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Abstract

Artificial agents now perform on par with or better than experts
on several challenging decision-making tasks. People, how-
ever, remain reluctant to allow algorithms to make decisions
on their behalf and legal constraints may prevent it altogether.
How can we harness artificial intelligence, while maintaining
trustworthiness and accountability? We propose confirmation
trees, a decision-tree strategy for hybrid intelligence that can
improve accuracy while maintaining human control. First, de-
cisions are elicited from a human expert and an artificial agent.
If they agree, that decision is adopted. If they disagree, a sec-
ond human expert is consulted to break the tie. Hence, a hu-
man expert always approves the final decision. Our approach
outperforms human experts or algorithms alone at diagnosing
malign skin lesions. Crucially, it performs better than a strong
human baseline, using substantially fewer human ratings. Our
results show the potential of this approach for medical diag-
nostics and beyond.
Keywords: collective intelligence, hybrid intelligence, major-
ity voting, decision trees, augmented intelligence, neural net-
works.

Introduction
Artificial intelligence (AI) and deep neural networks have en-
tered our lives for good. Artificial agents can now accurately
identify and categorize objects in images, produce images
from text prompts, and even write code and identify bugs.
One of the domains where deep neural networks hold the
greatest promise to improve or even disrupt the current work-
ing routines is in diagnostic medicine. In several diagnostic
tasks, deep neural networks have reached a level of perfor-
mance comparable to or even better than that of seasoned ex-
perts (Topol, 2019; Marchetti et al., 2020; Haggenmüller et
al., 2021; Hannun et al., 2019). At the same time, profession-
als and lay people are known to be reluctant to adopt decision-
making algorithms in their daily routines (Dawes, Faust, &
Meehl, 1989; Dietvorst, Simmons, & Massey, 2015), and
there is currently a legal gap in attributing legal and moral re-
sponsibility to algorithms (Santoni de Sio & Mecacci, 2021;
Grote & Berens, 2020). This creates a difficult puzzle: How
can we harness the diagnostic capacities of deep neural net-
works, while keeping the final responsibility with human de-
cision makers?

A promising way forward is to design decision-making
processes that combine human decision makers and artificial
agents. In the same way that combining the predictions—
or abilities—of different human decision makers or models
can boost decision accuracy (R. H. Kurvers et al., 2016; He,

Analytis, & Bhatia, 2022; R. Kurvers et al., 2023), com-
bining human decision makers and artificial agents (Grosz,
1996; Kamar, 2016) can produce hybrid intelligence, which
can outperform both humans and artificial agents (Patel et al.,
2019). A hybrid approach maintains human agency and con-
trol, rather than replacing humans with algorithms, and can
thus help to overcome people’s reluctance to rely on algo-
rithms as well as potential legal constraints.

Here, we present hybrid confirmation trees, a simple se-
quential decision-making strategy that does exactly that (Fig-
ure 1). First, a prediction is elicited from a human expert and
an artificial agent. If they agree, that decision is adopted. In
cases of disagreement, a second human expert is consulted
to break the tie and make the final decision. To ensure maxi-
mum independence between predictions, none of the decision
agents (human or AI) have access to the predictions of the
other. We show that hybrid confirmation trees have the poten-
tial to improve overall diagnostic performance in terms of the
achieved true positive and false positive rates while substan-
tially decreasing the overall decision-making cost compared
to human confirmation trees. Importantly, this approach al-
ways has at least one human decision maker onboard approv-
ing a decision. Similar strategies have been documented in
the context of hypothesis testing (Bruner & Austin, 1986) and
been proposed as plausible and effective strategies in multi-
attribute choice (2006). Confirmation trees are also a man-
ifestation of majority decision-making (Hastie & Kameda,
2005), with the difference that when the first two agents
agree, the third agent is redundant and thus, as in other fru-
gal decision-making algorithms, pruned (Luan, Schooler, &
Gigerenzer, 2011).

We test our approach in the context of melanoma classifi-
cation. Skin cancer is one of the most common and aggres-
sive forms of cancer, affecting more than five million peo-
ple annually in the United States alone (Rogers, Weinstock,
Feldman, & Coldiron, 2015). An early and correct diag-
nosis of melanoma is key for successful treatment and sur-
vival (Rigel & Carucci, 2000). As of 2017, algorithms based
on convolutional neural networks (CNNs) achieved perfor-
mance comparable to that of medical experts (Esteva et al.,
2017; Tschandl et al., 2019; Hekler, Utikal, Enk, Berking,
et al., 2019) for some diagnostic tasks, while the most re-
cent studies indicate that CNNs can even outperform medical
experts (Brinker, Hekler, Enk, et al., 2019; Haggenmüller et
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Figure 1: Visual representation of the confirmation tree decision process. The decision of a human expert is compared to the decision of an
algorithm. In cases of agreement, that decision is adopted. In cases of disagreement, a second human expert breaks the tie. Boxes indicate
the final decision (which is always supported by at least one human expert). Note that this is a condensed visualization of the tree structure.
Both dis-confirmed branches should be fully expanded to conform with the tree structure in a graph-theoretical sense.

al., 2021). A few recent studies have examined the possi-
bility of combining human and machine predictions, either
by providing AI-generated advice to human experts (Han et
al., 2020) or by training a meta-algorithm to optimally com-
bine their predictions (Hekler, Utikal, Enk, Hauschild, et al.,
2019), showing promising results. Our study contributes both
to the cognitive sciences, by advancing a simple yet generic
algorithm for combining the predictions of humans and ar-
tificial agents, as well as to the emerging medical literature
on finding efficient decision-making processes for melanoma
classification.

Methods and approach
Dataset and human experts
To assess the performance of individual medical experts,
groups of medical experts, and human-algorithm hybrids, we
sought a dataset where many doctors have made diagnoses us-
ing the same visual input. We identified the Melanoma Clas-
sification Benchmark (MClass) as the most suitable dataset
(Brinker, Hekler, Hauschild, et al., 2019), and focused on
doctors’ diagnostic performance on the non-dermoscopic im-
ages in the dataset. The (openly available) data contains di-
agnoses rendered by 145 dermatologists who were presented
with 100 images of skin lesions and asked to provide a man-
agement decision (treat/biopsy lesion or reassure the patient).
The dermatologists were all practicing in hospitals at the time
of data collection (42 individuals had <2 years of practical
experience, 67 individuals between 2-12 years, and 36 in-
dividuals >12 years). The images were drawn from a large
database of medical images to create a diverse data set. The
images consisted of 80 benign (atypical nevi) and 20 ma-
lignant (melanoma) images. The ground truth of malignant
lesions was verified through histopathological examination,
and for benign lesions via a consensus protocol amongst ex-
perts.

Convolutional neural networks
To test the performance of a hybrid intelligence approach, we
first identified an artificial agent that performs close to the
current state-of-the-art (SOTA) in the same skin lesion classi-
fication tasks as that of the human experts. The AI technology
that achieves SOTA performance in these tasks is convolu-
tional neural networks (CNNs).

We made use of existing datasets to train our CNN for
melanoma classification. Specifically, we used two that are
publicly available on Kaggle: that of the 2019 International
Skin Imaging Collaboration (ISIC) Challenge (Tschandl,
Rosendahl, & Kittler, 2018; Codella et al., 2017; Combalia
et al., 2019), and that of the 2020 Melanoma Classification
Challenge organized by the Society for Imaging Informat-
ics in Medicine (SIIM) and ISIC (Rotemberg et al., 2021).1

Combined, they total 58,000 images that have been care-
fully selected and curated for computer-aided image classifi-
cation. These data are highly suitable because training CNNs
requires large, high-quality datasets to achieve good perfor-
mance.

We identified and fine-tuned a SOTA CNN proposed by
Chris Deotte. Deotte’s model scored in the top 2% in the
SIIM-ISIC Challenge and the training code and final weights
of his model are publicly available. Unfortunately, the train-
ing set of Deotte’s model overlaps with the images used in
the MClass benchmark dataset, making it unsuitable for unbi-
ased evaluation. Instead, we trained a model on the combined
ISIC 2019 dataset and SIIM-ISIC 2020 dataset scrubbed of
any images overlapping with the MClass benchmark dataset.
In order to match Deotte’s approach, the unbiased model is
a finetuned EfficientNet B6 (Tan & Le, 2019) pretrained on
the Imagenet dataset (Deng et al., 2009). The pretraining on

1For an overview of the competition see https://challenge.isic-
archive.com/
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Imagenet was done by Ross Wightman (2019). The model
was trained using the Adam optimizer (Kingma & Ba, 2014)
with default momentum parameters and the 1-cycle learning
rate schedule (Smith & Topin, 2019).

In contrast to the binary decisions of human decision mak-
ers, CNNs produce a probability estimate (e.g. a 10% proba-
bility that a lesion is a melanoma). This allows us to modify
the final categorization by adjusting the prediction threshold
used to categorize images into malignant or benign tumors.
For example, in some settings a low probability estimate of
10% may be deemed sufficient to categorize a lesion as ma-
lignant, whereas other settings might warrant a much higher
threshold. Thus, instead of using the maximum likelihood
threshold (at p >= 0.5) we consider the full family of classi-
fiers obtained by varying the probability threshold of catego-
rizing a tumour as malignant. Using such an analysis routine
and calculating Area Under the Curve (AUC) metric (Brinker,
Hekler, Enk, et al., 2019; Haenssle et al., 2018) we find that
Deotte’s model achieves an AUC score of 0.902.

Confirmation trees
In the hybrid confirmation trees approach, a decision is
elicited from both a human expert and an algorithm. If they
agree, that decision is accepted. If they disagree, a second hu-
man expert makes the final decision (Figure 1). Note that con-
firmation trees lead to the same decisions as 3-agent majori-
tarian decision-making and follow a long tradition that high-
lights the benefits of information aggregation (De Condorcet,
2014; Csaszar & Eggers, 2013; Hastie & Kameda, 2005; Her-
zog, Litvinova, Yahosseini, Tump, & Kurvers, 2019). Our
approach has the key advantage that the branches of the deci-
sion tree are pruned once sufficient votes for a decision have
been gathered, which reduces overall cost. Thus, similar to
fast-and-frugal decision strategies and other simple decision-
tree algorithms, part of the cost reduction comes from how
the tree is structured (Christensen & Knudsen, 2010; Luan
et al., 2011). A second important pathway for cost reduction
stems from the fact that neural networks are extremely cheap
once trained. Thus, part of the novelty comes from deciding
where to place artificial agents in existing decision-tree algo-
rithms. We also implemented the algorithm with only human
decision makers as a baseline comparison.

Simulation procedures
We evaluate the performance of confirmation trees by sam-
pling medical experts at random for the top and bottom node
positions in the decision tree (Figure 1), and placing a de-
cision from the CNN at the intermediate level. Because the
binary CNN prediction depends on the threshold used, we
repeated this process for each unique probability prediction
value that the CNN generates over the set of images. This
generates the prediction for each image in our test set, which
we used to evaluate the true positive rate (TPR) and the false
positive rate (FPR) for each threshold.

The simulations select the decisions of two new human
experts for every image, remaining agnostic about the dif-

ferences in skill among the doctors. Thus, the predictions
fed into the confirmation tree strategy can be constructed
in a multitude of ways (i.e. depending on who is currently
available at the hospital) and can vary to some degree every
time the algorithm is run. We ran the simulation 1,000 times
for each threshold value and each image and averaged the
results. We compared the performance of the confirmation
tree against three baselines: i) The average individual perfor-
mance of human experts; ii) the performance of the CNN on
its own; and iii) a strong collective intelligence baseline, by
running the confirmation tree strategy using only medical ex-
perts (i.e. replacing the intermediate AI node with a human
expert).

Figure 2: The true and false positive rate of the 145 medical experts
(orange dots) and their average individual performance (blue trian-
gle). The grey line shows the performance of the CNN model for
different categorization thresholds.

Results
Medical expert performance
We first assess the performance of the 145 medical experts
by comparing their diagnoses to the ground truth. There is
substantial individual variability in the performance of medi-
cal experts in terms of both the achieved TPRs (range 0.55-1)
and FPRs (range 0.075-0.775, Figure 2). The average indi-
vidual performance across all medical experts amounts to a
TPR of 0.894 and a FPR of 0.356. That is, if we were to sam-
ple a random medical expert, we would expect to correctly
detect 89.4% of the melanomas (and miss 10.6%), and cor-
rectly reject 64.4% of the non-malignant cases (and in 35.6%
of the cases predict a melanoma when there is none).

Medical experts vs. baseline CNN
One key difference between the human experts and the CNN
model is that we can make the model more lenient or strict
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by manipulating the acceptance threshold, which is not pos-
sible for the binary responses of the medical experts. Thus,
comparing medical experts and the CNNs on the same crite-
ria is not straightforward. Nonetheless, we can compare the
performance of medical experts to the ROC curve of the CNN
(Figure 2). This visual inspection shows that a minority of the
medical experts achieve a combined TPR and FPR that is bet-
ter than the model’s performance (i.e., above the grey CNN
curve in the ROC-space), although many points reside on the
curve. When investigating the average expert (blue triangle)
we find the performance just below the curve with a TPR of
0.894 and a FPR of 0.356. The closest CNN results reside at
a TPR of 0.900 and a FPR of 0.350, being marginally better.

Properties and performance of confirmation trees

Flexibility of hybrid confirmation trees The performance
of this hybrid approach in terms of trading off TPR and FPR
can be regulated by setting different thresholds—akin to the
performance of the CNN itself. Figure 3 shows the per-
formance of the confirmation trees for different thresholds
(dots). The possible range in the trade-off space of the con-
firmation tree is smaller than that of the CNN. However, it is
much larger than that of a human-only decision tree given the
binary nature of the human decisions. Importantly, the possi-
ble combinations of TPRs and FPRs cover the region that is
likely the most relevant for medical diagnostics.

Hybrid confirmation trees nest 2-person hierarchies and
polyarchies For an acceptance threshold of 0 for the CNN
(i.e. all skin lesions are categorized as malignant by the
CNN), hybrid confirmation trees nest 2-person polyarchies
(Sah & Stiglitz, 1988; Christensen & Knudsen, 2010). Pol-
yarchies are a social fast-and-frugal decision-tree strategy
where it suffices for one person to approve a binary catego-
rization decision [see Martignon, Katsikopoulos, and Woike
(2008), fast and frugal trees have a conclusive exit at each
node, i.e. the first or second medical expert can make a con-
clusive decision and categorize a case as malignant]. At its
polyarchy extreme, the hybrid confirmation tree achieves the
highest TPR possible for the hybrid confirmation tree, but
also the highest FPR (see the rightmost purple square in Fig-
ure 3 and the second to bottom row in Table 1).

For an acceptance threshold of 1 for the CNN, by contrast,
hybrid confirmation trees nest 2-person hierarchies (Sah &
Stiglitz, 1988), a social fast-and-frugal decision-tree strategy
where both individuals need to agree for a malignant decision
to occur. In other words, if they disagree, the case is catego-
rized as benign, and the first expert can already categorize a
case as benign on their own. At its hierarchy extreme, the hy-
brid confirmation tree achieves the lowest possible FPR, but
at the cost of a low TPR (see the green square in Figure 3 and
the bottom row in Table 1).

Comparison to medical experts and artificial agents
Comparing the performance of the hybrid confirmation tree
to that of single medical experts and the SOTA CNN, we

Figure 3: Performance of the confirmation tree (dots), the average
expert performance (blue-triangle), the human confirmation tree (red
triangle), the nested models of both the 2-person hierarchy (green
square) and 2-person polyarchy (purple square), and the CNN (grey
line). The light- to dark-brown dots represent the performance of our
confirmation tree algorithm for each threshold, with the coloration
indicating the average number of raters consulted.

observe that hybrid confirmation trees perform substantially
better than the average medical expert (the colored dots ver-
sus the blue triangle in Figure 3), and achieve slightly better
TPR and FPR combinations than the CNN (the colored dots
versus the grey line in Figure 3). Finally, we compare the per-
formance of the hybrid confirmation trees to the performance
of human confirmation trees (in which the intermediate AI
nodes in Figure 1 are replaced by a human rater). Crucially,
hybrid confirmation trees perform slightly better than human
confirmation trees (the colored dots versus the red triangle in
Figure 3). For example, the human confirmation tree achieves
an average TPR of 0.930 and a FPR of 0.336. At roughly the
same level of TPR, the hybrid confirmation tree achieves a
FPR of 0.322 which is slightly lower (better) than that of the
human confirmation tree. Importantly, this can be achieved at
a much lower cost as we will discuss next.
Frugality of confirmation trees Using a CNN instead of a
human decision maker in the decision tree allows for a sub-
stantial reduction in the number of human raters without any
loss of performance. Figure 3 shows the average number of
raters the hybrid confirmation tree used for each threshold.
Figure 4 presents this in more detail, showing the likelihood
of eliciting a second human rater per threshold. We compare
the frugality of the hybrid confirmation tree to a human con-
firmation tree by calculating the difference in the number of
human raters used at the threshold values of the hybrid confir-
mation tree that match the TPR or FPR of the human confir-
mation tree. The human confirmation tree achieves a TPR of
0.930 and a FPR of 0.337 using 2.27 raters (Table 1). When
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Strategy type Strategy TPR FPR Cost Agreement rate Threshold (θ)

Human baselines Average medical expert 0.894 0.356 1 - -
Human confirmation tree 0.930 0.337 2.27 0.733 -

Hybrid trees
Minimum cost hybrid tree 0.938 0.277 1.32 0.679 0.0163

Matching FPR of human tree 0.946 0.334 1.40 0.603 0.00386
Matching TPR of human tree 0.941 0.322 1.39 0.608 0.00635

Nested models 2-person Polyarchy (nested for θ = 0) 0.946 0.422 1.54 0.463 0
2-person Hierarchy (nested for θ = 1) 0.768 0.142 1.46 0.537 1

Table 1: Overview of the FPR, TPR, cost (i.e., average number of human raters consulted), and agreement between the first two decision-
making agents (either human or CNN) for different decision strategies. For the hybrid confirmation trees we selected CNN thresholds which
either minimized the cost, or matched the FPR (or TPR) performance of the human confirmation tree.

Figure 4: The TPR (yellow line) and FPR (red line) achieved by the
hybrid confirmation tree for different threshold values (x-axis). The
blue line shows the likelihood that a second human rater is consulted.

we match that TPR with the hybrid confirmation tree, we only
need 1.39 human raters. Likewise, when matching the FPR,
we only need 1.40 human raters (Table 1). Thus, to match the
performance of the human confirmation tree, the hybrid con-
firmation tree reduces the number of human raters by 0.88.
Hybrid confirmation trees are also substantially more frugal
than 2-person social fast and frugal tees (polyarchies and hi-
erarchies, see bottom rows of Table 1).
Agreement rate How do the human and the hybrid confir-
mation trees fare in terms of the rates of agreement between
the first and the second medical experts, and medical experts
and the CNN? Medical experts have an overall agreement rate
of 0.733 (i.e. when randomly sampling two expert decisions
for a particular image, they agree in 73.3% of cases). When
matching for the TPR and FPR of the human confirmation
tree, for example, the hybrid tree exhibits agreement rates
between the first medical expert and the CNN of 0.608 and
0.603 respectively. This lower agreement rate could explain
why the hybrid approach works so well. The medical experts
and the CNN may rely on partly different informational cues,

and therefore their judgments may be more independent and
complementary as compared to between-human judgments.
Note that even a hybrid confirmation tree that minimizes the
decision-making cost has a lower agreement rate than the hu-
man confirmation tree (see Table 1 and the blue line in Figure
4), providing evidence that medical experts and the CNN are
relatively independent.

General Discussion

We investigated hybrid confirmation trees, a simple approach
for producing hybrid intelligence and improving the predic-
tion rates in a challenging diagnostic task. Our approach
comes at a low decision-making cost, while maintaining hu-
man agency and control. It can be grounded in the language
of decision trees, and it is expressive enough to nest some
well-established decision processes as boundary conditions.
Alternative examples of hybrid intelligence design One
of the main approaches advanced in decision support is for
artificial agents to act as advisers or recommenders by pro-
viding their predictions to human decision makers, who then
make the final decision (Lai & Tan, 2019). This approach
has shown some promise in improving diagnostic perfor-
mance (Groh, Epstein, Firestone, & Picard, 2022; Han et
al., 2020). However, it comes with limitations. First, people
might lack the ability to determine when the artificial agent is
more knowledgeable and should be followed (Fügener, Grahl,
Gupta, & Ketter, 2022). Second, human decision makers
might be influenced by the artificial agents, and therefore con-
tribute less new information to the decision-making process
than when producing their own judgment independently of
the AI adviser (Fügener, Grahl, Gupta, & Ketter, 2021). And,
in a worst-case scenario, they may even become less atten-
tive and gradually lose their skills on specific tasks, a pro-
cess known as deskilling (Parasuraman & Riley, 1997). Re-
searchers have been exploring ways to address some of these
limitations, for example by providing explanations of the AI
adviser scheme to help humans build meta-knowledge about
the artificial agents (Bansal et al., 2019; Mozannar, Satya-
narayan, & Sontag, 2022). In the near future we aim to di-
rectly compare hybrid confirmation trees and the "AI as ad-
viser scheme" in terms of performance.
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Circumventing algorithmic aversion Going beyond per-
formance, however, people have been particularly reluctant
to adopt the predictions of algorithms for expert tasks, even
when there has been substantial evidence that they could lead
to superior performance. This holds true both for seasoned
professionals who could use actuarial decision algorithms
to improve their own diagnostic performance (Dawes et al.,
1989) and end-consumers of algorithms (i.e. patients, in-
vestors) who appear unwilling to adopt algorithmic predic-
tions (Dietvorst et al., 2015) and are less forgiving when they
observe algorithms to err (Dietvorst & Bharti, 2020) than they
are to humans. We believe that hybrid confirmation trees can
largely circumvent these issues by (i) having professionals
and artificial agents provide independent judgments and (ii)
always having a human decision maker onboard approving
a decision. Thus, future comparisons should not only be in
terms of performance, but also in terms of people’s willing-
ness to adopt these hybrid decision-making procedures.

CNN potential and hybrid confirmation tree performance
In the coming years, CNNs (and other AI models) are bound
to get better as the relevant neural network architectures and
training methods improve, there are more data available to
train the models (i.e. more images and metadata), and the
cost of computation further decreases. Thus, we expect that
in many tasks these models will eventually outperform most
human experts in visual tasks. In many scenarios, using hy-
brid confirmation trees would likely achieve better diagnostic
outcomes than the average medical expert or the human con-
firmation tree baseline, but worse outcomes than CNNs. Nev-
ertheless, using hybrid confirmation trees might be advisable
for avoiding deskilling, addressing algorithm aversion or for
legal reasons.

For now, there are still cases for which CNNs (and other AI
models) perform worse than human experts, especially when
these models have not been trained appropriately. For ex-
ample, CNNs’ diagnostic performance is worse than that of
most medical experts when standard models are evaluated on
people with diverse skin colours (Daneshjou et al., 2022). In
scenarios where CNNs are lagging behind the average hu-
man expert, could it be reasonable to deploy hybrid confir-
mation trees (as opposed to human confirmation trees)? Even
in such cases, hybrid confirmation trees could improve diag-
nostic outcomes if AI models bring about new and relatively
independent information, compared to that of another human
expert.

An important task for future research is to outline the con-
ditions under which hybrid confirmation trees outperform
their constituent parts (human experts and AI alike), and iden-
tify settings where we would expect them to outperform only
the human experts.

Applications to other domains We demonstrated the bene-
fits of our approach in a visual diagnostic task in dermatology.
Hybrid confirmation trees, however, are generic and can be
applied in other cutting-edge domains where CNNs and other
algorithms have been recently deployed in medicine and be-
yond, for example in screening for breast cancer (McKinney

et al., 2020), predicting recidivism (Dressel & Farid, 2018)
and deciding when to release people after trial (Kleinberg,
Lakkaraju, Leskovec, Ludwig, & Mullainathan, 2018), in de-
tecting misinformation (Marcellino et al., 2020), or in iden-
tifying deepfake videos (Groh et al., 2022). Hybrid confir-
mation trees can be directly deployed in these scenarios by
choosing the SOTA algorithm for these specific domains as
the artificial agent. Such applications constitute promising
avenues for future research.
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