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ARPREC: An Arbitrary Precision Computation Package
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Abstract
This paper describes a new software package for performing arithmetic with an arbitrarily

high level of numeric precision. It is based on the earlier MPFUN package [2], enhanced with
special IEEE floating-point numerical techniques and several new functions. This package is
written in C++ code for high performance and broad portability and includes both C++ and
Fortran-90 translation modules, so that conventional C++ and Fortran-90 programs can utilize
the package with only very minor changes. This paper includes a survey of some of the interesting
applications of this package and its predecessors.

1. Introduction
For a small but growing sector of the scientific computing world, the 64-bit and 80-bit IEEE

floating-point arithmetic formats currently provided in most computer systems are not sufficient.
As a single example, the field of climate modeling has been plagued with non-reproducibility, in
that climate simulation programs give different results on different computer systems (or even
on different numbers of processors), making it very difficult to diagnose bugs. Researchers in the
climate modeling community have assumed that this non-reproducibility was an inevitable conse-
quence of the chaotic nature of climate simulations. Recently, however, it has been demonstrated
that for at least one of the widely used climate modeling programs, much of this variability is
due to numerical inaccuracy in a certain inner loop. When some double-double arithmetic rou-
tines, developed by the present authors, were incorporated into this program, almost all of this
variability disappeared [12].

The double-double (32 digits) package mentioned above and a related quad-double (64 digits)
package have been used in other scientific applications as well [13]. These include a vortex roll-
up simulation [10] and a bound-state calculation of Coulomb three-body systems [11]. In each
case, the computational results would have been meaningless without the additional numeric
precision. In fact, the Coulomb three-body calculations eventually had to rely on arbitrary
precision arithmetic software, as more than 100 digit accuracy was required. It is also expected
that future analysis of vortex roll-up phenomena will require significantly more precision than
provided by the quad-double package.

Perhaps the most interesting applications of high precision arithmetic are in the arena of
experimental mathematics. One key computation used in this research is integer relation de-
tection. Given a vector x = (x1, x2, x3, · · · , xn) of real or complex numbers, an integer relation
algorithm finds integers ai, not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0

At the present time, the most effective algorithm for integer relation detection is the recently
discovered “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson [6]. PSLQ was

1This work is supported by the Director, Office of Computational and Technology Research, Division of Math-
ematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number
DE-AC03-76SF00098.
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recently named one of ten “algorithms of the century” by the editors of Computing in Science
and Engineering [3]. For almost all applications of an integer relation algorithm such as PSLQ,
very high precision arithmetic must be used. Such computations are typically done using 100-500
digit precision, although some problems require thousands of digits.

The best-known result found using integer relation computations is the “BBP” formula for
π, which was discovered in 1997 using a 2-level version of PSLQ implemented with the MPFUN
multiple-precision arithmetic package [5]:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

This formula, after a minor manipulation, yields a very simple algorithm to directly compute
hexadecimal or binary digits of π beginning at the n-th digit, without needing to compute
any of the first n − 1 digits, and requiring only a very small amount of computer memory.
Since 1997, similar formulas have been found, using PSLQ computations, for numerous other
mathematical constants, including logarithms of certain integers, the Riemann zeta function
evaluated at certain odd integers, arctangents of certain rational numbers, and certain constants
that arise in quantum field theory. In some cases, such as Catalan’s constant, the new computer-
discovered formulas are the best known formulas for computing high-precision numerical values
(independent of the individual binary digit calculation property). A compendium of these “BBP-
type” formulas is available online [1].

As an aside, recently it has been shown that these computer-discovered BBP-type formu-
las have deep implications for the centuries-old question of whether (and why) mathematical
constants such as π and log 2 are normal. Here normal base b means that every m-long string
of digits in the base-b expansion appears with limiting frequency b−m, namely the frequency
one would expect if the digits had been generated at random. It is easy to show using mea-
sure theory that “almost all” real numbers are normal. Further, it is widely believed, based
on computational studies, that many of the well-known constants of mathematics, including
π, e,

√
2, log 2, log 10 and many others, are normal to commonly used number bases. But it is

an embarrassing fact of modern mathematics that none of these constants has ever been proven
normal to any base.

Recently some significant progress was achieved in this arena. In particular, it has been
demonstrated that the normality of the class of real constants for which BBP-type formulas are
known (which includes π, log 2 and others), reduces to a plausible conjecture from the field of
chaotic dynamics [9]. In the latest development along this line, a certain class of real numbers,
uncountably infinite in number (but not yet including π), has been proven normal base 2 [9].

In another application of high-precision computing to mathematical research, PSLQ compu-
tations have been used to investigate sums of the form

S(k) =
∑
n>0

1
nk

(2n
n

)
For small k, these constants are known to satisfy simple mathematical identities, such as S(4) =
17π4/3240. For many years researchers have sought generalizations of these formulas for k > 4.
Recently some general formulas were found using PSLQ. In particular, the constants {S(k)|k =
5 . . . 20} have now been evaluated in terms of multiple zeta values, which are defined by

ζ(s1, s2, · · · , sr) =
∑

k1>k2>···>kr>0

1
ks1

1 ks2
2 · · · ksr

r
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and multiple Clausen values of the form

M(a, b) =
∑

n1>n2>...>nb>0

sin(n1π/3)
na

1

b∏
j=1

1
nj

A sample result, obtained using PSLQ, is the following:

S(9) = π

[
2M(7, 1) +

8
3
M(5, 3) +

8
9
ζ(2)M(5, 1)

]
− 13921

216
ζ(9)

+
6211
486

ζ(7)ζ(2) +
8101
648

ζ(6)ζ(3) +
331
18

ζ(5)ζ(4)− 8
9
ζ3(3)

Recently S(20) was evaluated with this methodology, which involved an integer relation problem
of size n = 118. This solution required 5,000 digit arithmetic and several hours of computation
on a high-end workstation. The solution is given explicitly in [6].

One other result that we shall mention here arose from the numerical discovery, using PSLQ,
by British physicist David Broadhurst that

α630 − 1 =
(α315 − 1)(α210 − 1)(α126 − 1)2(α90 − 1)(α3 − 1)3(α2 − 1)5(α− 1)3

(α35 − 1)(α15 − 1)2(α14 − 1)2(α5 − 1)6α68

where α = 1.176280818259917 . . . is the larger real root of Lehmer’s polynomial

0 = α10 + α9 − α7 − α6 − α5 − α4 − α3 + α + 1

The relation led Broadhurst to believe that a valid ladder of polylogarithms exists at order
n = 17, contrary to a suggestion in [15]. Later, he and one of the present authors were able to
find 125 non-zero integers a, bj , ck, up to 292 digits in size, such that the relation

a ζ(17) =
8∑

j=0

bj π2j(log α)17−2j +
∑

k∈D(S)

ck Li17(α−k)

holds to more than 50,000 decimal digits. This set of 125 integers was found in more than
more way. One of these computations was performed on the NERSC Cray T3E, a highly
parallel system at Lawrence Berkeley Laboratory. In this calculation one of the present authors
employed a three-level, multi-pair PSLQ algorithm, implemented using the MPFUN multiple-
precision software, and using MPI for parallel execution. This computation required 50,000
decimal digit arithmetic, and approximately 44 hours on 32 CPUs of the T3E, completing after
236,713 iterations [7].

2. Overview of the ARPREC Package
The new Arbitrary Precision (ARPREC) computation package is based in part on the

Fortran-90 MPFUN package [2], which in turn is based on an earlier Fortran-77 package [4].
Both of the earlier packages were targeted to a Fortran environment. With the Fortran-77 MP-
FUN package, users indicate which variables are to be treated as multiple precision by means of
special comments inserted in the code. A translation tool then transforms the code into a pro-
gram that includes explicit calls to routines from the MPFUN library. In the Fortran-90 version
of MPFUN, the object-oriented facilities built into the Fortran-90 language (notably custom
datatypes and operator overloading) are exploited to provide the same functionality without the
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need of a translation tool. In addition, the Fortran-90 version of MPFUN incorporates some
advanced algorithms that provide better accuracy and performance.

The ARPREC library improves upon the Fortran-90 MPFUN package in several ways, and
extends its functionality to the realm of C and C++ programs. In particular, the ARPREC
package features:

• Code written in C++ for high performance and broad portability.

• C++ and Fortran-90 translation modules that permit conventional C++ and Fortran-90
programs to utilize the package with only very minor changes to source code.

• Arbitrary precision integer, floating and complex datatypes.

• Support for datatypes with differing precision levels.

• Inter-operability with conventional integer and floating-point datatypes.

• Common transcendental functions (sqrt, exp, sin, etc).

• Quadrature routines (for numerical integration).

• PSLQ routines (for integer relation detection).

• Special routines for extra-high precision (> 1000 digits) computation.

The ARPREC library uses arrays of 64-bit floating point numbers to represent high precision
floating point numbers. The first word contains the number of words allocated for the array.
The absolute value of the second word of the array is the number of words in the mantissa of the
arbitrary precision number, and the sign of the second word represents the sign of the arbitrary
precision number. The third word represents the exponent of the arbitrary precision number
(powers of 248). Mantissa words begin with word four. Each mantissa word contains an integer
value in [0, 248), or in other words successive 48-bit sections of the arbitrary precision number.
Thus the arbitrary precision array (ak, 1 ≤ k ≤ n + 5) represents the value

A = ± 248a3

n−1∑
k=0

ak+42−48k

where ± = sign(a2) and n = |a2|. The last two words in the array are for convenience during
arithmetic operations. The earlier MPFUN package uses a similar format, except that the initial
word containing the number of words allocated is absent, and 32-bit floating point arrays are
used instead of 64-bit floating-point arrays.

3. Arithmetic Operations
The most important algorithmic difference between ARPREC and MPFUN is in the low-

level arithmetic algorithms. In both packages, multiplication relies on a variation of the common
long multiplication algorithm. In ARPREC, each mantissa word contains an integer value in
the range [0, 248 − 1), so each row of the multiplication pyramid contains values in the range
[0, 296 − 1). Since IEEE 64-bit floating-point arithmetic is only accurate to 53 bits, it is clear
that advanced techniques must be used here to resolve all 96 bits. In the ARPREC package
this is done by utilizing the following algorithms from the authors’ earlier double-double and
quad-double package (which in turn is based on earlier work by Priest, Kahan and Knuth) [13]:
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Double + double. This computes the high- and low-order words of the sum of two IEEE
64-bit values a and b.

1. s← a⊕ b
2. v ← s� a
3. e← (a� (s� v))⊕ (b� v)
4. return (s, e).

Split. This splits an IEEE 64-bit value a into ahi and alo, each with 26 bits of significand and
one hidden bit, such that a = ahi + alo.

1. t← (227 + 1)⊗ a
2. ahi ← t� (t� a)
3. alo ← a� ahi

4. return (ahi, alo).

Double × double. This computes the high- and low-order words of the product of two IEEE
64-bit values a and b.

1. p← a⊗ b
2. (ahi, alo)← Split(a)
3. (bhi, blo)← Split(b)
4. e← ((ahi ⊗ bhi � p)⊕ ahi ⊗ blo ⊕ alo ⊗ bhi)⊕ alo ⊗ blo

5. return (p, e).

With regards to the double × double algorithm, we should note that some processors, notably
IBM PowerPC and RS6000 processors and Intel IA-64 processors, have a “fused multiply-add”
(FMA) instruction that greatly simplifies double × double operations. In this case one can
simply write p ← a ⊗ b and e ← fl(a ⊗ b − p). However, it is often necessary to specify a
special compiler option (such as -qstrict on IBM systems) to insure that this code is performed
as written.

The addition and multiplication algorithms above produce a high-order word (s or p) and a
low-order word e, where s or p is the closest 53-bit floating-point approximation to the result,
and where e is the difference between the exact value and s or p. In the ARPREC package,
when two 48-bit integer values are multiplied, what we really require are the high-48 bits and
the low-48 bits of the result. These can be obtained as p′ = 248 nint(p/248) and e′ = (p−p′)⊕ e.
For arguments in the range [0, 248), the nearest integer function nint can be efficiently calculated
as nint(a) = (a⊕ 252)� 252.

In order to significantly accelerate long multiply operations, 32 rows of the multiplication
pyramid are added before releasing carries. This is safe, because 32 times a 48-bit integer is
a 53-bit integer, which can be represented exactly in a 64-bit IEEE word. Additionally, if n
words is the working precision level, then only the first n+1 words of the 2n-long multiplication
pyramid are computed.

The double × double multiply algorithm above requires 17 flops (three flops on systems with
an FMA). The scheme to reduce results to 48-bit form adds another six flops. The resulting
cost figure is significantly higher than in MPFUN. However, because the word size in ARPREC
is twice as large (48 bits versus 24), the inner loop of the long multiply routine is executed
only one-fourth as often. Furthermore, the ARPREC operations indicated above can be done
entirely in registers, without memory references, whereas the inner loops in MPFUN involve
vector memory fetch and store operations that are much more expensive. Main memory latency
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on most present-day microprocessors exceeds 100 clock periods, and is headed higher. Even
cache latency is more than 10 clock periods (for level two cache) on most new systems. Thus
the ARPREC design that involves register arithmetic operations is likely to result in significant
performance advantages in the years ahead.

4. Taylor Series Routines
For moderate precision inputs, the ARPREC exponential, sine and cosine routines employ

Taylor series schemes, but with some improvements from the corresponding MPFUN routines.
One of these improvements is to dynamically adjust the working precision as the computation
progresses. After the first several terms of a Taylor’s series have been computed and summed,
the order of magnitude of the result is known. Since the exponent of the result is known, and
the number of words of precision to be computed is known, the exponent that relates to the
last word of the result is known. With each succesive term, the exponent in words of the new
term is estimated before computing the term. This value is used to determine the precision
to which the term will need to be computed. In this way, the precision required for successive
terms decreases, resulting in an overall savings of approximately one-half in these routines.

The ARPREC sine-cosine routine employs this scheme, and in addition employs a finer
reduction of the input argument than in MPFUN. The MPFUN routine finds the nearest multiple
of π/16 to the argument, and reduces the argument to the difference between this multiple and
the argument. This reduced argument is used in the Taylor series, and then trigonometric
addition identities are used to calculate the sine and cosine of the original argument. The new
version finds the nearest multiple of π/256 rather than π/16, and stores the sines and cosines
of kπ/256 in a table. Subsequent calls to the routine thus do not have to recompute these
values. This requires some storage space, but provides significant savings in computation time
for applications where many sine and/or cosine evaluations are required.

5. Extra-High Precision Multiplication
For very high precision (above about 1000 decimal digits), the ARPREC package, like the

MPFUN package, uses an FFT routine to perform multiplications (since multiplication of two
fixed-radix numbers is merely the linear convolution of the arrays, followed by release of carries).
In order to perform the convolution accurately, each 64-bit word in the two input arrays is first
split into four words, each with 12 bits. The four-step FFT algorithm is then applied to this
data [14]. The two resulting arrays of complex-valued results, one array for each argument of
the product, are multiplied componentwise, followed by an inverse FFT using the FFT. The
result of the inverse transform is the convolution of the 12-bit integer arrays. This is converted
into a 48-bit integer array, then carries are released to yield the final product result. In addition
to algorithmic changes that stem from input arrays having 48 bits per word instead of 24,
the ARPREC code employs a radix-4 variant of the four-step FFT algorithm, which results in
slightly faster execution. An additional improvement is to eliminate some unnecessary data copy
operations.

6. Newton Iteration Routines
Several routines in the ARPREC library utilize Newton iteration algorithms, with a dynamic

level of precision that approximately doubles with each iteration. Some of these routines have
been improved in the new ARPREC package. For example, the square root routine now employs
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the iteration

xk+1 = xk + 1/2 · (A− x2
k)/xk,

where the division is performed in half precision. The MPFUN routine requires three multi-
precision multiplications per iteration, plus one half-precision multiplication. The ARPREC
routine requires just one multiplication and one half-precision division. This change results in
a speedup of about 10-20% at modest precision levels. Because division is significantly slower
than multiplication at very high precision levels, the advanced high precision square root routine
has not been changed.

7. Performance
The performance of the ARPREC package was tested by running the following simple

program using both ARPREC and MPFUN++ (a C++ translation of MPFUN, available at
http://www.cs.unc.edu/Research/HARPOON/mpfun++):

a = 1.0;
b = 9.03;
c = 6.01;
for(i=1;i<80000;i++) {
a = ((a*a) + b) / c;
}

The value of A converges to 3.0 properly using both libraries. At 400 requested digits,
the ARPREC library requires 29 64-bit mantissa words, while MPFUN++ requires 56 32-bit
mantissa words. Operator overloading was avoided in the implementation, and the call to the
multiply routine was timed independently of the other operations. These runs were performed
on a Sun Ultra 1, with a 167 MHz processor. The same compiler optimization flags were used
in both runs. The average multiplication time for 80,000 multiplications was 10.80 seconds for
ARPREC versus 14.78 seconds for MPFUN.

In an additional test of the new ARPREC package, we recently (July 2002) repeated the
PSLQ computation, mentioned in the introduction, of the 125 integers in the relation involving
the root of Lehmer’s polynomial. This run was made on the IBM SP (Seaborg) system in the
NERSC computer center at the Lawrence Berkeley National Laboratory. For this computation,
64 CPUs (four nodes) were used. The computation completed in 236,555 iterations (slightly
different than before, due to minor numerical differences), requiring only 16.6 hours. 50,000
digit arithmetic (using the ARPREC software) was used here, as in the previous computation.

In the latest run, the minimum and maximum y vector entries at the point of relation
detection were approximately 1.6326×10−49772 and 1.3489×10−36401, respectively. The ratio of
these two values, which can be thought of as a “confidence ratio” of the results, is approximately
8.2623 × 10−13372. This very small ratio, together with the fact that the first value is nearly
10−50000, means that it is exceedingly unlikely that the results produced by this computation
are merely a spurious artifact of numerical round-off error (although this cannot be taken as
rigorous proof of these relations). It is also very unlikely that any significant error occurred
in the ARPREC package during this extended computation. We believe this to be the largest
single integer relation problem ever solved.
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