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Abstract. The forest insect pest Bupalus piniarius (pine looper moth) is a classic
example of a natural population cycle. As is typical for populations that exhibit regular
oscillations in density, there are several biological mechanisms that are hypothesized to be
responsible for the cycles; but despite several decades of detailed study there has been no
definite conclusion as to which mechanism is most important. We eval uated three hypotheses
for which there was direct experimental evidence: (1) food quality (nutritional value of
pine needles affected by defoliation); (2) parasitoids (trophic interactions with specialist
parasitoids); and (3) maternal effects (maternal body size affects the performance of off-
spring). We reviewed the empirical evidence for each of these hypotheses and expressed
each hypothesis in the form of a mechanistic dynamic model. We used a nonlinear fore-
casting approach to fit each model to three long-term population time series in Britain that
exhibit some degree of regular cycling, and we used parametric bootstrap to evaluate the
significance of differences between models in their goodness of fit to the data. The results
differed among the three forests: at Culbin, the parasitoid and maternal effects models fit
equally well; at Roseisle, the food quality and maternal effects modelsfit equally well; and
at Tentsmuir, the parasitoid model fit best. However, the best-fit parasitism models required
that the parasitism rate vary between nearly 0 and nearly 1 during acycle, greatly exceeding
the range of parasitism rates that have been observed in the field. In contrast, the required
variation in the observable maternal quality variable (pupa mass) was within the range of
empirical observations. Under mild constraints on the parasitism rate (though allowing a
much wider range than has been measured in B. piniarius at any location), the fit of the
parasitism model fell off dramatically. The maternal effects model then had uniformly
strong support, outperforming the constrained parasitism model at all three sites and the
food quality model at two; it performed slightly better than the food quality model at the
remaining site. This represents the first system in which the maternal effects hypothesis
for population cycles has been supported by both strong biological and dynamical evidence.

Key words:  food quality; host—parasitoid dynamics; maternal effects; nonlinear dynamics; pop-
ulation cycles.

INTRODUCTION

Population cycles in forest defoliating insects typi-
cally have periods of 6-12 years, whereas the insects
themselves live for one year or less. Models attempting
to understand these cycles have incorporated parasit-
oids (Hassell and Varley 1969, Beddington et al. 1976),
predators (Turchin 2003), pathogens (Anderson and
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May 1980, 1981, Dwyer 1994), variation in food qual-
ity (Edelstein-Keshet and Rausher 1989) and quantity,
maternal effects (Myers 1988, Ginzburg and Taneyhill
1994), and rapid evolution (Chitty 1967, Baltensweiler
1984, Myers 1988), each of which can generate long-
period cycles in models. Weather fluctuations are not
sufficiently periodic to explain the regular oscillations.
In contrast, direct density dependence cannot produce
long-period cycles by itself (Morris 1990), but can sta-
bilize otherwise divergent oscillations produced by the
other mechanisms.

Careful examination of a particular population usu-
ally reveals empirical evidence that several of these
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processes are occurring, so it is difficult to identify
which is driving the dynamics. For example, in Swit-
zerland some larch budmoth (Zeiraphera diniana) out-
breaks were attacked by aviral pathogen, which caused
up to 50% annual mortality during the subsequent pop-
ulation collapse, so the host—pathogen interaction was
for atime considered to be alikely explanation for the
budmoth cycle (Auer 1968, Anderson and May 1980).
However subsequent cycles proceeded in the absence
of pathogen attack, without any evident change in pe-
riod or amplitude (Baltensweiler et al. 1977). So al-
though pathogen interactions were demonstrably pre-
sent and strong, a natural experiment (extinction of the
pathogen) demonstrated they were simply ‘“along for
the ride”” while other factors actually caused the large-
scale changes in population density.

Consequently, the driving mechanisms of cycles
have been identified with some degree of confidence
for only two species. Larch budmoth cycles in the
Swiss Alps are driven primarily by parasitoids, with
food quality dynamics modifying, but not driving, the
cycles (Turchin et al. 2003). This conclusion was
reached by analyzing time series of not only the insect,
but also of parasitoids and needle quality. In contrast,
the cycles of southern pine beetle (Dendroctonus fron-
talis) in the southeastern United States appear to be
driven by interactions with a specialist beetle predator
(Turchin 2003). This conclusion was reached by com-
paring the results from multiyear experimental manip-
ulations to predictions from models (Turchin et al.
1999). We are not aware of any other strong conclu-
sions about forest insect cycles.

The pine looper moth (Bupalus piniarius) often ex-
hibits regular oscillations in pine plantations; this has
been extensively documented in Germany and Britain
(e.g., Schwerdtfeger 1942, Barbour 1988). At peak den-
sities, the insect can completely defoliate the trees;
while the trees survive, their growth in reduced, and
Bupalus outbreaks are of concern to foresters. Thelife
history and ecology of the insect has been studied ex-
tensively and in great detail, including two long-term
life table studies (Klomp 1966, Broekhuizen et al.
1994) and a number of short-term behavioral experi-
ments (Gruys 1970, 1971, Smits and Larsson 1999,
Smits et al. 2001). These studies have documented
strong evidence (summarized in The data: Possible
causal mechanisms) for three of the above-mentioned
processes. interactions with parasitoids, maternal ef-
fects on offspring quality, and reduced food quality in
the wake of defoliation. But despite this concerted em-
pirical effort (which resulted in at least three Ph.D.
dissertations [Gruys 1970, Barbour 1980, Broekhuizen
1991] and over 880 pages of peer-reviewed publica-
tions), no definite conclusion has emerged as to which
of the possible mechanisms causes the cycles.

The ideal experimental test would manipulate con-
ditions in the field so that all but one putative mech-
anism was eliminated. Such experiments are expensive
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and time-consuming (e.g., Krebs et al. 1995), and in
many populations are impossible or prohibitively dif-
ficult. Instead, information must be extracted from ob-
servational data and limited experimental manipula-
tions. We have argued (Kendall et al. 1999) that modern
statistical methods and computational power greatly
increase the amount of information that can be obtained
by this approach. By constructing models representing
(or constrained by) experimental studies of potential
mechanisms, and using the observed dynamics to es-
timate unknown parameters, we come as close as pos-
sible to simulating the ideal experiment by asking how
well each possible mechanism can account for all avail-
able data.

Here we follow the philosophy of Kendall et al.
(1999) to determine which of the empirically supported
mechanisms is most likely to be driving the dynamics
of three British Bupalus populations. First, we develop
mathematical models that encapsulate each mecha-
nism. These models are not ‘‘ off-the-shelf’”” conven-
tional models (such as the parasitoid models in Bed-
dington et al. [1976] and the maternal effects models
in Ginzburg and Taneyhill [1994]); rather, we devel-
oped models from the ground up to specifically match
the currently known biology of Bupalus. Then we fit
these models to the empirical time series of Bupalus
abundance: we use nonlinear minimization to find the
model parameter values that allow the models to best
match the observed dynamics. We use these parame-
terized models as representatives of the respective
mechanisms, and compare them, based on their good-
ness of fit and the nature of the time seriesthey produce
under simulation. We also examine whether the re-
quired fluctuations in the unobserved dynamic vari-
ables, such as parasitism rate and maternal quality, are
biologically plausible and consistent with the available
data.

THE DATA
Population dynamics

Bupalus is univoltine, overwintering as pupae with
adults emerging in late May and June in the United
Kingdom (Broekhuizen et al. 1994). Adultslivefor 10—
14 days without feeding, and their eggs hatch after ~20
days. There are generally five larval instars lasting a
total of 4-5 months. In late autumn the final larval
stage descends from the canopy into the forest litter
and passes through a brief prepupal stage before pu-
pating.

Since 1953 the Forestry Commission of Great Britain
has been keeping records of Bupalus abundance in 44
forests. The primary data are density estimates from
an annual winter survey of pupal abundance. Thisisa
stratified sample, with transects of small plots being
taken across a number of forest *‘ compartments.” For
afull description of the sampling protocol, see Broek-
huizen et al. (1993). We analyzed time series of pupal
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TaBLE 1. Nonlinear predictability of Bupalus pupal density

time series.

Forest 1 year 2 years 3 years
Cannock 0.11 T T
Culbin 0.31 0.27 0.22
Laughton T T T
Lossie T T T
Monaughty 0.02 0.05 T
Roseisle 0.42 0.16 0.08
Sherwood 2 0.20 T T
Sherwood 3 0.01 T T
Sherwood 4 T T T
Sherwood 5 T T T
Speymouth 0.15 0.04 0.08
Tentsmuir 0.51 0.43 0.43
Tunstall 0.16 T T

Notes: Predictability was estimated by the method of Cheng
and Tong (1992). Bjgrnstad et al. (2001: Box 1) give adetailed
explanation of the method. It involves fitting a nonparametric
kernel autoregression model and scanning over possible com-
binations of lags to optimize the cross-validation estimate of
prediction error variance. As per Nychka et al. (1992) we
used ‘‘leave out K’ cross validation with k = 7, so that a
block of data roughly equal to the duration of an outbreak
cycle, centered on the time at which a prediction is made,
was omitted in making each prediction of a future Bupalus
density. The results in this table are the r2 (proportion of
variance explained) for the optimized combination of lags to
predict Bupalus larval density 1, 2, or 3 years into the future,
on a 0.2-power transformed scale. Daggers (1) indicate an
estimate of complete unpredictability, such that out-of-sample
prediction is estimated to be no more accurate than ignoring
the recent past and using the overall mean density as the
“prediction.” Characteristics of the various forests are de-
scribed by Broekhuizen et al. (1993).

density averaged across all compartments in each for-
est, as presented in Broekhuizen et al. (1993), and ex-
tended with more recent data from the Forestry Com-
mission. The data were analyzed following 0.2-power
transformation, for reasons explained below in the sec-
tion Fitting models by nonlinear forecasting.

Many of the forests are not suitable for analysis due
to obvious nonstationarities in the data, such as trends
in mean density. The remainder were tested for the
presence of regular oscillations, based on their nonlin-
ear predictability (Table 1). A mechanistic population
model specifies the “‘rules” relating past, present, and
future population densities. In order for a data set to
be useful for distinguishing among models, the signal-
to-noise ratio of those rules must be sufficiently high
in the data. That is, the data must exhibit repeatable
patterns rather than each Bupalus outbreak being com-
pletely idiosyncratic, so that population changes during
one period can be predicted based on the patterns of
change at other times in the same data set. The degree
of predictability for Bupalus density dynamics varied
greatly among forests (Table 1). On the basis of these
estimates, we restricted our analysis to the three forests
with the greatest degree of regularity in their dynamics,
all in Scotland: Culbin, Roseisle, and Tentsmuir. The
remaining time series are either fluctuating unpredict-
ably around an equilibrium or display multiyear out-
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breaks that are each idiosyncratic. The threetime series
that we analyze are 34—38 yearslong, and are displayed
at the bottom of Figs. 2—4.

Possible causal mechanisms

Parasitoids.—A wide variety of parasitoids attack
Bupalus but only two species are both abundant and
fairly specialized on Bupalus. Cratichneumon viator
attacks Bupalus pupae, having two generations per
year; parasitism rates as high as 75% have been re-
corded for the two generations combined (Davies
1961). C. viator may have a third generation on an
alternate host; this is a question that has not been sat-
isfactorily resolved. Intensive studies in one British
forest (Cannock) revealed parasitism rates of 8-41%
in thefirst generation and 0—-36% in the second (Broek-
huizen et al. 1994). C. viator is a generalist, but Bu-
palus appears to be its primary host in Britain (Broek-
huizen 1991).

Dusona oxyacanthae is a specialist parasitoid of Bu-
palus larvae; there is a strong negative relationship
between Dusona density and Bupalus population
growth rate (Barbour 1988). Parasitism rates of 2—74%
were recorded in the study at Cannock (Broekhuizen
et al. 1994). The Dusona attack rate appears to have a
type | (linear) functional response, and declines with
increasing parasitoid density (Broekhuizen 1991). The
two parasitoids do not seem to be strongly synchro-
nized.

For comparing our models with data on parasitism
rates it is useful to have a summary measure of the
overall intensity of parasitism. Following Broekhuizen
et al. (1994) let 7, i = 1, 2, 3 denote the stage-specific
fraction of Bupalusin year t parasitized by Dusona and
the two generations of C. viator, respectively. In the
absence of any other sources of mortality, the net *“ sur-
vival” (the fraction of individuals that escape parasit-
ism) would be (1 — m;) (1 — m,) (1 — mas). Asa
measure of the total parasitism rate we therefore use
the quantity

l:[ =1-0Q-m)@ - m)A — mg). (D)
Over the 11 years studied at Cannock the total para-
sitism rate, calculated from the values of m; in Table
6 of Broekhuizen et al. (1994), ranged from 0.16 to
0.81.

Maternal effects—Mean pupal mass varies substan-
tially among years, from 130 to 190 mg in The Neth-
erlands and from 85 to 140 mg in Cannock (Klomp
1968, Broekhuizen et al. 1994). This affects the fe-
cundity of the adults that emerge: adults that emerge
from large pupae have higher fecundity (Klomp 1966,
1968). In turn, pupal mass is a declining function of
the density of young larvae earlier that year (Klomp
1966). This collapses into a form of direct density de-
pendence, which would not generate long-period cy-
cles. However, our analysis of Klomp’s (1968) data (see
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Models: Maternal effects) reveals that pupal size also
positively affects the larval survival of the offspring
generation. Thisis atrue maternal effect, and provides
the delayed feedback necessary for long-period cycles.
Studies in Cannock did not reveal a relationship be-
tween pupal mass and larval density (Broekhuizen et
al. 1994), and pupal masses are generally low compared
with the Dutch studies. However, Barbour (1988) found
that pupal mass fluctuates through the Bupalus cycle,
with mass peaking in advance of Bupalus density; Bar-
bour (1980) found a negative relationship between pu-
pal mass and density two years previously.

Food quality.—Bupalus larvae prefer to feed on old-
er foliage (Barbour 1988). Recent studies in Sweden
(Smits and Larsson 1999) have quantified that prefer-
ence, and showed that larvae forced to feed on young
needles have lower survival rates than those allowed
to feed on mature needles. Needle age also affects fe-
cundity: adults forced to lay eggs on new needles had
lower fecundity than those laying on mature needles;
furthermore, eggs have a substantial chance of falling
off new needles (Smits et al. 2001). Not surprisingly,
ovipositing adults display a strong preference for ma-
ture needles (Smits et al. 2001). The relationship be-
tween the needl e age distribution and Bupalus densities
have not been quantified, but at outbreak densities Bu-
palus can completely defoliate the pine trees. This
would mean that in the following year all needleswould
be new, and thus less favorable for the Bupalus pop-
ulation. This provides a second-order feedback that
could lead to population cycles.

MOoDELS

We describe here the assumptions of our models, and
the biological evidence on which they are based. Some
additional details arein Appendix A. All of the models
assume that direct density-dependent population reg-
ulation acts during Bupalus larval survival, as this is
the stage where Klomp (1966) found most of the im-
portant density dependence in his k-factor analysis.
Each model adds to this a single form of delayed den-
sity dependence.

Interaction with parasitoids

Neither of the two major parasitoids that attack Bu-
palus in Britain complies with standard models for
host—parasitoid dynamics.

C. viator attacks Bupalus pupae, and is multivoltine.
It goes through two generations on a single generation
of Bupalus pupae, and there is controversy over wheth-
er there is a third generation on an alternate host
(Broekhuizen 1991). Here we assume that there is no
alternate host, or that the alternate host is not dynam-
ically coupled to the Bupalus-C. viator system. The
first generation of C. viator attacks before the pupal
survey in our data sets, and attacked pupae are not
included in the Bupalus density estimates. The model
assumes that the first generation of C. viator attacks
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young pupae after Dusona parasitism and density-de-
pendent mortality, but before the survey. The second
generation attacks after the survey, before reproduction
ocCurs.

Dusona attacks Bupalus larvae, but does not kill
them immediately. Parasitized larvae continue feeding
and growing, and therefore contribute to density-de-
pendent mortality of Bupalus larvae. They die in the
process of pupating, and are converted into Dusona
pupae. Consequently, the attack rate by Dusona is a
function of the density of young Bupaluslarvae, before
density-dependent larval mortality (assumed to be pro-
portional to Bupalus egg density). However, the num-
ber of Dusona produced is proportional to Bupalus pu-
pal density after density-dependent mortality.

For both species, the general parasitoid model uses
an attack rate equation incorporating both parasitoid
interference and parasitoid functional response. That
is, the fraction of Bupalus attacked per parasitoid is a
decreasing function of both Bupalus and parasitoid
density. In order to limit the number of parametersin
the model, we assume that the C. viator attack param-
eters are the same in the two generations.

The resulting model is as follows. Let N, be the Bu-
palus pupal density at the time of the survey. Bupalus
adults (A,) result from the survivors of attack by the
second C. viator generation, while attacked Bupalus
pupae give rise to the first C. viator generation the
following year:

- 3 acCZ,t
A = SANtexp< 1+ ahN, + acbcCZl) @
- B 3 acCZ,t
C:L,Hl - Stht 1 eXp( 1+ actht + aCbCCZJ) (3)

where s, isthe survival of late pupag, s, is the fraction
of C. viator eggs that survive to maturity, a. is the
attack rate, h, is the handling time, and b, is the par-
asitoid interference coefficient.

Density-independent fecundity which results in
young larvae

I—Hl = A(er (4)

isfollowed by density-dependent survival of all larvae,
including those parasitized by Dusona:

L Le.alexp(—po — CLiio)] (5)

Lt =
where L is the density of old larvae. The attack rate
by Dusonaisafunction of L, but the resulting mortality
acts on L:

T ath+1
Po,=L -
o Hlexp( 1+ aghgleg + adbdDHl) ©)
_ r _ _ adDHl
Dt+2 - s:iLHl 1 exp< 1+ adhdl—t+1 + adbth+1> (7)

where s, a4, hy, and by are the Dusona equivalents of
S, &, h. and b, and P is the density of new pupae.
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The first generation of C. viator attacks Bupalus be-
fore the next year’s survey:

aCui
Nes = S,P, - '
t+1 S H1exp< 1+ acthHl + acbccl,t+l> (8)
B B B a.Cri
Cz,t+1 - Sczpl‘*'l 1 eXp< 1+ acthHl + achClx”l)

(€)

where s, is the survival of early pupae.

The number of parameters can be reduced by apply-
ing standard steps: rescaling the (unmeasured) para-
sitoid density variables (e.g., D — D/s;) and associated
attack parameters, grouping parameters(e.g., absorbing
Sa, S, @and e+ into the value of r), and eliminating L
using Eq. 4. The resulting model is

A= Ntexp<—1 T achjc\ltcit acbch,t>
Cia = SNy|1 — exp<—1 + achjilf:j: acbch,1>
Lot = Aexplr(1 — A/K)]
Py = |_H1exp<— 1+ adh(i:?:ladbd[)wl)
Dio = Luafl — eXp(_l + adhjztDj:ladbdDHl)
Ni1 = Pt+1eXp(_ 1+ achclitcjlrlacbccl,tﬂ)
Corer = Pra|l - EXp<_l + achcsfilacbccw)

(10)

where L, , now represents old larvae (parasitized and
unparasitized). Note that unless s;, = s, only one of
these can be eliminated by rescaling (equivalently, we
could set both of these to one by allowing different
values of a. in the two generations; in terms of Bupalus
dynamics these two rescalings are equivalent). A, L,
and P could be eliminated from the model, but the
resulting equations would be terrifying to behold.

Model 10 has nine dynamic parameters. To reduce
this somewhat (so that all models being compared have
asimilar number of parameters), we mainly considered
the model with type-l parasitoid functional response
(i.e.,, h, = hy = 0), which proved to fit our data almost
as well as the model with atype-11 functional response
(recall that Broekhuizen 1991 found atype-1 functional
response by Dusona at Cannock). We tried eliminating
parasitoid interference but this gave much poorer fits
for Tentsmuir, where the evidence for parasitoid effects
is strongest.

We also examined models with one or the other of
the parasitoids acting by itself, to represent the hy-
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pothesis that only one of the two parasitoidsis strongly
coupled to Bupalus. In these models we restored the
parasitoid functional response parameter. The equa-
tions for these reduced parasitoid models are given in
Appendix A.

In fitting these models to data we imposed the con-
straint that all parasitoid species included in the model
had to persist (with a density of 10-8 as the extinction
threshold). Without this constraint, the optimized pa-
rameter fits to the Bupalus data sometimes had the un-
realistic property that one or both parasitoids would go
extinct within a few generations.

Maternal effects

Our model for maternal effects is based on the work
of Klomp (1966, 1968). Because these studies are from
the Netherlands while our population time series are
from the United Kingdom, we use Klomp'’s results to
derive the form of the model but not to estimate or
constrain the numerical values of any parameters.

The measurable index of individual quality is pupal
mass (W). Klomp (1966) demonstrated that a female's
mass as a pupa had positive effects on her subsequent
fecundity as an adult, and on the egg-to-adult survival
of her offspring. In contrast to the original theoretical
model for population cycles driven by maternal effects
(Ginzburg and Taneyhill 1994), pupal mass is not a
dynamic variable but rather is determined by Bupalus
density in the current generation. Pupal mass is mod-
eled as decreasing exponentially to a minimum as a
function of the density of Bupalus eggs (Fig. 1a):

VVI = I:>min + poe—BE‘ (11)

where B is positive.

Based on Klomp's data we assume that fecundity
increases linearly with the individual’s mass during the
pupal stage (Fig. 1b). Thus, the number of eggs is re-
lated to the previous generation’s adult density by

Eii = A(-a + bw) (12)

where W, ispupal massand a, b are positive parameters.
Egg-to-adult survival is modeled as declining expo-
nentially with egg density (recall that thisis dueto direct
density dependence during the larval stage), and in-
creasing exponentially with maternal pupal mass (Fig.
1c,d). Thus adult density is related to egg density as

A‘Hl = rE(+leXp(_SE1+1 + UVV[) (13)

where r, s, and u are positive parameters, constrained
so that A, < By

Assuming that adult density is proportional to pupal
density, we have

E.i = N(—a + bW) (14
Nt+1 = rEt+1eXp(_SEt+1 + LIVVt) (15)
W1 = Prin + PoeXp(—BE.4) (16)

where N, is pupal density from the pupa survey. We
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(a) Effect of egg density on pupal mass. The line is the fitted nonlinear regression (Eq. 11). (b) Effect of pupal mass on per
capita adult fecundity. The line is the fitted linear regression equation (r2 = 0.82, F,,, = 54.6, P < 0.001). (c, d) Relationship
between egg-to-adult survival (plotted on alog scale) and (c) egg density and (d) maternal pupal mass. Multiple r2 = 0.49,
F,., = 5.37, P = 0.02 for linear regression of log survival on egg density and maternal pupal mass.

can then use Eq. 14 to eliminate E from the model, and
then rescal e variables and combine parametersto simplify
the model (see Appendix A). The resulting model is

Nep = INXexp(—sN X, + uX))
X1 = (17)

Here N, is pupal density at the time of the annual
survey, and theindividual quality variable X; isdirectly
proportional to the effect of pupal mass on adult fe-
cundity. In Klomp’sdata X, varies by afactor of roughly
two over the course of outbreak cycles.

Xmin T+ eXp(* BNtxt)

Food quality

We used evidence from two recent studiesin Sweden
(Smits and Larsson 1999, Smits et al. 2001) to derive
a mechanistic model for effects of food quality. Be-
cause this model is totally de novo and specifically
represents Bupalus on Scots pine, we present it in more
detail than the others. As with the model for maternal
effects, we use the results to define the form of the
model but not to estimate parameter values.

Smits and Larsson (1999) examined the relative pref-
erence of Bupaluslarvae for new pine needles produced
that spring vs. old needles, and relative performance
(larval survival) on the two types of needles. They
found that the larvae preferred to feed on mature nee-
dles, causing 2.5-3.4 times greater damage on mature

needles than on new needles. When forced to feed only
on new needles, survival of very young larvae was
reduced relative to those allowed to feed on mature
needles. Smits et al. (2001) examined adult fecundity
and oviposition behavior on new and mature needles.
They had three main findings. First, there was a strong
preference by adults to lay eggs on mature needles
whenever there was a choice (Smits et al. 2001: Fig.
1). Second, effective fecundity was lower when adults
were forced to lay on new needles (émits et al. 2001:
Fig. 2). Bupalusfecundity was affected by female qual -
ity (pupa mass), but the slopes for the regressions of
fecundity on pupal mass did not differ significantly
between the two treatments. Finally, thelower effective
fecundity resulted from a lower egg laying rate (119.4
+ 8.8 eggs on twigs with only current-year needles,
vs. 141.1 = 7.5 eggs on normal twigs), and a higher
fraction of eggs falling off new needles (Smits et al.
2001: Fig. 5).

The model begins with pupae at the time of the an-
nual survey (N,) who then mature into two groups of
adults: those ovipositing on mature needles (A,,,) and
those ovipositing onto new needles (A,,). The propor-
tion of adults in the two groups depends on F,, the
fraction of mature needles when the adults are ovi-
positing (sincethisis at the start of the growing season,
F, is aso the fraction of mature needles encountered



May 2005

by their offspring as larvae). The data on relative pref-
erence for mature needles (Smits et al. 2001: Fig. 1)
are fitted well by a power function (see Appendix A),
leading to

Nt[l - (1 - Ft)‘"]ﬂu
NI - A(m)t

(18)
(19)

A(m)t
A(n)t =

where o > 1.

The two groups of adults have different fecundities, R
and Rb, where b reflects both the difference in egg laying
and the eggs dropping from new needles. Thus,

Lt = R(A(m)t + bA(n)t)' (20)

Rather than explicitly model larval feeding choice,
we simply assume that the new needles effectively pro-
vide less food than the mature needles. This encap-
sulates both the fact that larvae spend less time feeding
on new needles, and that the new needles are poorer
food. Thus the total resource available to the larvae is
proportional to F, = F, + (1 — F), 0 < gq < 1. We
assumed that larval survival was a saturating (type-11)
function of the total food resource per larva:

KF /L

P, =L, ,—t=tt 21
o1 = LT KEL (21)
KF,
=L,,— 22
4 KE (22)

This yields an undercompensating relationship be-
tween larval density and pupal density, which is con-
sistent with Klomp's (1966: Table 23) limited data on
larval and subsequent pupal densities. A Ricker-type
model with overcompensation in larval survival was
also tried, but the resulting model was less successful
at fitting the population time series data.

Note that we have eliminated both pupa mortality
and density-independent larval mortality by rescaling
unobserved variables and absorbing these losses into
the fecundity parameters.

The total amount of needles consumed (and hence
replaced by new needles next year) is assumed to be
afunction of Bupaluslarval density. Lacking any direct
data on needle dynamics, we posit that a higher density
of Bupalus larvae in the current year results in higher
needle consumption and therefore a higher fraction of
new needles next year. There is also some fraction of
new needles appearing each year independent of de-
foliation by Bupalus, resulting from needle turnover
and shoot growth. Our model is

Fia =1 — ferta (23)

where f, is the fraction of new needles in the absence
of Bupalus defoliation. The time indices in Eq. 23 are
the same because F,., characterizes the foliage sub-
sequently encountered by the L., larvae when they
mature (as adults A, ;) and by the larval offspring of
those adults (L., ,).
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The needle proportions in Eq. 23 respond immedi-
ately to the current level of defoliation. We also tried
a lagged response model, F,, = (1 — ¥)[(Q1 —
foe 1] + dF, However in two of the three sites the
best-fit parameters for this model collapsed to imme-
diate response (8 = 0) and in the third it made only a
very slight improvement, so we used the simpler model
(Eq. 23).

Environmental stochasticity

The dynamic models derived previously are only the
deterministic ‘‘skeleton’ of the population dynamics,
omitting effects of exogenous variables (notably cli-
mate) which influence Bupalus density variation. L ack-
ing data on these variables—indeed, not knowing with
any certainty which variables have strong impacts—
we therefore model their aggregate effects descriptive-
ly as process noise. We adopted the most commonly
used model for effects of environmental stochasticity,
multiplicative lognormal perturbations to the popula-
tion densities generated by the deterministic skeleton,
representing environmentally driven variation in birth
and survival rates (which act multiplicatively on pop-
ulation density). So for example, when simulating the
maternal effects model (Eq. 17) the population was
actually updated each year by

N = rNXexp(—sNo X + uX)exploZy()] (24)

where {Z(1), Z\y(2), ...} are independent Gaussian
random variables with zero mean and unit variance.
The same kind of lognormal perturbationswere applied
to each stage transition (e.g., pupae to adults, egg lay-
ing by adults) in the parasitoid and food quality models.
We assumed a common value of o for each transition,
because the perturbations are unobserved (given only
annual pupal counts) so we could not hope to identify
separately the components at different stages of thelife
cycle.

Measurement noise

Our method for fitting models to the Bupalus time
series (described in the next section) requires that mod-
el output incorporate simulated measurement errorsin
Bupalus density, corresponding to the sampling vari-
ability in the actual data. For the three forests analyzed,
we estimated the magnitude of sampling variability in
Bupalus pupal density using data in the Appendix of
Barbour (1980), which included average density and
the among-compartment standard error for all forests
until 1978. There is an allometric (power) relation be-
tween the standard error and the mean density p:

(SE)2 = Cp. (25)

We estimated the parameters C and b of this relation-
ship separately for each forest: at Culbin, C = 0.024
and b = 1.342; at Roseisle, C = 0.046 and b = 1.345;
at Tentsmuir, C = 0.071 and b = 1.641.
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To simulate the sampling variability in the data, after
atimeseriesof ‘‘true’’ Bupalusdensity values had been
produced by the model, each value was replaced by a
gamma-distributed random variable with mean given
by the true density, and variance determined by the
allometric parameters corresponding to the data set be-
ing fitted.

FITTING MODELS BY NONLINEAR FORECASTING

To fit and compare the models we use the method
of nonlinear forecasting (NLF) described and used by
Kendall et al. (1999) and Turchin and Ellner (2000).
NLF is a simulation-based solution to the problem of
fitting complicated dynamic models whose likelihood
function is intractable: impossible to compute analyt-
ically and computationally too demanding for current
computers. Our models' likelihood functions are in-
tractable due to the combination of measurement noise,
process noise, nonlinear dynamics, and the fact that we
have data on only one of several state variables. When
determinism is strong such models can be fitted effi-
ciently by ““trajectory matching”’ (forcing the model
to closely approximate that observed time series; Wood
2001), but in this case there is too much variability
among outbreaks for trajectory matching to be suitable.
Similarly, methods for deterministic models based on
expressing the deterministic skeleton of the model as
a delay difference equation for the observed state var-
iable yielded poor parameter estimatesin trials on sim-
ulated data.

NLF is an example of simulated quasi-maximum
likelihood (SQML; Smith 1993), an “‘indirect infer-
ence’”’ method (Gourieroux and Montfort 1996) in
which a mechanistic model is compared to data via an
intermediate statistical model chosen to have two prop-
erties: (1) it provides a good statistical description of
time series for the observed state variable produced by
the mechanistic model; and (2) it has alikelihood func-
tion that is easy to compute and optimize. Indirect in-
ference methods have two general advantages. First,
the mechanistic models can be arbitrarily complicated,
so long asit iscomputationally feasible to producelong
simulations. Second, a uniform method and goodness-
of-fit criterion can be applied to all of the alternative
models using exactly the same fitting code, regardless
of how they differ in assumptions. Indirect inference
allows nonlinear state space models to be fitted within
the frequentist paradigm, so that we can (for example)
attach a conventional P value to the relative perfor-
mance of alternative models.

The SQML goodness-of-fit criterion is to first fit the
intermediate statistical model to output from the mech-
anistic model and then compute the likelihood of the
data under the fitted statistical model, the so-called
quasilikelihood function (QLF) of the data. Under some
mild technical assumptions (Smith 1993), the QLF
functionsto alarge extent like the true likelihood func-
tion for the mechanistic model. Parameter estimates
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based on maximizing the QLF are consistent and as-
ymptotically normal, and the optimized QLF provides
a criterion for comparing alternative models. The QLF
cannot be used for likelihood ratio tests, but even with
the true likelihood these would be questionable here
due to the small sample size.

For the intermediate statistical model we used a non-
linear Gaussian autoregressive model for the observed
state variable (pupae/per square meter). In past appli-
cations we have used a nonparametric kernel autore-
gression model (Kendall et al. 1999, Turchin and Ellner
2000). However, for this study a kernel model was
computationally infeasible, because a high-dimension-
al statistical model (3—4 past values) was needed to
obtain good forecasts of output from the simulation
models. Thisincreases greatly the length of model sim-
ulations needed to fit the kernel, and the time required
to compute the kernel regression scales as the square
of the simulation Iength. We therefore used instead a
Generalized Additive Model:

4 3
F(Xe, X1, X2, Xe3) = 21 2) a; fi(x.)
i=1 j=

where the f; are radial basis functions with fixed lo-
cation and scale parameters (see Appendix B for de-
tails). Because the f; are specified in advance, the model
is linear in parameters and can be fitted quickly by
linear least squares. The data were 0.2-power trans-
formed so that they would conform better to the au-
toregression model’s assumption of Gaussian process
noise, without exaggerating measurement errors at low
densities (as would occur with a log transformation).
Forecasting two years ahead was necessary to capture
nonlinear dynamic aspects of the data and models; the
data exhibit strong enough linear autocorrelations at a
lag of oneyear that accurate one-year-ahead forecasting
is possible based strictly on the linear autocorrelation
between successive values.
The QLF thus has the form

QLF(6)

_ 1 _ [Xeio = Fo(Xe X1, X2, Xe-3)]?
-1 vmex'”{ 52

(26)

where x;, = N(t)°?, 6 is the vector of parameters for the
mechanistic model, F, isthe generalized additive model
fit to the time series generated by the mechanistic model
with parameters 6, and ¢ is the residual standard de-
viation of the generalized additive model. We fitted the
model by minimizing the negative log-quasilikelihood.
Numerical methods for model fitting by NLF are de-
scribed in Appendix B.

The quasilikelihood is arelative measure of the abil-
ity of the model to capture the dynamics in the data.
For an absolute measure of model quality, we also pre-
sent values of the prediction r?, defined as1 — NMSE,
where NM SE is the normalized mean square error, de-
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TaBLE 2. Fits of the models in three forests.
Constraints Culbin Roseisle Tentsmuir
Model Min Max LL r2 LL r2 LL r2
Maternal effects 1.442 0.639 0.796 0.488 0.826 0.604
Parasitoids (both) 0.00 1.00 1.370 0.585 0.676 0.351 1.004 0.722
0.01 0.99 1.347 0.564 0.608 0.282 0.910 0.665
0.03 0.97 1.251 0.471 0.533 0.227 0.770 0.605
0.05 0.95 1.220 0.444 0.466 0.093 0.608 0.404
Parasitoids (Dusona only) 1.195 0.414 0.490 0.209 0.861 0.634
Parasitoids (C. viator only) 0.00 1.00 1.435 0.634 0.586 0.220 1.035 0.739
0.01 0.99 1.193 0.416 0.441 0.010 0.776 0.581
0.03 0.97 1.145 0.441 0.437 0.133 0.726 0.589
0.05 0.95 1.018 0.335 0.149 —-0.855 0.300 0.216
Food quality 1.354 0.569 0.778 0.469 0.572 0.343

Notes: LL is proportional to the optimized log-quasilikelihood function, and r? is the prediction r2 of the best-fitting model.
‘‘Constraints” refers to the minimum and maximum allowable parasitism levels.

fined as the mean squared deviation between the pre-
dictions and the data divided by the variance of the
data. In the nonlinear dynamics literature comparison
of prediction methods based on minimization of NMSE
is common. For example entries submitted to the Santa
Fe Institute Forecasting Competition (Weigend and
Gershenfeld 1994) were ranked based on NMSE. The
popularity of NMSE probably traces to an influential
paper by Farmer and Sidorowich (1987), who used
NM SE to compare different choices of time-delay em-
bedding parameters. The switch to prediction r?, be-
cause ecologists are familiar with its intuitive meaning,
was introduced to our knowledge by Tidd et al. (1993).
Positive values of this measure can be interpreted in
the same way as the R? from a linear regression: the
fraction of the variance in the data that is explained by
the model. When r2 = 0, the model is not capturing
any of the dynamics, simply predicting the uncondi-
tional mean of the data at each time step. In contrast
to linear regression, a nonlinear forecasting model can
actually perform worse than this, producing a negative
correlation between predictions and observations. This
is represented by a negative value of the prediction r2.

Comparing models by parametric bootstrap

We used a parametric bootstrap procedure to test
whether the differences among models in optimized
quasilikelihood are statistically significant. We used the
worse-fitting model, at its best-fitting parameter values,
to generate 25 independent simulations each of Bupalus
pupal density. Each simulation was 350 years long,
with the first 250 years dropped to eliminate any pos-
sible transients. The first 35 years of each remaining
100 years of data were fitted with the two models to
be compared, using the same procedures as were used
on the actual data. For each site, this yields 25 simu-
lated values for the difference in log-quasilikelihood
(LL) between the two models, which we compare
against the actual difference on the real data.

This comparison shows whether or not the improve-
ment in LL achieved by the better fitting model on the

actual data would be likely to occur by chance if the
poorer fitting model were actually the correct descrip-
tion of the mechanism generating the data. In principle
it is identical to a standard statistical comparison be-
tween alternative models for a data set, e.g., comparing
models with and without a treatment effect: we take
the poorer fitting model as our null hypothesis, and
compare the observed improvement in goodness-of-fit
against its distribution under the null. The choice of
null models is post hoc, but conventional hypothesis
testing always uses the worse-fitting model as the null.
In our case, because the models are not nested, we
simply do not know a priori which one will have the
worse fit. In addition, for comparisons involving par-
asitoid models, it is reasonable to treat the parasitoid
model as the null, for that is the default explanation
that most biologists (including us!) use to explain pop-
ulation cycles in forest insects.

REsSULTS

The goodness of fit of the five models (with param-
eter values optimized independently for each popula-
tion) is summarized in Table 2. The C. viator model
fit just about as well as the two-parasitoid model, but
the Dusona model did quite poorly. Dropping the | atter
model from consideration, we are left with four con-
tending models representing the three possible mech-
anisms. There is essentially a tie in Culbin between
parasitoids and maternal effects, and best fits by ma-
ternal effects in Roseisle and parasitoids in Tentsmuir.
The food quality model does not provide the best fit
in any of thethree sites, although itisa‘‘ close second”’
in Roseisle. Bootstrap significance tests (see Results:
Parametric bootstrap) confirm that the maternal effects
model fits the data significantly better than the food
quality model in Culbin and Tentsmuir, but the differ-
ence in Roseisle is not significant.

The best-fit parameter values are listed in Appendix
C, and simulations of the fitted models are shown in
Figs. 2—4. Since these are stochastic models, we show
five replicate simulations of each model. The two-par-
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FiG. 2.

Five replicate simulations of each contending model, using parameters found by fitting the models to Culbin.

Dashed lines are drawn at the minimum and maximum observed pupal density valuesin the empirical time series. The actual
data are shown in the bottom row, in untransformed, log-transformed, and fifth-root-transformed scales.

asitoid model shows a great deal of variation among
replicates. For example, in Tentsmuir, where it has a
much better fit than the maternal model, somereplicates
appear to the eye to be very similar to the data (in
terms of the period, amplitude, and variation among
outbreaks) while others barely depart from equilibrium.
In contrast, the C. viator parasitism model in Culbin
and Tentsmuir is nearly deterministic, for the fitting
algorithm chose an unreasonably low level of noise.
This results in cycles that are much more regular than
observed in the data. However, if the process noise
variance is set to alevel comparable with the other fits,
agreat deal of variability among replicates also occurs
in this model (simulations not shown). The maternal
effects model is quite variable among replicates, but
in Culbin and Tentsmuir, most replicates appear to the

eye to be similar to the data. The food quality model
generally seems to have a shorter period than the data.

In simulations of the fitted maternal effects model,
maternal quality (X,) varied by a factor of roughly 1.8
in Culbin, 3 in Roseisle, and 2.6 in Tentsmuir. Recall
that X, is proportional to the effect of pupal mass on
fecundity; this variation is less than the variation in
fecundity observed in Cannock, so it is biologically
plausible. In contrast, simulations of the fitted parasit-
oid models all showed annual total parasitism rates I1;
(see Eq. 1) coming very close to zero and one (Table
3). Because these are outside the range of observed
parasitism rates (reviewed previously), we examined
the effects of refitting the models with modest con-
straints on the parasitism rates, by imposing severe
penalties on the quasilikelihood if the parasitism rate
exceeded the given threshold values.
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FiGc. 3. Five replicate simulations of each contending model, using parameters found by fitting the models to Roseisle.
Dashed lines are drawn at the minimum and maximum observed pupal density values in the empirical time series. The actual
data are shown in the bottom row, in untransformed, log-transformed, and fifth-root-transformed scales.

Constrained parasitoid model fits

The fit of the two-parasitoid model declines gradu-
ally as increasingly tighter constraints are imposed on
the possible range of variation in annual total parasit-
ism rates (Table 2). The decline is most rapid in Tents-
muir, suggesting that the extreme parasitism rates are
critical for the good fit of the model at that site. In
contrast, even the most modest of constraints on par-
asitism rate (between 0.01 and 0.99) causes the fit of
the C. viator model to fall off dramatically.

Simulations of the constrained two-parasitoid model
(using the intermediate constraints [0.03, 0.97]) con-
tinue to somewhat resembl e the data, but the occurrence
of simulations that (by eye) match the data well isless
common, especially for Tentsmuir (Fig. 5).

Parametric bootstrap

Let D be the observed difference in log-quasilike-
lihood between the maternal effects model and the con-
testing model, and D, i 0 {1, 2, ..., 25} bethevalues
from the parametric bootstrap. For the parametric boot-
strap comparing the maternal effects model to the con-
strained two-parasitoid model, all 25 bootstrap repli-
cates (assessed under the hypothesis that the data ac-
tually were generated by the parasitoid model) had val-
ues substantially below the observed value at all three
sites (Culbin, D = 0.233, —0.194 < Dy < 0.046; Ro-
seisle, D = 0.263, —0.059 < Dy < 0.156; Tentsmuir,
D = 0.218, —0.224 < D¥ < 0.094). For the bootstrap
comparison of maternal effects with the food quality
model, a similar result was found at Tentsmuir (D =
0.254, —0.143 < Dy < 0.040). However, at Culbin,
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Dashed lines are drawn at the minimum and maximum observed pupal density valuesin the empirical time series. The actual
data are shown in the bottom row, in untransformed, log-transformed, and fifth-root-transformed scales.

one of the 25 bootstrap replicates approached the data
value (D = 0.088, —0.089 < D¥ < 0.088), and in
Roseisle the bootstrap distribution was centered on the
observed value (D = 0.018, —0.151 < D} < 0.174).
We ran an additional 25 bootstrap replicates at Culbin;
none of them approached the data value, so P = 0.02
for the hypothesisthat the food quality model generated
the data at Culbin. Figures showing the distributions
of bootstrap replicates may be found in Appendix D.

Thus under fairly mild constraints on the parasitism
rate, the maternal effects model providesasignificantly
better fit to the data than the parasitoid model in all
three data sets. The maternal effects model also pro-
vides a significantly better fit than the food quality
model at two sites (Tentsmuir, Culbin) while at thethird
site the difference in fit is small enough that it could
easily occur by chance if the food quality model de-
scribed the mechanism driving the cycles.

DiscussioN

We found that the parasitoid models best fit the Bu-
palus time series at Tentsmuir and performed as well
as the maternal effects model at Culbin if parasitism
rates were allowed to come arbitrarily close to zero and
one. However, if parasitism rates were constrained to
be between the observed rates, the goodness of fit of
the parasitism models dropped dramatically, and the
maternal effects model fit significantly better than the
parasitoid model across all three sites. The food quality
model performed well only at Roseisle, where it fit as
well as the maternal effects model.

We were initially very skeptical of the maternal ef-
fects mechanism; indeed, this study would have been
completed several years previously had we not strug-
gled so hard to find some grounds for rejecting the
hypothesis. However, the weight of evidence led us to
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TaBLE 3. Range of total parasitism rates I, observed in replicate simulations of parasitoid
models fitted without constraints on parasitism rate.

Model

Culbin

Roseisle

Tentsmuir

Two parasitoid

Minimum
Maximum

C. viator only

Minimum
Maximum

0.0666 (0.0076, 0.214)
0.979 (0.964, 0.987)

0.0001 (0.0000, 0.0005)
0.994 (0.989, 0.997)

0.292 (0.105, 0.426)
0.995 (0.991, 0.997)

0.0138 (0.0001, 0.170)
0.985 (0.982, 0.986)

0.0637 (0.0018, 0.441)
0.994 (0.980, 0.997)

0.0016 (0.0002, 0.078)
1.000 (1.000, 1.000)

Bupalus density (no. pupae/m?)°2

FiG. 5.

Notes: Table entries are the median and (5th percentile, 95th percentile) of the minimum
and maximum annual value of II over 500 simulations of length 35 years each.

Culbin (0.03, 0.97)

Roseisle (0.03, 0.97)

Tentsmuir (0.03, 0.97)

Time (years)

271

Five replicate simulations each of constrained two-parasitoid models for each of the sites. Above each column,

values in parentheses are the minimum and maximum allowed values of the total parasitism rate that were imposed when

fitting the model.



272

BRUCE E. KENDALL ET AL.

Ecological Monographs
Vol. 75, No. 2

TaBLE 4. Fits of the off-the-shelf maternal effects and parasitoid models.

Culbin Roseisle Tentsmuir
Model LL r2 LL r2 LL r2
Maternal effects 1.406 0.615 0.685 0.379 1.158 0.790
Parasitoids (unconstrai ned) 1.405 0.612 0.608 0.354 0.949 0.693

conclude that maternal effects are probably the dom-
inant mechanism driving the cycles in British Bupalus
populations. Although maternal effects have been hy-
pothesized asdrivers of population cycles(Myers 1988,
Ginzburg and Taneyhill 1994), this is the first con-
vincing evidence that observed maternal effects are
sufficient to account quantitatively for the observed
population variation in a particular species.

Our skepticism about the maternal effects mecha-
nism stemmed from the fact that parasitoids have been
widely considered to be the most likely explanation for
long-period insect population cycles (e.g., Berryman
1996). We found that parasitoid models could only ex-
plain the British Bupalus cycles if parasitism rates are
allowed to reach values much more extreme than have
been observed in any empirical studies. However, we
caution that it would be premature to totally dismiss
the parasitoid mechanism. Despite the many years of
empirical study it is not impossible that the full range
of parasitism rates goes beyond what is represented in
the existing data. Parasitism rates are difficult to es-
timate, were estimated at sites other than the study
sites, and are often based on limited sample sizes. Fur-
thermore, the range of total parasitism rates will be
affected by the degree of synchrony among parasitoid
species’ variations in density, which could be stronger
in the more cyclic populations where the total parasit-
ism rates have not been monitored.

Even without constraints on the parasitism rates, the
fitted parasitoid models consistently had the property
that qualitative dynamics similar to the data series
““‘come and go’’ during long simulations of the model.
In one sense this could be viewed as a fitting failure:
we do nothing to penalize the model if it spends time
in a part of the state space that is far away from the
data. On the other hand, the data are but a single re-
alization of a stochastic process, and in this sense are
entirely consistent with a stochastic model that some-
times behaves like the data, and sometimes behaves
differently. Indeed, given that Bupalus at many other
sites appears to have been fluctuating around an equi-
librium for 35 years, amechanism that can exhibit these
alternate dynamical behaviors has some appeal .

The food quality model was generally the least suc-
cessful at accounting for the observed dynamics, and
was rejected statistically at two of the three sites an-
alyzed: Culbin and Tentsmuir. A caveat to these find-
ings is that we had no direct empirical data that could
be used to model the defoliation dynamics, so it is
conceivable that a more realistic defoliation model

could lead to improved fits. One possible approach to
this would be to develop a ** partially specified” model
(Wood 1997, 2001, Ellner et al. 1998) using a flexible
or nonparametric model for defoliation dynamics.
However, once the food quality hypothesis emerged as
the across-the-board ‘‘loser,”” we did our best to avoid
biasing the analysis against this mechanism through
poor model choice, by trying several plausible model
variants at the stages for which we had the |east data—
larval density dependence and defoliation dynamics.
For the other mechanisms, where the picture is more
complete, we used a single model that was developed
from the empirical studies of that mechanism in Bu-
palus. So if anything our analysis was unfairly biased
in favor of the food quality hypothesis, and it therefore
seems unlikely that additional information relevant to
food quality dynamics (which would constrain our
search for the “‘best possible’” model) would change
the conclusions.

Similarly, the parameters of the food quality model
were not constrained by experimental information be-
cause the relevant experiments were done in Sweden,
but it seems likely that such constraints would further
reduce this mechanism’s credibility. Fitted values of g
are always near 0, meaning that new needles are totally
valueless to larvae. Experiments say otherwise: larvae
fed on only new needles still had survival of ~80%,
compared to ~90% when mature needles were avail-
able (Smits and Larsson 1999). If the model is con-
strained so that larval survival can never be <20% of
what it would have been on adiet of all mature needles,
its ability to match the datais significantly reduced (LL
= 1.15, r2 = 0.36 for Culbin, LL = 0.52, r2 = 0.12
for Roseisle, LL = 0.47, r?2 = 0.22 for Tentsmuir).

The failure of constrained parasitoid models can al-
most be inferred directly from the data, by estimating
the quantitative impact of the limiting factor whose
identity we aretrying to determine. When each Bupalus
population is in the middle of its density distribution
(33rd—67th percentiles), the population islittle affected
by density dependence, and so the difference in pop-
ulation growth rates between the ascending and de-
scending phases of the cycle must be driven by para-
sitism rate. Even discounting extreme values (which
might be driven by measurement error) the ratios be-
tween the smallest and largest growth rates in these
phases are ~0.05 for Culbin and Roseisle, and 0.01 for
Tentsmuir. Thus, for parasitoids to drive the cycles,
maximum parasitism rates would need to exceed 0.95
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in the first two sites, and 0.99 in Tentsmuir, far beyond
the levels that have been observed in the field.

We can also understand the dynamical role of par-
asitoids by looking at trajectories of the two-parasitoid
model. In the unconstrained model, episodes of 2—3
yearswhen the total parasitism rate (I1,) staysvery high
cause a drastic decrease in Bupalus density population
and then in the parasitoids. These high-parasitism pe-
riods are generated in the model by offset outbreaks of
the two parasitoids, with the peak of C. viator preced-
ing that of Dusona by one year. Afterward there is
gradual regrowth of Bupalus and parallel increase in
the parasitism rate, until the next outbreak. With re-
alistic constraints on the parasitism rate, this scenario
becomes impossible. Instead the fitted models rely on
the exogenous noise to generate occasional large Bu-
palus outbreaks (without noise the fitted models all
converge to equilibrium). When such outbreaks occur
they resemble the data, but as the constraints on 11
become more strict the model is increasingly at the
mercy of the noise and loses the longer term outbreak
pattern.

In the maternal effects model, the initial crash is
caused by high density, which reduces both density and
quality the subsequent year. The resulting low individ-
ual quality in the following year causes a second year
of population decline, even if population density is
already low. After the second declineindividual quality
has recovered, so the population can begin to increase,
but density hasfallen so much in the two decreaseyears
that several years are required before another outbreak
occurs. The interaction of quality and density also ex-
plains the fact that outbreaks may last either one or
two years. Depending on the population density in the
year preceding the first outbreak year, individual qual-
ity in the first outbreak year may be high or low. In
the former case, even though density is high in the first
outbreak year, the population still can increase or re-
main nearly constant. The second outbreak year then
has both high density and low quality, so the outbreak
collapses the next year. In the latter case, because den-
sity is high and quality islow in the first outbreak year,
the outbreak terminates immediately.

In contrast to the parasitism model, however, the
variation in maternal quality required to cause these
dynamics is consistent with independent data. Across
15 years in the Netherlands, pupal mass varied from
130 to 190 mg, and the associated fecundity varied by
a factor of 1.6 (Klomp 1966). Across six years in the
British forest of Cannock Chase, fecundity varied by
a factor of four while mass varied from 85 to 140 mg
(Broekhuizen et al. 1994). Across a single outbreak
each, mass varied from 72 to 108 mg in Culbin and
from 89 to 112 mg in Tentsmuir (Barbour 1980). The
fitted maternal effects model generated two- to three-
fold fecundity variation (lessthan that observed in Can-
nock Chase) without any constraints needing to be im-
posed.
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This difference between the maternal and parasitoid
models is not an artefact of the particular functional
forms used to represent the interactions. Although we
do not show the results here, we have examined a va-
riety of functional forms within the basic structure of
the models, with no qualitative effects on the results.
I'n addition, we have examined established off-the-shel f
models: aNicholson—Bailey parasitoid model with host
density dependence and parasitoid interference, and a
maternal effects model from Ginzburg and Taneyhill
(1994). With one exception, the off-the-shelf models
fit less well than the corresponding models that we
developed specially for Bupalus. At Tentsmuir the off-
the-shelf maternal effects model actually fits better than
any of our models. Comparing just the two off-the-
shelf models, they fit equally well at Culbin, but the
maternal effects model fits better at Roseisle and Tents-
muir (Table 4). Unfortunately, we have no way to check
the plausibility of this maternal effects model, as the
quality variable does not map directly onto any clearly
identified biological quantity.

Although we conclude that the likely cause of the
cycles at Culbin and Tentsmuir is maternal effects, par-
asitoids are known to be present and may play a role
in modulating the cycles. As one check on their po-
tential importance, we developed amodel that included
parasitoids as well as maternal effects. This model had
the advantage of many more free parameters (11, vs.
6 for maternal effects alone), but with parasitism rate
IT limited to (0.05, 0.95) it could not improve on the
fit of the maternal effects model (LL = 1.437 for Cul-
bin, 0.833 for Tentsmuir). These results are consistent
with an interpretation where parasitism rates are along
for the ride, driven by the Bupalus cycles rather than
driving them.

Some readers may be skeptical of our strong infer-
ential claims based ‘‘merely’’ on time series analysis.
However, information is not just coming from the time
series. Here and previously (Turchin et al. 2003) suc-
cess depends on the availability and use of additional
data that constrain the model or its parameters. It is
notable that the third site (Roseisle), for which we
could not uniquely identify a best-fitting mechanism,
exhibited by far the lowest degree of nonlinear pre-
dictability in the observed dynamics (Table 1). The
difference between this site and the others, in terms of
the “‘signal to noise ratio’” in the dynamics, indicates
apractical limit to the methods used here for field data.
In order to get beyond the short-term dynamics where
linear effects dominate (and that any sufficiently com-
plex nonlinear model could match), we had to fit mod-
els based on two-year-ahead predictions. At that range,
only 16% of the variability is predictable for Roseisle.
It is perhaps not surprising in retrospect that the pre-
dictable component of the variability did not contain
enough information to uniquely identify a driving
mechanism that accounted best for the dynamics. On
the other hand, it is very encouraging for future studies
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that 27% predictability (at Culbin) was sufficient for
some clear conclusions to emerge.

Our conclusion—that cycles in British Bupalus are
driven predominantly by maternal effects and not par-
asitoids—runs counter to established wisdom. Thus it
would be desirable to challenge this conclusion with
focused empirical study. In particular, it would be valu-
able to quantify both the parasitism rates and the pupal
sizefluctuationsin the strongly fluctuating popul ations.
Some of this information is collected as part of the
annual pupal survey, although not entirely consistently
(H. Evans, personal communication). Together with in-
tensive studies on the cycling populations, such data
may help resolve whether either parasitism rates or
maternal quality are fluctuating enough to drive the
population cycles. Experimental manipulations of ma-
ternal size and parasitoid densities may also provide
valuable information. Information on the relationship
between needle defoliation and larval density would
be valuable to better specify needle dynamics for the
food quality model. Our results also indicate that a
simple experiment to quantify larval survival asafunc-
tion of needle age and larval density might be sufficient
to decisively eliminate the food quality hypothesis. If
the results from Sweden are confirmed in UK popu-
lations, a realistically constrained food quality model
would drop to a distant third place finish at all three
sites.

The models might be made more sensitive to the
dynamical mechanisms if explicit information on ex-
ogenous factors (such as climate and needle biomass)
were incorporated into the models, to provide a mech-
anistic and observable replacement for the *‘process
noise’’ that is currently treated as pure white noise.
Another important exogenous factor is management:
forests are logged and thinned at various times, and in
some instances forests were sprayed with insecticide
in response to severe Bupalus outbreaks (Crooke 1959,
Scott and Brown 1973, Straw 1996). We did develop
avariant of the model that included spraying, based on
theinferred criteriafor spraying, but it did not improve
the fit of the models (see Appendix E). Finaly, the
spatial averaging of Bupalus density across an entire
forest might obscure local interaction patterns. How-
ever, it is unclear whether the potential increase in de-
terminism at smaller spatial scales would outweigh the
problems associated with the smaller sample size and
associated uncertainties in local population density.
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APPENDIX A
Details of model development can be found in ESA’s Electronic Data Archive: Ecological Archives M075-009-A1.

APPENDIX B
Details of fitting methods can be found in ESA’s Electronic Data Archive: Ecological Archives M075-009-A2.

APPENDIX C
Parameter estimates for unconstrained models can be found in ESA’'s Electronic Data Archive: Ecological Archives M075-

009-A3.
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APPENDIX D
Parametric bootstrap distributions can be found in ESA's Electronic Data Archive: Ecological Archives M075-009-A4.

APPENDIX E

Analysis of a model that incorporates the effects of insecticide spraying can be found in ESA’s Electronic Data Archive:
Ecological Archives M075-009-A5.





