richardson, Marsh, & Schmidt, 2010; R. Schmidt &
O’Brien, 1997; Nalepka, Silva, et al., 2021). Research
has further shown that the same DPMPs used to model
human perceptual-motor behaviors can also be employed
to model the dynamics of numerous complex multi-agent

tasks, including cooperative object pick-and-place tasks
(Lamb et al., 2019) and goal-directed multi-agent navigation
and collision avoidance behaviors (Warren, 2018), as well
as multi-agent shepherding behavior (Nalepka, Kallen,
Chemero, Saltzman, & Richardson, 2017; Nalepka et al.,
2019; Rigoli et al., 2022).

Current Study
If the overarching aim is to replicate human-like behaviors
for human-AI coordination, the implication of the research in
DPMPs is that the processes used to train artificial agents by
DRL should entail the same low-dimensional principles that
characterizes human goal-directed behavior. Indeed, previous
research has demonstrated, in a collaborative continuous
control problem, that human participants exhibited higher
levels of performance when working alongside an agent
whose movements were constrained by DPMPs as opposed
to one trained using DRL (Rigoli et al., 2022). Additionally,
participants preferred to interact with these DPMP agents
compared DRL agents.

Given these results, we present a hierarchical DRL-DPMP
approach to training agents which can harness the power for
DRL to generalize over a wide set of state-action-reward
scenarios, while constraining its behavior to emulate the
characteristics of human behavior. Our approach stems
from the hierarchical nature of human actions such that
goal-directed behavior can be split into a problem of action
selection (which action to perform) and action dynamics (how
to perform the action). By constraining the action dynamics
of agents to conform to the dynamics of DPMPs, we can
simplify training by only requiring agents to develop their
own policies to identify the goals of their actions.

To illustrate this approach, we utilize the cooperative
continuous control problem used in Rigoli et al. (2022),
which is a modified version of the ’human shepherding
task’ employed in previous research investigating human
multi-agent coordination (Nalepka et al., 2017, 2019). In
this task paradigm, players controlling herding agents (HAs)
are tasked to corral and contain a set of evasive target agents
(TAs) within a red containment area located in the center
of the field (see Fig. 1). In this task, the action selection
component can be summarized by which TA each HA
should pursue at each timestep, while the action dynamics
component can be modelled using nonlinear mass-spring
functions (see below for more details) parameterized to
exhibit fixed point dynamics (where the selected TA is
the system’s terminal position). Previous research has
demonstrated that agents whose behaviors were modelled
using this DPMP model can exhibit human-like behaviors
and can collaborate with humans in corralling TAs in a range
of shepherding contexts (Nalepka et al., 2019; Rigoli et al.,
2020).

In this study, we train and evaluate the proposed
hierarchical DRL-DPMP agent methodology with agents
which are required to develop separate policies for action
selection and action dynamics. We compare the training
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time required to train either agents, as well as evaluate
their performance in completing the shepherding task when
working alongside agents embodying human models of
novice and expert behavior.

Method
Task and Environment
We employed a shepherding task previously used to study
human and human-agent multi-agent coordination (Nalepka
et al., 2017, 2019; Rigoli et al., 2020; Nalepka, Silva, et
al., 2021). The task consists of two ’herding agents’ (HAs),
which are tasked to corral and contain a set of ’target agents’
(TAs) within a red containment region located on the game
field (see (Patil, Nalepka, Rigoli, Kallen, & Richardson,
2021) and Fig 1). The TAs exhibited Brownian motion,
and fled from the HAs when within a critical distance.
The task was deemed successful if the HAs could contain
the TAs within the region for a specified period. The
shepherding environment was developed using the Unity
game engine (Unity Technologies, San Francisco, USA)
and the DRL agents were implemented using the Unity
ML-Agents package (Juliani et al., 2018). The environment
size was set to 1m × 1.8m with two HAs corralling four TAs
which spawned randomly in a ±0.3m × ±0.6m rectangle at
the center of the field. The task goal was for the HAs to
contain the TAs continuously for 5 seconds while each trial
lasted 120 seconds. The velocity of the HAs was limited
to 1 m/s in each direction and the rest of the parameters,
e.g., TA speed, TA repulsion from the HAs, HA repulsion
threshold, were set according to previous research (Nalepka
et al., 2019).

Heuristic DPMP Models
Previous research using the shepherding task with humans
indicated two strategies adopted by participants. The first,
referred to as search & recover (S&R), involved each
participant selecting the TA farthest from the containment
region, which was also closer to them than their partner,
and repelling it towards the center. The second, referred to
as oscillatory containment (OSC), involved both participants
encircling the TAs by making oscillatory movements around
the whole herd to keep them contained. Not all participants
discover OSC behavior, but for those who do, its use led
to superior levels of performance (Nalepka et al., 2017).
More recent work validated a model that accounts for S&R,
OSC, and the transitions between these behaviors which was
embodied in an artificial agent tasked to complete the task
with humans (Nalepka et al., 2019).

The behavior exhibited by human players can be modelled
by using the DPMP based task dynamic model,

r̈i +br ṙi + kr(ri − (rT,i + rmin)) = 0 (1)

and
θ̈i +bθθ̇i +βθ̇3

i + γθiθ̇i + kθ(θi −θT,i) = 0, (2)

which model the radial distance and angle of each HA,
respectively. r̈i and ṙi in Eq. (1) represent the velocity
and acceleration of HA-i’s radial distance, respectively,
rT,i the radial distance of the TA being pursued and
rmin the fixed radial offset to ensure the HA repels the
TA towards the containment area.θ̈i and θ̇i in Eq. (1)
represent the velocity and acceleration of HA-i’s radial
angle, respectively and θT,i the radial angle of the TA
being pursued. k and b terms in both Eqs. (1) and (2)
represent the corresponding stiffness and damping parameters
that determine both the acceleration of the HA towards the
position (rT,i + rmin,θT,i), and the opposition to the resultant
velocity, respectively. Additionally, βθ̇3

i and γθiθ̇i in Eq.
(2) are nonlinear Rayleigh and van der Pol escapement
terms which capture the amplitude-frequency and peak
velocity-frequency relationship exhibited by human actors
(Kay et al., 1987). The model defined by Eqs. (1) and (2)
is hereby termed as Limited-DPMP model since it can only
exhibit S&R behavior (when bθ > 0). A Full-DPMP model
can be created from Eqs. (1) and (2) by allowing the damping
parameter bθ to take a negative value by using

ḃθ

HAi +δ(bHAi
θ

−α(rT,i − r∆) = 0 (3)

such that when the radial distance of the TA being pursued,
rT,i, is within a set distance of the containment location, r∆,
the δ and α terms repeatedly reduce the value of bHAi

θ
to a

negative value. On the contrary, when rT,i is outside r∆, the
value of bHAi

θ
slowly goes back to being positive. This flip in

the value of the damping term of the model that approximates
the angular dynamics of the HA results in a Hopf bifurcation
(Patil et al., 2020) that changes the point attractor behavior to
a limit cycle behavior resulting in the HA exhibiting OSC
behavior. The model defined by Eqs. (1), (2), and (3) is
referred to as the Full-DPMP model since it can exhibit both
S&R and OSC behaviors. In previous implementations, a
coupling term was defined to couple the Full-DPMP to its
partner. The success of the model does not depend on this
coupling function and for this paper the coupling term was
not included. For both models, the target selection decision
was defined by a heuristic policy presented in (Rigoli et al.,
2020), where for the subset of TAs that are closer to the HA
than to its partner, the HA will select the TA that is farthest
from the containment region.

In summary, the Limited-DPMP model emulates
novice-like behavior prior to the discovery of OSC behavior,
while the Full-DPMP model emulates human expert-like
behavior capable of exhibiting both SR and OSC behavior.

DRL Models
A classical approach to applying DRL to a multi-agent
problem like shepherding would be to use a single artificial
neural network (ANN) which takes the states of all the
TAs and HAs as inputs and determines the HA’s actions.
This approach can be further decentralized by using separate
networks for target selection and action dynamics which
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can be trained independently. The hierarchical DRL-DPMP
model, first proposed in (Patil, Nalepka, et al., 2021),
uses an ANN for the the target selection policy, with the
action dynamics defined by the above DPMP model. Here,
the Limited-DPMP agent was used to control the action
dynamics, and received input from the ANN as to which
target to pursue. Agents employing this approach were
referred to as DRL-target selection, DRL-TS. In addition to
the DRL-TS hierarchical model, a black-box model was also
evaluated DRL-BB which implemented separate ANNs to
make TA selection decisions as well as control the action
dynamics.

Training
The DRL-TS model for each HA used a neural network with
3 densely connected hidden layers with 64 neurons each and
took the states (position and velocity) of all TAs and HAs as
inputs (24 inputs) and outputted a one-hot vector of the TA to
pursue. The states of the TAs were ordered in an egocentric
way, such that, the states of the TA closest to the HA occupied
the earlier spots in the input array. The neural networks
were trained according to the Proximal Policy Optimization
(PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov,
2017) algorithm with observations collected every 15th frame
for the DRL-TS model while the environment updated at
50 Hz. The ANN obtained experiences from nine game
environments that were run in parallel.

A 11-step curriculum learning was implemented to train
all the agents with agents advancing through the curriculum
steps when 80% of the last 10 trials in the 9 environments (72
out of 90 trials) were successful. The following curriculum
was used: all training runs started with 2 free TAs and 2
TAs clamped at the center with the repulsion and speed of
TAs set such that they were easy to repel by the HAs but
moved slowly upon repulsion and the goal containment time
set to 0.5 s. The 2 TA curriculum step was introduced to aid
in successful training of the DRL-BB agents. The repulsion
factors slowly changed until step 5 such that they matched the
conditions used in Rigoli et al. (2020). At step 6, all 4 TAs
were free to move while the repulsion factors were set back
to the same level as step 1. At step 7 the goal containment
time was increased to 5 s and by step 11 the repulsion factors
were changed in steps to the normal environmental conditions
used in Rigoli et al. (2020). For the DRL-BB agents, in steps
1 to 5, where only 2 TAs were active, TA selection decisions
were made by the heuristic defined for the Full-DPMP and
Limited-DPMP agents. This was done in order to avoid any
training bias of the ANN that approximated the TA selection
due to the presence of only 2 TAs.

During training, the reward for both HAs was calculated
in each environment update such that the agents received a
negative (0.01 × distance of TA from center of environment)
reward for every TA outside the containment area and positive
0.01 reward for every TA in the containment area. In addition,
the HAs received a small negative reward (0.002) if both
HAs were within 5 cm of each other in order to avoid the

HAs from performing the same actions. Twenty DRL-TS and
DRL-BB agents (40 total) were trained, with the top five for
each methodology used for evaluation by ranking them by the
average episode length in the last 0.25 million training steps.

Evaluation and Performance Measures
Following training, the end state performance of the top
five agents was assessed over twenty trials. The following
measures were used to quantify and compare herding task
performance: 1) trial time: The amount of time (s) needed
to contain the TAs - up to a maximum 120 s allowed for each
trial; 2) TA travel: The average cumulative distance travelled
(cm) by the TAs, normalized by trial duration; 3) propOSC:
The proportion of a trial where the HAs exhibited oscillatory
behavior. For this measure, a windowed frequency analysis
(window size = 3 s) was used to determine whether an HA
was exhibiting OSC behavior (with a peak frequency > 0.5
Hz; see (Rigoli et al., 2020)).

The top five DRL-TS and DRL-BB agents completed
twenty trials in the following dyad configurations: self-play
(where both HAs were controlled by the respective DRL
agent), Limited-DPMP partner and Full-DPMP partner. For
Limited- and Full-DPMP partner, each DRL agent completed
the task alongside an agent implementing the Limited-DPMP
(i.e., human novice-like behavior) and Full-DPMP (i.e.,
human expert-like behavior) models.

All analyses were conducted using the statistics program
Stata 17.0 MP (StataCorp LLC, College Station, Texas).
Multi-level linear (linear mixed-effects) models were fitted
for each dependent measure, where each trial (observation)
was nested under their respective trained agent. The
models were defined using the procedure recommended
by (Meteyard & Davies, 2020; Barr, Levy, Scheepers, &
Tily, 2013). Specifically, the random-effects portion of
the model was defined first and defined using a maximal
to minimal-that-converges approach. In the approach,
the models were first defined with parameters for the
random-intercepts variance, for the random-slopes variances
(one for each fixed effect: agent type, partner type, and
the agenttype × partnertype interaction), and for each
of the covariances between the random-slopes variances
and the random-intercepts variance (i.e., unstructured
covariance-variance structure). If a model could not be
fit using maximum likelihood, the covariances, followed
by any parameters for which standard errors were not
calculated (indicating an invalid model fit), were removed
from the model one at a time until the model was fit
correctly. Using the resulting random structures, the one-way
fixed effects were added. The two-way interaction was
included if its inclusion improved model fit, as assessed by
likelihood-ratio (LR) test. The resulting mixed models were
then re-fitted using restricted maximum likelihood (REML)
so that Kenward-Roger degrees of freedom for the fixed
effects could be estimated (Kenward & Roger, 1997).

All dependent measures were treated at the dyad level.
For the dependent measure propOSC, its value was averaged
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Figure 1: Task Environment and Training Time for the DRL Agents. (left) Example task progression for two herding agents
(HAs) corralling four target agents (TAs). (right) Cumulative training steps needed to train the DRL-TS and DRL-BB agents
through the curriculum (see text).

across both DRL agents in the self-play partner condition.
For the Limited- and Full-DPMP conditions, only the value
of the DRL agent was considered in the dyad. All pairwise
comparisons following significant tests were Bonferroni
corrected.

For both trial time and TA travel, the final models
included random slopes for partner type but did not include
random intercepts, random slopes for agent type nor the
interaction, nor covariances. The agent type, partner type,
and agenttype× partnertype fixed effects were all included
in the model. For propOSC, the final model had the same
random-effects structure but only included the main-effect
fixed effects (i.e., agent type and partner type).

Results
Fig. 1 shows the comparison of training performance of
DRL-TS and DRL-BB agents that successfully completed
all curriculum steps. DRL-TS agents learned to successfully
complete the shepherding task within 3.2 million timesteps
(SD = 0.59 million), compared to an average of 13.84
million timesteps (SD = 5.8 million) for the DRL-BB agents.
DRL-TS agents took less time to complete the training
curriculum than DRL-BB agents, validating the expectation
that using DPMP movement dynamics to control the
action dynamics of agents would significantly simplify (and
therefore speed-up) the agent training process. Additionally,
the variability between the training steps required by all
DRL-TS agents to complete the curriculum steps was much
lower that the DRL-BB agents pointing to a higher level of
stable learning patterns.

All performance data are presented in Fig. 2. For trial
time, significant effects of agent type, t(19.4) = −7.20, p <
.0001, and partner type, F(2,14.63) = 37.79, p < .0001,
were found, with dyads that included DRL-TS agents
completing trials faster than dyads that included DRL-BB
agents. Additionally, agents who completed the task with

a similar partner (i.e., self-play) or with the Full-DPMP
agent completed trials in a similar length of time (t(11.6) =
1.29, p = .662) and outperformed dyads who completed the
task with the Limited-DPMP agent (both t ≤ −5.34, p <
.0001).

For TA travel (normalized by trial duration), significant
effects of agent type, t(19.8) = 6.84, p < .0001 and partner
type, F(2,14.44) = 162.00, p < .0001, were observed as
well as a significant agenttype × partnertype interaction,
F(2,14.44) = 30.80, p < .0001. In summary, TA travel
was lowest for DRL agents during self-play compared to
when the DRL agents worked alongside a Full-DPMP or
Limited-DPMP partner, with the Limited-DPMP partner
condition resulting in the largest magnitudes of TA travel (all
comparisons |t| > 5.12, p < .001). Although TA travel was
also larger for DRL-TS agents compared to DRL-BB agents
during self-play (t(578) = 16.41, p < .0001), there were no
differences between the DRL agents when completing the
task with either the Limited- or Full-DPMP partners (both
t ≤ 1.34, p ≥ .655).

Finally, the analysis of propOSC revealed a significant
effect of partner type, F(2,21.04) = 21.04, p < .0001,
with DRL-TS agents exhibiting greater instances of
oscillatory-like behavior compared to the DRL-BB agents,
t(40.9) = 4.15, p < .001. Further, this behavior was
reduced when the DRL agents completed the task with
the Limited-DPMP agent, who was incapable of producing
oscillatory behavior (t(32.9) = −6.59, p < .001). There was
no difference between the self-play or Full-DPMP conditions
(|t|< 2.48, p ≥ .079).

Discussion
The results revealed that the DRL agents trained using the
hierarchical DRL-DPMP methodology (i.e., DRL-TS agents)
not only outperformed DRL agents trained using the standard
DRL methods (i.e., DRL-BB agents), but were also able
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Figure 2: Summary of the results. (left) Trial time (center) Normalized TA travel (right) Proportion of a trial where the HAs
exhibited oscillatory behavior. Plotted are the predictive margins from the fitted models. For comparisons, also included are
the mean performance of two self-play DPMP models (Limited- and Full-DPMP).

to achieve effective task performance more than four times
faster over the course of training. Recall that DRL-BB
agents were required to develop separate policies for for
both action selection and action dynamics. In contrast, the
DRL-TS agents were trained to develop an action selection
policy, while its action dynamics were constrained using
DPMPs. Although it is not surprising that this configuration
reduced training time, it is important to appreciate that
agents trained using standard DRL methods often fail to
learn to perform complex multi-agent tasks and that the use
of DPMPs can provide a easy method for overcoming this
issues. Further, in addition to (or instead of) the availability
of human demonstration data, DPMP models could be used
to generate synthetic data to augment existing (or to generate
new) datasets for imitation learning approaches.

Because the DRL-TS agents’ movements were constrained
by a DPMP model that emulated the dynamics of human
shepherding behavior, it is hypothesized that this would result
in better human-agent collaboration as the movements of the
DRL-TS agents would be aligned with human expectations.
Future work will have to validate these agents with human
participants, as a limitation of this work is that the DRL
agents were evaluated alongside human models of novice
and expert-level behavior. However, as demonstrated by
Rigoli et al. (2022), participants prefer interacting with a
DPMP-based shepherding model as compared to one trained
using DRL. Therefore, it is expected that participants would
equally prefer the DRL-TS agent as it exhibits movement
dynamics consistent with the DPMP model, with a more
flexible action selection policy, as opposed to the inflexible
heuristic policy used in Rigoli et al. (2022).

Future work could also consider alternative methods to
design the training environments of the DRL agents. In
particular, the current study trained the DRL agents using
self-play. However, an alternative approach, pursued by
Carroll et al. (2019), is to insert models of human behavior
(e.g., the Limited- or Full-DPMP agents) as agents within

the training environment. In this way, DRL agents must
develop policies which complement the behaviors of these
DPMP models. It remains an open question to the extent to
which DRL agents, in this setting, would adopt policies that
resemble those of the DPMP agents, or if human participants
would be accommodating to agents exhibiting heterogeneous
strategies. Preliminary studies show that participants prefer
heuristic models over the models trained by DRL (Patil,
Bagala, Nalepka, Kallen, & Richardson, 2022; Patil, Bagala,
Nalepka, Richardson, & Kallen, 2023). Additionally, it is
also necessary to test the hierarchical approach in other task
contexts where the movement dynamics can be modelled
by DPMP models (Babajanyan, Patil, Lamb, Kallen, &
Richardson, 2022; Ekdawi, Patil, Kallen, & Richardson,
2022; Patil, Rigoli, et al., 2021)

Interestingly, although the DRL-TS agents implemented
the Limited-DPMP model to control its movements, the
DRL-TS agents exhibited greater instances of oscillatory-like
behavior compared to the DRL-BB agents. This is surprising
because the Limited-DPMP model was parameterized to not
exhibit oscillatory behavior (see Fig. 2). This suggests that
the DRL-TS agents developed action selection policies that
encouraged the emergence of this more effective behavioural
strategy. Indeed, in model-based simulations, oscillatory
behavior can be observed as an emergent property of systems
that are only capable of point attractor dynamics (such as the
case for the Limited-DPMP model) if certain action selection
heuristics are used (Nalepka, Silva, et al., 2021). As the
DRL-TS agents exhibited less control over the TAs compared
to the DRL-BB agents, in terms of limiting their motion,
it is possible that DRL-TS agents used the TAs’ motion to
its advantage to produce oscillatory-like dynamics. Indeed,
the utilization of oscillatory, as well as circling strategies, is
an effective mode of behavior observed not only in humans
(Nalepka et al., 2017), but other animal systems in naturalistic
shepherding and hunting contexts (Nalepka, Silva, et al.,
2021). Similarly, during training, DRL-TS agents may be

1986



learning policies which uncover these behaviors as latent
solutions to the shepherding task context.

To conclude, agents trained using DRL are capable of
learning policies that can meet or exceed human levels of
performance. However, if the goal is to develop agents
that can interact with humans seamlessly in collaborative,
human-agent interaction, agents must exhibit behaviors that
align with human expectations and behavioural strategies.
Because agents trained using DRL require a vast amount of
experiences, humans interacting with these agents directly
during training is not practical (Carroll et al., 2019).
Therefore, models of human behavior are needed to constrain
the development of DRL agents. For perceptual-motor tasks
specifically, the results of the present work demonstrate
that this can be achieved using DPMPs, which represent
the primitive features of human movement, to control the
movements and actions of DRL agents. Such hybrid
DRL-DPMP agents also significantly reduced the training
time needed by reducing the number of dimensions the
agent needs to control. For more complex and hierarchical
tasks, agents exploiting models composed of DPMPs
to constrain its actions is likely to outperform standard
black-box DRL agents, while exhibiting dynamics that are
human-compatible.
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