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Abstract

We analyze a dynamic model of strategic interaction between a professional sport league
that organizes a tournament, the teams competing to win it, and the broadcasters paying
for the rights to televise it. Teams and broadcasters maximize expected pro¯ts, while the
league's objective may be either to maximize the demand for the sport or to maximize the
teams' joint pro¯ts. Demand depends positively on symmetry among teams (competitive
balance) and how aggressively teams try to win (incentives to win). Revenue sharing in-
creases competitive balance but decreases incentives to win. Under demand maximization, a
performance-based reward scheme (used by European sport leagues) may be optimal. Under
joint pro¯t maximization, full revenue sharing (used by many US leagues) is always optimal.
These results re°ect institutional di®erences among European and American sports leagues.
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1 Introduction

Revenue sharing is a controversial topic in the organization of many professional sport leagues.
In recent years, its importance has become even more evident given the large payments American
and European professional sports leagues fetch from television broadcasters.1 In this paper, we
present a rigorous analysis of the opposing views in this controversy.

The argument in favor of revenue sharing in sports observes that there are large di®erences
among revenues and wealth of teams. For example, Scully (1995) and Fort and Quirk (1995)
provide evidence on large disparities of ticket sales and revenues from local TV deals among
teams located in di®erent cities. As a consequence, richer teams tend to be more successful since
they can a®ord better players.2 A mechanism which redistributes income from richer to poorer
teams makes future competition more balanced, hence more enjoyable to the fans. A consequence
of this argument is that revenue sharing increases future demand for the sport, hence increasing
the revenues of the league. Furthermore, if teams are pro¯t maximizers, revenue sharing also
decreases the price teams pay for top players since their marginal value decreases. Hence, revenue
sharing also has a positive impact on the pro¯t of teams.

The case against revenue sharing is based on the idea that if there are no prizes for winning
teams' pro¯ts are independent of a competition's outcome. Without a prize there are no monetary
incentives for a team to win. In the end, this may have a negative e®ect on demand since the
lack of incentives for team owners induces lack of incentives for players.3 As noticed by Daly
(1992) and Fort and Quirk (1995), if teams have nothing to compete for, fans may strongly doubt
the integrity of the competition on the playing ¯eld with an obvious negative e®ect on demand.
Hence, revenue sharing has a negative impact on current demand and team pro¯ts.

Unsurprisingly, professional economists have debated di®erent revenue sharing arrangements,
and their consequences for teams and players as well as for the demand for sports (see Fort and
Quirk (1995) for a comprehensive review). In the end, the question is how to allocate revenues if
the product is the result of a joint production of e®ort by several participating ¯rms. Surprisingly,
there are relatively few theoretical analyses of this question.

As seen above, revenue sharing has di®erent consequences for current and future demand
for the sport. Therefore we study a dynamic model where professional teams compete to win a
tournament and the league decides how to allocate revenues generated by the competition among

1The latest reported television deals for NFL and NBA, for example, are $17.6 billion over eight years and
$2.4 billion over four years respectively (see Araton 1998).

2See Scully (1995) for detailed evidence.
3An example of this e®ect is given by the higher TV ratings for playo® matches when compared to regular

season ones.
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winners and losers. In particular, each period has the following sequence of moves. First, the
league's revenues are determined by the sale of broadcasting rights. Then, the league decides
how to allocated these revenues among winners and losers. Finally, the teams compete to win the
tournament organized by the league. In this framework, we can properly address the following
question: how should a professional sport league allocate revenues among participating teams?

The starting point is a description of aggregate demand for a sporting competition. This
determines how much money the league may obtain for selling the rights to broadcast the event.
Aggregate demand for a sport is ultimately determined by how much the fans enjoy watching the
tournament in which the teams compete. Following the literature surveyed in Fort and Quirk
(1995), we assume it depends on three factors. These are quality of the league, how hard teams
try to prevail, and competitive balance in the tournament.

Quality of the league re°ects its ability to attract talented athletes. It is measured by the
combined wealth of the teams. A wealthier league (i.e., a league with a larger total wealth
of teams) attracts better players. Therefore, teams' combined wealth has a positive e®ect on
demand. The size of this e®ect is in°uenced by the environment in which the league operates.
For example, US sport leagues are essentially monopsonists in the market for players in a given
sport.4 In this case, only intra-league trades are observed and league-wide talent is roughly
constant. European sport leagues, on the other hand, compete with each for top players. In this
case, inter-league trades of top players are observed frequently.

Willingness to win by teams is re°ected by the salaries teams pay to their athletes. If the
e®ort players produce is observable, a higher salary is the consequence of a higher e®ort. If the
e®ort is not observable, higher prize when winning the competition generates a higher e®ort.

Competitive balance is measured by uncertainty of the outcome. Fans enjoy more sporting
events whose winners are not easy to predict. In other words, the more symmetric the winning
chances of the competitors the more exciting the tournament is to watch. Since a team's prob-
ability of winning ultimately depends on the athletes playing for it, competitive balance also
depends on a team's wealth and how much it pays its athletes.

The league chooses a monetary reward scheme conditional on the tournament's outcome.
It knows this choice in°uences how teams compete in the event. Hence, the league knows
more or less revenue sharing in°uence aggregate demand for the sport. In a dynamic setting,
revenue sharing has two e®ects on demand. The ¯rst e®ect we call competitive balance: increased
revenue sharing at time t increases demand at time t + 1 by making the teams' future winning
chances more equal. This e®ect has consequences for competitive balance at time t + 1 even
if teams are identical at time t: a large prize for today's winner introduces an asymmetry in

4There are very few cases of athletes being able to play more than one sport at professional level.
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tomorrow's winning probabilities. The second e®ect we call incentives to win: increased revenue
sharing decreases current demand by lowering the monetary value of winning and consequently
diminishing teams' interest and e®ort toward winning. This e®ect lowers demand since fans enjoy
more e®ort from players.

In this paper, we derive the optimal level of revenue sharing in a repeated tournament by
analyzing the trade-o® between competitive balance and incentives to win. Of course, the optimal
level of revenue sharing depends on what the league wants to accomplish. We consider two
natural possibilities for the objective function of professional sport leagues. First, we assume
the league maximizes its revenues, given by the amount of money it obtains from television
broadcasters. In our framework, this assumption is equivalent to maximizing demand for the
sport. Second, we also consider the league as a cartel of pro¯t maximizing ¯rms and assume it
maximizes the teams' joint pro¯t (as assumed by Atkinson, Stanley and Tschirhart (1988)). The
¯rst case roughly corresponds to sport leagues more independent from teams, and it matches the
European institutional organization of professional sports;5 the second case resembles more the
way in which American professional sport leagues are organized.

Under demand maximization, a performance-based reward scheme which depends on the
tournament's outcome may be optimal. This implies that full revenue sharing is not optimal.
Under joint pro¯ts maximization, the reward scheme does not depend on the tournament's
outcome: full revenue sharing is always optimal. These results match observed behavior of some
sports leagues. In European top soccer leagues, broadcasting revenues are distributed according
to performance (see Tables 1 and 2).6 Sharing of national TV deals, on the other hand, is more
common in US sport leagues (see Scully, 1995). The main reason for the di®erence of results
between the two objective functions is that under joint pro¯t maximization the league internalizes
players' salaries in its objective function while in the case of the demand maximization, it does
not.

Our paper extends the existing literature in several ways. First, we consider a multi-period
model. Therefore, we are able to capture the intertemporal trade-o® generated by revenue sharing
between demand and pro¯ts today and demand and pro¯ts tomorrow. Second, we consider the

5For example, in France, the organization of the Premiere Division championship (top national competition)
is delegated by the Federation Francaise de Football (FFF) to the Ligue National de Football (LNF). All French
teams (both professional and non professional) are a±liated to the FFF. All professional teams (both those in
Premiere Division and those participating in minor championships) are a±liated to the LNF. A fraction of the
money received by the LNF for the sale of Premiere Division broadcasting rights is transferred to the FFF and
a fraction is allocated to minor championship teams. In such a context, the maximization of revenues from TV
deals seems a reasonable assumption.

6See also Hamil, Michie and Oughton (1999) for more details about England.
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possibility that a league faces competition from other leagues and that they compete for top
players as is the case in Europe. Therefore, we can study the in°uence of revenue sharing at time
t on league-wide talent at time t+ 1. Related papers in a competitive environment are those of
Hoen and Szymanski (1999) and Palomino and Sakovics (2000). Hoen and Szymanski study the
impact of the participation of top clubs in international competitions on the competitive balance
of the domestic leagues. They do not address the issue of the optimal level of revenue sharing.
Palomino and Sakovics (2000) consider a static model and compare the organization of markets
for talent when a league is isolated and when it operates in a competitive environment. They show
that full revenue sharing in US sports may result from monopsony power in the market for talent
rather then from competitive balance considerations. Other papers (El Hodiri and Quirk (1971),
Atkinson, Stanley and Tschirhart (1988), Fort and Quirk (1995), Vrooman (1999)) consider static
models and focus on the case of US sport leagues that do not face competition.

The analysis carried out in this paper goes beyond the sports literature. Our model presents
an example of a repeated moral-hazard problem between a principal and multiple agents in
which the di®erence in output produced by the agents is detrimental to the principal.7 An
example of such a situation is the production and distribution of electricity.8 In this setting, the
principal faces a trade-o® between \output balance" among agents and incentives to produce
large quantities. The solution for the principal is to propose agent-speci¯c contracts, the agent
with the higher productivity rate receiving a lower marginal revenue in order to decrease his
incentives to produce. The speci¯c feature of a sport competition (or any other contest) is that
the contract the principal proposes has to be the same for all agents. Rewards can only be based
on relative performances. The reward for the winner cannot vary with his identity.

Our model is also related to Moldovanu and Sela (2000) who study the optimal allocation of
prizes in contests. They consider a contest where the highest bidder (or agent making the highest
e®ort) wins and the goal of the designer is to maximize the sum of all bids. In this framework,
they show that if the contestants face linear or concave cost functions, then the allocation of
the entire prize money to the winner is optimal. Conversely, if the contestants face convex cost
functions, several prizes may be optimal. Our model di®ers from Moldovanu and Sela's in two
crucial ways. First, we consider sequential contests and both the bids (the e®ort in our context)
at time t and the outcome of the contest at time t in°uence bids made at time t+1. Hence, when
deciding on the allocation of prizes at time t, the contest designer (i.e., the league in our case)

7For example, consider a situation such that there are two agents 1 and 2, the income of the principal at time
t is Min(qt;1; qt;2), qt;i being the output of agent i at time t. Moreover, qt;i depends on agent i's (unobservable)
e®ort, his productivity and some noise, and the productivity at time t depends on past income. (One can think
of productivity as being the consequence of investment in more or less sophisticated machines.)

8We would like to thank Ines Macho-Stadler for suggesting this example.
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must take into account the impact on future contests. Second, one of the speci¯city of sport
events is that competitive balance is valuable. This reduces incentives for the contest designer
to award all the prize money to the winner at time t since it may decrease competitive balance
at time t+ 1.

The organization of the paper is as follows. Section 2 introduces the basic model and Section 3
derives its equilibrium. Section 4 considers three possible extensions: multi-period TV contracts,
sources of teams revenues that do not depend on the leagues' decisions, teams that cannot observe
players e®ort (how hard they try to win). Section 5 concludes.

2 The Model

In this section, we present a simple two periods model of strategic interaction between professional
sport teams, a professional sport league, and television broadcasters. Two teams compete in the
tournament organized by the league and shown on television by a broadcaster. More speci¯cally,
the following sequence of moves occurs in each period. First, the broadcaster decides how much
to pay for the exclusive right to televise the sporting event. Then, the league decides how to
divide this money between the loser and the winner of the tournament. Finally, the teams
simultaneously decide how much to spend on players' incentives. At the end of the period, the
tournament is played, the winner is determined, and money is awarded accordingly.

Before presenting the model in detail, two remarks are in order. First, we focus on the sale
of rights to national TV networks and on the allocation of the corresponding revenues among
teams. Of course, teams have other sources of revenues (for example, ticket sales, sponsoring,
merchandising, local TV deals). In our model, these are captured by di®erences in initial wealth
among teams; in other words, we assume these other sources of pro¯ts are constant over the
two periods. Second, the model does not explicitly include a market for talent.9;10 Although
both these aspects deserve attention, our focus is on a model simple enough to capture the basic
trade-o® between competitive balance and incentives.

Demand

Demand for the sport depends on three sets of variables: the talent of the athletes playing
the sport (league quality), their attempt to prevail in the competition (willingness to win),

9See Palomino and Sakovics (2000) for a market for talent with competing leagues.
10Implicitly, we assume that talent is linear in price and that teams maximize their expected pro¯t from talent

under the constraint that they cannot borrow. In this case, if for a cost of talent equal to the total wealth of a
team, the marginal pro¯t is larger than the marginal cost, teams invest their entire wealth.
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and competitive balance of the tournament. The league's quality is measured by the wealth
of the participating teams; this re°ects their ability to attract skilled athletes away from other
sports. Willingness to win is measured by incentives to induce players' e®ort; it is important
because fans enjoy athletes playing hard.11 Competitive balance is measured by uncertainty of
the tournament's outcome; fans enjoy sporting events more if the winner is not easy to predict.
In other words, the more symmetric are the teams' winning chances, the more exciting is the
tournament.

In each period t, Dt denotes demand in monetary terms, et;i denotes team i's e®ort, pt;i its
probability of winning, and Wt;i its wealth; similarly for team j. Then, demand is given by

Dt = ° (et;i + et;j) + ±[1 ¡ (pt;i ¡ pt;j)2] + º (Wt;i +Wt;j) ; (1)

with ° 2 (0; 1), º 2 (0; 1), and ± > 0.12 Note that ± represents the monetary value of one unit
of competitive balance while ° represents the monetary value of one unit of willingness to win.
Equation (1) can loosely be interpreted as measuring fans welfare from watching the tournament.
In this respect, the ¯rst term measures the importance of watching athletes `give their best'. The
second term measures the importance of watching an evenly matched tournament. The third
term measures the importance of watching good athletes. Roughly, this last e®ect allows for
several competing leagues where each league talent level depends on the total wealth of its
teams.13

Broadcasters

The market for TV rights is perfectly competitive. Therefore, a broadcaster expects zero pro¯ts
in equilibrium. Since demand is expressed in monetary terms, we assume that broadcasting of
the games generates income from advertising and this income increases with the audience that
watches them. In particular, we let Kt denote the amount paid by the broadcaster and impose
Kt = Dt in each period. In other words, at this stage we only consider one-period deals between
broadcasters and the league. Later in the paper (see Section 4.1), we extend the framework to
include multi-period deals.

11A possible fourth set of variables may measure fans' attachment to a team. Since we model demand for the
sport, we assume that these \individual team" e®ects wash out in the aggregate.

12Many simplifying assumptions, like the functional form chosen for the demand for the sport, are made for
simplicity and are not necessary for our qualitative results.

13This assumption corresponds to the case of European sport leagues who organize domestic competitions and
sign TV deals with national broadcasters. Top players often switch from one league to another, hence changing
league-wide talents. US sport leagues, on the other hand, are in an isolated environment where league-wide talent
is given and only intra-league trades occur (with few exceptions at the draft level).
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League

After receiving Kt from the broadcaster, the league decides how to allocate this sum between the
two teams. We assume this allocation can only be contingent on the outcome of the tournament.
In particular, this rules out allocations which explicitly depend on the teams' wealth.14

The league's interest is to maximize the demand for the sport. This does not necessarily
imply the league cares exclusively about fans' welfare, since it may have long run objectives to
maximize demand.15 Given the assumption of perfect competition in the broadcasting industry,
this is equivalent to assuming that the league maximizes the revenues from the sale of TV rights.

Because of the perfect competition in broadcasting assumption, maximizing demand and
maximizing revenues from TV rights are equivalent objectives. Let Kt;w and Kt;l denote the
amounts allocated to period t winner and loser respectively (obviously, Kt;w+Kt;l = Kt). Then,
in period 2 the league chooses K2;w and K2;l to maximize D2, while in period 1 it chooses K1;w

and K1;l to maximize D1 +D2.

Probability of winning the tournament

The tournament's outcome depends on the quality of each team and on their choices of incentives
for players. The ¯rst aspect represents teams' initial ability; the second represents the e®ort
spent towards winning. A richer team can buy better players, hence having an initial advantage.
However, a poorer team can compensate this initial disadvantage by producing a higher e®ort
level. In order to make players produce a higher e®ort level, teams must reward them. Here, the
e®ort level is measured in monetary terms. We capture these ideas modelling the probability to
win.

The probability that team i wins period t tournament depends on its players' talent and how
hard they play. Talent can be thought of as a team's ability to sign players at the beginning
of the season; therefore, it is measured by the team's wealth Wt;i. How hard players try to win
can be thought of as e®ort, and is measured by the incentives necessary for players to perform
during the season et;i. Formally, the probability that team i wins in period t is

pt;i =

(
® et;i
et;i+et;j

+ ¯ Wt;i
Wt;i+Wt;j

if et;i + et;j > 0
Wt;i

Wt;i+Wt;j
if et;i + et;j = 0

14This does not seem an unrealistic assumption since we do not see tournament prizes of the sort \since the
richer team has won, amount x goes to the winner and amount y goes to the loser".

15We also solve the equivalent model where the league maximizes teams' joint pro¯ts. There, the league
internalizes the costs faced by the teams and it represents a cartel as assumed by Atkinson, Stanley and Tschirhart
(1988). Unsuprisingly, full revenue sharing is always optimal in that case since incentives to players by teams
cancel out with each other and represent a waste of resources from the cartel's point of view.
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with ®+¯ = 1. Quite obviously, pt;j = (1 ¡ pt;i) since there are only two teams. The probability
of winning increases with the di®erence in e®ort and the di®erence in wealth. When the two
teams are equally wealthy and produce the same e®ort level, their probability of winning is 1

2 .
One can think of ®¯ as a measure of how winning depends on incentives relative to initial quality.
If ®¯ > 1 the marginal return to e®ort is higher than the marginal return to wealth; loosely
speaking, trying hard is more important than being better.

Teams

Each team's objective is to maximize current expected pro¯ts with an appropriate choice of
incentives for its players. This choice is made knowing the prizes the league will award to winner
and loser of the current tournament. Formally, team i's pro¯ts are:

¦t;i = pt;iKt;w + (1 ¡ pt;i)Kt;l ¡ et;i
Implicitly, here we assume that the e®ort produced by players is observable. Later we relax this
assumption and explicitly consider the case where it is not (see Section 4.3).

Team i has an initial wealth equal to W1;i. If it wins the tournament, its wealth in the second
period is

W2;i = W1;i +K1;w ¡ e1;i:
If it looses the tournament, its wealth in the second period is

W2;i = W1;i +K1;l ¡ e1;i:

Therefore, the prizes awarded to the winner and loser of the ¯rst period have an e®ect on
competitive balance in the second period.16 In other words, the probability of winning in period
2 depends on the outcome of period 1 because of the e®ect prizes have on the teams' wealth,
hence on teams' talent. Here, talent should be interpreted as a durable good. Team i invests
Wi;1 at the beginning of period 1 and ¦i;1 at the beginning of period 2, and the amount of talent
accumulated at the beginning of period 2 is Wi;2 = Wi;1 +¦i;1.

Finally, we assume that in each period, teams cannot borrow and face a solvency constraint:
a losing team has enough cash to compensate players for their e®ort. This implies that for all t,
et;i · Kt;l.17

16Hence, a fully rational team should consider the in°uence of its strategy in period 1 on the game that will be
played in period 2. At this point, we consider the behavior of myopic teams. This seems realistic since a league is
usually made of a relatively large number of teams and the strategic in°uence of a speci¯c team on the revenue of
the league in the following period is small. In any case, the behavior of farsighted fully rational teams is analyzed
in Appendix A.2.

17We could derive this restriction as the result of a much more complicated model. Suppose, for example, that
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3 The Equilibrium

In this section, we characterize the equilibrium of the game described previously. We begin by
analyzing the subgame starting at the beginning of period 2. The solution concept we use is
subgame perfect Nash equilibrium. We start with period 2 subgame and look at three optimiza-
tion problems. First, the teams' optimal e®ort choices given their wealth, the prizes decided by
the league, and the TV rights; second, the league's optimal prize choice, given the TV rights,
and the teams' equilibrium play that follows; ¯nally, the broadcaster's optimal TV rights choice,
given teams' and league equilibrium plays. Then, we repeat a similar procedure for period 1,
considering equilibrium play in period 2.

3.1 The E®ort Game

Period 2 ends with the teams playing a simultaneous move game in which they choose incentives
for players. Each team i chooses the level of incentives to maximize period 2 pro¯ts. Formally,
team i solves maxei;t·Kt;l ¦t;i where

¦t;i = pt;iKt;w + (1 ¡ pt;i)Kt;l ¡ et;i: (2)

In other words, in every period t we have a simultaneous moves game in e®ort.18 The equilibrium
of this game is characterized by the following proposition.

Proposition 1 In the equilibrium of the e®ort game, the optimal strategies are

et;i = et;j = min
³
Kt;l;

®
4
¢Kt

´
(3)

where ¢Kt ´ Kt;w ¡Kt;l.

Proof: See Appendix.
This proposition says that the e®ort produced by teams increases with the di®erence between

the prize money going to the winner and the loser. For any given Kt, we can interpret the size as
¢Kt as a measure of (lack of) revenue sharing; in particular, full revenue sharing corresponds to
¢Kt = 0 (and therefore Kt;w = Kt;l = 1

2Kt) while no revenue sharing corresponds to ¢Kt = Kt.
Then, Proposition 1 gives a relationship between the level of revenue sharing and the equilibrium

the league pays Kt;l upfront (before the tournament takes place) to both teams while ¢Kt is paid to the winner
after the tournament. In this case, wealth evolves over time along the lines described previously and, because of
the no borrowing condition, teams cannot pay more than Kt;l as incentives to players.

18As noticed previously, we assumer teams are myopic; hence, the game they play in period 1 is identical to
the one in period 2.
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choices of incentives by the teams. The larger the amount of revenue sharing (i.e., the smaller
¢Kt), the smaller the e®ort level produced by teams. Intuitively, players need incentives to
produce e®ort; the size of the prize for winning the tournament determines the incentives teams
are willing to pay to their players.

The equilibrium of the e®ort game has some consequences on the demand for the sport in
each period: substituting Equation (3) in Equation (1), we obtain

Dt = °
®¢Kt

2
+ ±

"
1 ¡

µ
¯
Wt;i ¡Wt;j
Wt;i +Wt;j

¶2
#
+ º (Wt;i +Wt;j) (4)

Since the e®ort level is symmetric, the competitive balance part of the demand is una®ected by
e®ort: it only depends on the wealth di®erential. The willingness to win part of the demand,
instead, is determined by the prize di®erence between winning and losing. Equilibrium in the
e®ort game implies that the strategically relevant variable from the league point of view is ¢Kt.

3.2 Play in the Second Period

While the e®ort game is, by assumption, the same in both periods, the analysis of league and
broadcasters behavior di®ers. Therefore, we start with the subgame in which the league has
received some money through the sale of the TV rights.

League Behavior in Period 2

Given the solution of the e®ort game, the league maximizes demand for the sport maximizing
the teams aggregate e®ort by making the prize for winning as large as possible. This can be seen
by substituting the teams' equilibrium e®ort choices in period 2 demand function:

D2 = °
®¢K2

2
+ ±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j) :

The league's optimal allocation for a given amount of funds available is described by the following
proposition.

Proposition 2 A league that maximizes demand for the sport chooses

¢K2 = K2;w ¡K2;l =
2

2 + ®
K2 (5)

Proof: see Appendix.
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In the last period of the game full revenue sharing cannot be optimal. Since this is the
end of the game, the e®ect prizes have on future wealth is irrelevant to the league decision.
Furthermore, current wealth does not depend on the outcome of this period's tournament. In
other words, the competitive balance in the second period cannot be changed. Therefore, only
the incentives to win e®ect matters to the league. In these conditions, the optimal choice is to
make the e®ort chosen by teams as large as possible. When the demand for sport depends on
the e®ort produced by teams, and competitive balance is irrelevant, full revenue sharing does
not lead to the maximization of demand for the sport.

Broadcasters' Behavior in Period 2

Using Proposition 2, we can write demand in period 2 as a function of K2:

D2 = °
®K2

2 + ®
+ ±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j) : (6)

Demand for the sport depends positively on K2, the amount of money made available by TV
rights. This is due to the willingness to win e®ect: the more money the broadcaster pays, the
larger the prize awarded to the winner, the more incentives teams o®er to players. In the end,
this represents a positive e®ect on demand because spectators enjoy players who try hard.

To conclude the analysis of play in period 2, we determine K2, the revenues paid to the league
by broadcasters. Since there is perfect competition in the broadcasting industry, broadcaster are
willing to pay the full monetary value of demand. Formally, D2 = K2. Substituting this in
Equation (6), we ¯nd that the equilibrium amount broadcaster pay in period 2 is given by

K2 =
2 + ®

2 + ® (1 ¡ °)

(
±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j)

)
: (7)

The Equilibrium in Period 2 and the Link Between Periods

The following corollary to Proposition 1 and Proposition 2 describes the equilibrium in Period 2
subgame.

Corollary 3 The equilibrium in period 2 is characterized as follows: the amount paid for tele-
vision rights equals demand in that period and is given by

K¤
2 = D¤

2 =
2 + ®

2 + ® (1 ¡ °)

(
±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j)

)
;
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the prize received by the team which wins the tournament is given by

¢K¤
2 =

2
2 + ® (1 ¡ °)

(
±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j)

)
;

and the incentives teams pay are given by

e¤2;1 = e
¤
2;2 =

®
4 + 2® (1 ¡ °)

(
±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j)

)
:

Proof: substitute Equation (7) in Equations (5) and (3). 2
The two periods are linked through the decisions players make in the ¯rst period and through

the outcome of the tournament in the ¯rst period. In particular, when winner and loser in period
1 perceive di®erent prizes, this re°ects on their wealth in period 2. Therefore, broadcasters and
league behavior in period 1 could in°uence the equilibrium in period 2 through the teams' wealth.
In particular, two period 2 variables are relevant: aggregate wealth and the wealth di®erence.

Period 2 aggregate wealth does not depend on the outcome of the tournament which took
place in the ¯rst period:

W2;i +W2;j = W1;i +W1;j +K1 ¡ (e1;i + e1;j)

= W1;i +W1;j +K1 ¡ ®¢K1

2
:

Period 2 di®erence in wealth, instead, depends on the outcome of this tournament. If team i has
won, the di®erence is given by:

W2;i ¡W2;j = W1;i ¡W1;j +¢K1 ¡ e1;i + e1;j
= W1;i ¡W1;j +¢K1

while the same di®erence when team i has lost is

W2;i ¡W2;j = W1;i ¡W1;j ¡ ¢K1 ¡ e1;i + e1;j
= W1;i ¡W1;j ¡ ¢K1

The demand (i.e., the amount the broadcaster pays), and the e®ort chosen by the teams both
depend on the outcome of period 1's tournament. More speci¯cally, let Di2 denote the demand
in period 2 when team i has won the previous tournament, and let and Dj2 denote the demand
in period 2 when team j (j 6= i) has won. Using Equation (7) we can compute these demands
explicitly, obtaining:
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Di2 =
2 + ®

2 + ® (1 ¡ °)

8
><
>:
±

"
1 ¡

µ
¯ W1;i¡W1;j+¢K1

W1;i+W1;j+K1¡®¢K12

¶2
#

+º
¡
W1;i +W1;j +K1 ¡ ®¢K1

2

¢

9
>=
>;

(8)

and

Dj2 =
2 + ®

2 + ® (1 ¡ °)

8
><
>:
±

"
1 ¡

µ
¯ W1;i¡W1;j¡¢K1

W1;i+W1;j+K1¡®¢K12

¶2
#

+º
¡
W1;i +W1;j +K1 ¡ ®¢K1

2

¢

9
>=
>;
: (9)

3.3 League Behavior in the First Period

Since the game teams play in period 1 is identical to the one in period 2, Proposition 1 holds:

in equilibrium we have e1;i =
®(K1;w¡K1;l)

4 . Therefore, we can study the league's optimization
problem in period 1. The league takes into account the in°uence of period 1 decisions on the
games teams play in periods 1 and 2. Moreover, there is uncertainty about the game that will take
place in period 2 since W2;i ¡W2;j depends on which team has won the ¯rst period tournament
(if revenue sharing is not full).

The league needs to compute the expected revenues for period 2, considering the possible
outcomes of period 1's tournament. That is, in the ¯rst period, the league maximizes

D = D1 + p1;iDi2 + p1;jD
j
2 (10)

The individual components of this objective function are then easily speci¯ed. First, Di2 and Di2
are given by equations and (8), (9). Second, Proposition 1 applies and therefore we know that

p1;i =
®
2
+ ¯

W1;i

W1;i +W1;j
(11)

and

D1 = °
®¢K1

2
+ ±

"
1 ¡

µ
¯
W1;i ¡W1;j

W1;i +W1;j

¶2
#
+ º (W1;i +W1;j) : (12)

From equations (8) to (12), we deduce that the level of revenue sharing chosen by the league
in period 1, represented by ¢K1, in°uences demand for the sport in three ways. For example,
suppose the level of revenue sharing increases (¢K1 decreases). The ¯rst e®ect is to decrease
period 1 demand since the equilibrium level of e®ort in period 1 decreases. The second e®ect
is to increase period 2 demand through the larger total wealth of the teams after they receive
the tournament prizes. The third e®ect is to increase period 2 demand because more revenue
sharing implies the league is more balanced, i.e. jp2;1 ¡ p2;2j decreases. Disregarding the role
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of league's wealth in attracting talent, revenue sharing is chosen on the basis of the trade o®
between incentives to win, represented by how sensitive demand is to e®ort, i.e., players trying
hard to win (the ¯rst e®ect above), and competitive balance, represented by how sensitive demand
is to uncertainty of the tournament's outcome (the third e®ect above).

In general, a closed form solution for the optimal value of revenue sharing is di±cult to
obtain even in our simple setting. The following propositions, though, characterizes the two
most interesting extreme cases.

Proposition 4 In the ¯rst period, revenue sharing is determined as follows:
(i) if ° 2+®(1¡°)(2+®) > º there exists some ± such that for any ± < ± minimal revenue sharing is
optimal, that is, ¢K1 = 2

2+®K1;
(ii) if ° 2+®(1¡°)(2+®) < º full revenue sharing is optimal, that is, ¢K1 = 0.

Proof: see Appendix.
Part (i) states that when the incentives to win e®ect is large (so that the sensitivity of demand

to e®ort is large relative to the sensitivity of demand to total wealth) and the competitive balance
e®ect is small enough, the league chooses the level of revenue sharing so as to maximize the e®ort
level produced by teams (as in period 2). In this case, the league chooses minimal revenue sharing
(¢K1 = 2K1=(2 + ®)). Intuitively, if e®ort is a relatively important factor for the fans of the
sport revenue sharing is not optimal.

Part (ii) of the proposition states that when the sensitivity of demand to e®ort is small relative
to the sensitivity of demand to total wealth the league chooses full revenue sharing. Notice that
this is only a su±cient condition for optimality of full revenue sharing since there may be values
of ± such that ¢K1 = 0 even when ° 2+®(1¡°)(2+®) > º.

Finally two remarks should be made. First, although a full characterization of the equilibrium
is not provided by Proposition 4, we have an answer to the optimality of not sharing revenues. If
the incentives to win e®ect is large enough while the competitive balance e®ect is not too large,
then sharing revenues does not maximize demand for the sport.

Second, as mentioned previously, the equilibrium of the second period su®ers from the absence
of a competitive balance e®ect, and is thus biased against revenue sharing. The incentives to win
e®ect dominates. What is more interesting, is that revenue sharing may not be optimal even if
the competitive balance e®ect is taken into account. Intuitively, the optimal prize for winning
depends on the trade-o® between current incentives and future wealth asymmetries.
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3.4 Equilibrium When the League Maximizes Teams' Pro¯ts

In this section we assume the league is a cartel that maximizes the joint pro¯ts of the two teams.
In this case, full revenue sharing is optimal. Intuitively, the value of an increase of television
revenues (via demand) through higher incentives for the teams' players is exactly o®set by the
cost of these incentives. Hence, the league chooses ¢Kt so that teams give no incentives to
players. In a cartel, competing hard to win is wasteful.

Let ¦2 denote the joint pro¯ts of the teams in period 2; formally, we have

¦t = ¦t;i +¦t;j = Kt;w +Kt;l ¡ (et;i + et;j) = Kt ¡ (et;i + et;j) :

Using the equilibrium condition for the e®ort game, we obtain

¦t = Kt ¡
®
2
¢Kt:

One can see that ¦2 is decreasing in the overall e®ort level. Hence, ¢K2 = 0. In period 1,
things are not so simple because e®ort produces an increase in demand which is then re°ected
in higher payment for TV rights and hence higher revenues for teams. It runs out this increase
is exactly o®set by the corresponding cost of providing e®ort. Hence, the ¯rst e®ect dominates
and full revenue sharing is optimal. This result, is stated formally as follows.

Proposition 5 If the league maximizes teams' joint pro¯t, full revenue sharing is optimal in
both periods; that is, ¢Kt = 0 and Kt;w = Kt;l = 1

2Kt.

Proof: see Appendix.

4 Extensions of the Model

In this section, we propose three extensions of the basic model. First, we examine the situation
in which the league and the broadcaster sign a long term contract. Then, we analyze the case
were teams have sources of revenues which are performance based but independent from the
prizes awarded by the league. Finally, we analyze the case in which players e®ort is unobservable
and hence teams makes players' compensation contingent of the outcome of the tournament.

All these extensions contribute to the realism of the model without changing the basic con-
clusion. Full revenue sharing is not always the way to maximize demand for the sport.
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4.1 Multi-period TV Contracts

In the previous section, TV deals were negotiated for one period at a time. In reality, broadcasting
contracts span many years. To account for this, we consider a modi¯cation of the model where
at the beginning of period 1 the league sells the right to broadcast games for both seasons. In
this case, the league decides two things: the allocation of total prizes between periods and the
division of the total prize between winner and loser in each period.

This change in assumptions has two main implications. First, at the beginning of period 1,
teams know prizes to be awarded in the second period. This was not the case before since K2 was
a function of the team that won in the ¯rst period. Second, we do not have Dt = Kt, (t = 1; 2).
If we denote K the revenue of the league at the beginning of period 1, then perfect competition
in the broadcasting industry yields K = D1 + E(Di2).

Note that the problem faced by teams in each period remains unchanged. Hence, Proposition
1 holds and the e®ort level of each team in period t equals ®4¢Kt. Also, the league can still set
the second period prizes after observing the outcome of the ¯rst period tournament. Therefore,
Proposition 2 applies and ¢K2 = 2K2

2+® . Hence, demand in period 2 depends on the winner of
period 1 tournament in the way described by Equation (6). More speci¯cally, demand in period
2 is given by

Di2 = °
®K2

2 + ®
+ ±

2
41 ¡

Ã
¯

W1;i ¡W1;j +¢K1

W1;i +W1;j +K1 ¡ ®¢K1
2

!2
3
5 + º

µ
W1;i +W1;j +K1 ¡ ®¢K1

2

¶

when team i has won, and by

Dj2 = °
®K2

2 + ®
+ ±

2
41 ¡

Ã
¯

W1;i ¡W1;j ¡ ¢K1

W1;i +W1;j +K1 ¡ ®¢K1
2

!2
3
5 + º

µ
W1;i +W1;j +K1 ¡ ®¢K1

2

¶

when team j has won. Demand in the ¯rst period, instead, is computed according to Equation
(12). These observation imply the league chooses K1, K2, and ¢K1 to maximize

D = D1 + p1;iDi2 + p1;jD
j
2

or equivalently,

D = ° ®¢K1
2 + ±

·
1 ¡

³
¯W1;i¡W1;j
W1;i+W1;j

´2
¸
+ º (W1;i +W1;j) + ° ®(K¡K1)

2+®

+º
¡
W1;i +W1;j +K1 ¡ ®¢K1

2

¢
+ ±

8
>><
>>:
1 ¡ ¯2

2
4(W1;i¡W1;j)2+(¢K1)2+2¯

(W1;i¡W1;j)2
W1;i+W1;j

¢K1

3
5

(W1;i+W1;j+K1¡®¢K12 )2

9
>>=
>>;
(13)
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The league prefers to concentrate incentives provided by the teams in the ¯rst period since
they increase total wealth in the next period. Also, for any given prize structure, the larger the
amount distributed in the ¯rst period the smaller the di®erence in relative wealth between the
two teams in the second period; hence the more balanced the competition. For these two reasons,
the league distributes all the prize money in the ¯rst period. From Equation (13), we have the
following result about revenue sharing.

Proposition 6 The equilibrium when there are two-period tv contracts has the following prop-
erties.
(i) If 1 ¸ ® > 0 and ° > º there exists some ± such that for any ± < ± minimal revenue sharing
is optimal, that is, ¢K1 = 2

2+®K1; in this case, K2 = 0 and K1 = K.
(ii) If ® = 1 and ° > º, then ¢K1 = 2K=3, K1 = K, and K2 = 0.
(iii) If ® = 0 or ° < º, then ¢K1 = 0, K1 = K, and K2 = 0.

Proof: see Appendix.
As already mentioned, the league prefers to concentrate teams' e®orts in period 1 for two

reasons: ¯rst, they generate an increase in total wealth in period 2; second, for a given ¢K1 the
larger K1 the smaller the di®erence in relative wealth between the two teams in period 2 and the
more balanced the competition.

When deciding how to allocate money between teams and between periods, the league has
to take into account two e®ects. First, the sensitivity of the probability of winning to e®ort
(measured by ®) relative to its sensitivity to wealth (measured by ¯). In particular, a large ®
implies large incentives for players. Second, the sensitivity of demand to e®ort (measured by °)
relative to the sensitivity of demand to wealth (measured by º).

When ® is strictly positive, the choice of ¢K1 for a givenK1 depends on the values of ° and º.
The league faces a trade-o® between demand in the two periods. If ¢K1 is large, teams produce
a high e®ort level in period 1 and generate a high demand in that period. In this case, teams'
total pro¯ts are small since they face a high cost for such an e®ort level. Therefore, total wealth
in period 2 is small and so is the demand induced by period 2 total wealth. Given this trade-o®
between demand in the ¯rst period and demand in the second, the level of revenue sharing chosen
by the league depends of the sensitivity of demand to quality (º) relative to the sensitivity of
demand to e®ort (°). When º > °, the league's objective is equivalent to maximizing total
wealth in period 2. This is achieved by full revenue sharing in period 1 since it implies that total
pro¯ts in that period are maximized, and so is total wealth in period 2. Conversely, when º < °
the league's objective is equivalent to maximizing total e®ort in period 1. This is achieved by
setting ¢K1 positive.
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Multi period contracts when the league maximizes teams' pro¯ts

Matters are much simpler when the league maximizes the teams joint pro¯ts. As the following
proposition shows, then full revenue sharing is still optimal and multi-period contracts make no
di®erence

Proposition 7 If the league maximizes teams' joint pro¯ts. Then, K1 = K, K2 = 0 and
¢K1 = 0.

Proof: see Appendix.

4.2 Teams Have Multiple Sources of Revenues

In this section, we assume that teams have revenues that are not submitted to possible revenue
sharing by the league. For example, these revenues may come from local TV deal or from
merchandising. However, we assume that these revenues are dependent of past performances,
the idea being that the better a team is performing, the more attractive it is, hence the higher its
revenue. Formally, we assume that the winner of the competition in period t receives Kt;w + A
with A strictly positive and independent of the degree of revenue sharing chosen by the league.
As before, the loser receives Kt;l. Under such an assumption we have the following results about
revenue sharing in period 2.

Proposition 8 Let

A¤ =
2±

®(1 ¡ °)

·
1 ¡ ¯2 (W2;i ¡W2;j)2

(W2;i +W2;j)2

¸
+

2º
®(1 ¡ °)(W2;i +W2;j)

If A > A¤ then ¢K2 = 0, e2;m = ®
4A (m = i; j) and

K2 =
°®A
2

+ ±
·
1 ¡ ¯2 (W2;i ¡W2;j)2

(W2;i +W2;j)2

¸
+ º(W2;i +W2;j) (14)

If A · A¤ then ¢K2 = 2K2¡®A
2+® and e2;i = e2;j = ®

4 (¢K2 +A) and

K2 =
°®A

2 + ®(1 ¡ °) +
±(2 + ®)

2 + ®(1 ¡ °)

·
1 ¡ ¯2 (W2;i ¡W2;j)2

(W2;i +W2;j)2

¸
+
º(2 + ®)

2 + ®(1 ¡ °)(W2;i +W2;j) (15)

Proof: See Appendix.
The additional source of revenue A a®ects the e®ort level produced by teams in two ways.

The ¯rst e®ect is a direct one. If the amount earned by the winning team increases, it provides

18



incentives for teams to increase their e®ort level. This generates an indirect e®ect: the no loss
constraint implies that the league increases the amount awarded to the loser, hence increasing
the level of revenue sharing. When A is not too large (i.e., smaller than A¤), the aggregate e®ect
is an increase of the equilibrium e®ort level: For a given K2, the e®ort level is increasing in A.
The consequence is an increase of the demand and therefore an increase of K2.

When the additional source of revenue is large (i.e., larger than A¤), the league chooses full
revenue sharing and teams' e®ort level is only determined by A. Furthermore, the losing team
makes a loss.

In period 1, the problem teams face is the same as in period 2. Therefore,

e1;i = e1;j =
®(¢K1 +A)

4
(16)

From Proposition 8 and equation (16), we deduce the following result.

Proposition 9 If ° 2+®(1¡°)(2+®) > º there exists ¹A > 0 and ± such that for any A < ¹A and ± < ±
then ¢K1 = 2

2+®K1.

This result suggests that in a league in which revenues from TV deals represent a fraction not
too large of team revenues, full revenue sharing is not damaging to e®ort since other source of
revenues provide incentives for teams to produce e®ort. Conversely, in a league in which revenues
from TV represent a large fraction of teams' revenues, then the league chooses a performance-
based prize allocation.

4.3 Unobservable E®ort

So far, we have implicitly assumed that e®ort produced by team players was observable, hence
teams could o®er e®ort-based compensation to players. In this section, we relax this assumption.
A direct consequence is that teams can only o®er performance-based contracts to players. Let
¹t;i(w) and ¹t;i(l) the fraction of the gain paid to players when team i earns Kt;w and Kt;l,
respectively. The objective of team i is to maximize

¦t;i = pt;i (1 ¡ ¹t;i(w))Kt;w + (1 ¡ pt;i) (1 ¡ ¹t;i(l))Kt;l

subject to ¹t;i(w) ¸ 0, ¹t;i(l) ¸ 0, and

e¤t;i 2 argmax pt;i¹t;i(w)Kt;w + (1 ¡ pt;i)¹t;i(l)Kt;l (17)

This last equation represents the incentive compatibility constraint for the players.
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Let ¢Kt;i = ¹t;i(w)Kt;w ¡ ¹t;i(l)Kt;l. Then, proceeding as in the proof of Proposition 1, one
shows that the equilibrium of the e®ort game is such that

e¤t;i = sup
½
0;
®(¢Kt;i)2¢Kt;j
(¢Kt;1 +¢Kt;2)2

¾
(18)

with i 6= j. It follows that if e¤t;i > 0, then

pt;i = ®
¢Kt;i

¢Kt;1 +¢Kt;2
+ ¯

Wt;i
Wt;1 +Wt;2

(19)

From these results, we derive the following proposition about the compensation of players by
teams.

Proposition 10 Assume that ¢Kt > 0. There exists an equilibrium such that
(i) ¹t;i(l) = 0 (i = 1; 2)
(ii) If Wt;i > Wt;j, then 0 < ¹t;i(w) < ¹t;j(w) and pt;i > pt;j.
(iii) ¹t;i (i = 1; 2) is an increasing function of Kt;w.

We deduce that
e¤t;i =

®¹t;i(w)2¹t;j(w)Kt;w
(¹t;1(w) + ¹t;2(w))2

and
pt;i = ®

¹t;i(w)
¹t;1(w) + ¹t;2(w)

+ ¯
Wt;i

Wt;1 +Wt;2
The proposition says that players are only compensated in case of success and the incentives

are more important for the team with the smaller wealth. It follows that players from the
wealthier team exert a lower e®ort. However, in equilibrium, the wealthier team has a higher
probability of winning the competition. A direct consequence of (iii) is that the level of revenue
sharing in°uences the e®ort level produced by teams in two ways: directly through the di®erence
of gains between the winner and the loser, and indirectly through the compensation scheme of
the players (¹t;i(w)).

We turn now to the problem of the league. A main di®erences with the case of observable
e®ort is that teams never make losses. Hence, in period 1, the league does not have to take into
account the possibility that a team will have a negative wealth if it loses in period 1. From the
previous proposition we derive the following results about the level of revenue sharing in period
2.

Proposition 11 Assume that the league maximizes the demand for sport. Then:
(i) ¢K2 = K2.
(ii) There exists ® < 1 such that if ® > ® and °(6 ¡ °) > 36º then ¢K1 > 0.
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The proposition states that, qualitatively, the results obtained in the case of observable e®ort
still hold if this assumption is relaxed. That is, the league minimizes the level of revenue sharing
in the second period and if the in°uence of e®ort on demand is large enough with respect to the
in°uence of total wealth, then the league does not choose full revenue sharing in the ¯rst period.

5 Conclusions

We presented a theoretical model of revenue sharing in sport leagues. Our main results derive
explicit conditions under which full revenue sharing is optimal. These can be summarized by
looking at the relative importance of (current) incentives to win relative to (future) competitive
balance. Higher revenues sharing increases future demand through a better competitive balance,
but decreases current demand through a lower e®ort to win from teams. If the league maximizes
the demand for sport, then a performance-based reward scheme (as used by European top soccer
leagues for national TV deals) may be optimal. Conversely, if the league act as a cartel and
maximizes joint pro¯ts, then full revenue sharing (as used by US team sport leagues for national
TV deals) is always optimal.

Our results contribute to the moral-hazard and contest design literatures. In a moral hazard
context, our model is an example of a repeated agency problem between a principal and multiple
agents in which the di®erence in output produced by the agents is detrimental to the principal. In
this setting, the principal faces a trade-o® between `output balance' among agents and incentives
to produce large quantities. Our results show that the principal may have incentive to `invest'
in output balance; that is, lower the output today in order to get a lower di®erence in outputs
tomorrow.

For the contest design literature, our model describes a situation in which a winner-takes-all
prize allocation may be optimal for the one-contest case but not optimal in the case of repeated
contests. Multiple-prize allocations may be optimal for repeated contests if the outcome of the
contest at time t in°uences bids (or e®ort) in the following contests.
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A Appendix

A.1 Proofs

Proof of Proposition 1.

Firm i expected pro¯ts are:

¦t;i (et;i; et;j) =

8
<
:

³
® et;i
et;i+et;j

+ ¯ Wt;i
Wt;i+Wt;j

´
¢Kt +Kt;l ¡ et;i if et;i + et;j > 0

Wt;i
Wt;i+Wt;j

¢Kt +Kt;l if et;i + et;j = 0

Assume that ¢Kt > 0. Notice that

¦t;i (0; 0) =
Wt;i

Wt;i +Wt;j
¢Kt +Kt;l

and
¦t;i (e; 0) =

µ
®+ ¯

Wt;i
Wt;i +Wt;j

¶
¢Kt +Kt;l ¡ e;

hence

¦t;i (e; 0) ¡ ¦t;i (0; 0) =
µ
®+ (¯ ¡ 1)

Wt;i
Wt;i +Wt;j

¶
¢Kt ¡ e

=
µ
®¡ ® Wt;i

Wt;i +Wt;j

¶
¢Kt ¡ e

= ®
Wt;j

Wt;i +Wt;j
¢Kt ¡ e:

Therefore, et;i = 0 is not a best reply to et;j = 0; this means aggregate e®ort equal to zero cannot
be an equilibrium. Setting the derivative of ¦t;i with respect to e®ort equal to zero one gets:

et;j
(et;i + et;j)

2®¢Kt ¡ 1 = 0

Therefore, given the constraint et;i · Kt;l, team i's best response is:

et;i = max
n
0;min

³
Kt;l;

p
®et;j¢Kt ¡ et;j

´o

and similarly for team j. Therefore, the Nash equilibrium of the game is

et;i = et;j = min
³
Kt;l;

®
4
¢Kt

´
:

Assume ¢K2 = 0. In this case, e®ort is costly and does not increase expected revenues.
Hence, they choose et;i = et;j = 0.

2
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Proof of Proposition 2.

The demand for the sport in period 2 is given by:

Di2 =
°®
2
¢K2 + ±

"
1 ¡

µ
¯
W2;i ¡W2;j

W2;i +W2;j

¶2
#
+ º (W2;i +W2;j) :

Therefore, given any K2 (the amount available for prizes to the winner and the loser) the demand
for the sport is maximized by choosing ¢K2 as large as possible. The only limit to the size of
¢K2 is the constraint that teams make no losses. This constraint implies

K2;l = e2;i =
® (K2;w ¡K2;l)

4

or
®
2
(K2;w ¡K2;l) = 2K2;l:

This can be rewritten as

®
2
(K2;w ¡K2;l) = K2;l +K2;w +K2;l ¡K2;w;

since K2;w +K2;l = K2, we can write
³®
2
+ 1

´
(K2;w ¡K2;l) = K2

or
¢K2 =

1
1 + ®

2
K2

yielding the result.
2

Proof of Proposition 4.

From Equations (8), (9), (12), and (11), we deduce that Equation (10) can be rewritten as

D =

° ®¢K1
2 + ±

·
1 ¡

³
¯W1;i¡W1;j
W1;i+W1;j

´2
¸
+ 4+®(2¡°)

2+®(1¡°)º (W1;i +W1;j)

+ 2+®
2+®(1¡°)º

¡
K1 ¡ ®¢K1

2

¢
+ 2+®

2+®(1¡°)±

¡ 2+®
2+®(1¡°)±¯

2

2
4(W1;i¡W1;j)2+(¢K1)2+2¯

(W1;i¡W1;j)2
W1;i+W1;j

¢K1

3
5

(W1;i+W1;j+K1¡®¢K12 )2
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Let

H =
¢K1

³
(W1;1 +W1;2) +

®¯(W1;1¡W1;2)2

2(W1;1+W1;2)

´
+ (¯ + ®=2)(W1;1 ¡W1;2)2

(W1;1 +W1;2 +K1 ¡ ®¢K1=2)3

then
@D
@¢K1

= ¡ 2¯2±(2 + ®)
2 + ®(1 ¡ °)H +

®
2

µ
° ¡ º(2 + ®)

2 + ®(1 ¡ °)

¶

Note that H > 0. Therefore, if
³
° 2+®(1¡°)(2+®) ¡ º

´
< 0 then @D

@K1
is always negative and the optimal

¢K1 is zero. If
³
° 2+®(1¡°)(2+®) ¡ º

´
> 0 and ± is small enough, then @D

@K1
is always positive and the

optimal ¢K1 is the largest feasible value assuming teams make no current losses. In the proof
of Proposition 2 this value was shown to be ®

2+®K1. Finally, since @D
@K1

is continuous in ±, there
are values such that ¢K1 is given by the solution(s) to @D

@K1
= 0.

2

Proof of Proposition 5.

Demand for the sport in period 2 is given by

D2 = ±

"
1 ¡ ¯2 (W2;i ¡W2;j)

2

(W2;i +W2;j)
2

#
+ º (W2;i +W2;j) (20)

and this equals the payment the league receives from the broadcasters; that is D2 = K2. We
can now use this equation to compute the actual aggregate pro¯ts of the two teams in period 2
depending on who won the outcome of period 1 tournament. Let ¦i2 and ¦j2 indicate pro¯ts if
team i won or lost respectively; then:

¦i2 = ±

"
1 ¡ ¯2 (W1;i ¡W1;j +¢K1)

2

¡
W1;i +W1;j +K1 ¡ ®

2¢K1
¢2

#
+ º

³
W1;i +W1;j +K1 ¡ ®

2
¢K1

´

¦j2 = ±

"
1 ¡ ¯2 (W1;i ¡W1;j ¡ ¢K1)

2

¡
W1;i +W1;j +K1 ¡ ®

2¢K1
¢2

#
+ º

³
W1;i +W1;j +K1 ¡ ®

2
¢K1

´

Teams aggregate pro¯ts in period 1; de¯ned ¦1, are given by:

¦1 = ¦1;i +¦1;j = K1 ¡ ®
2
¢K1:

Therefore, we can compute the objective function of the league as follows:

¦ = K1 ¡ ®
2
¢K1 + p1;1¦i2 + (1 ¡ p1;1)¦i2
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which, after the appropriate substitutions, becomes:

¦ =
K1 ¡ ®

2¢K1 + º
¡
W1;i +W1;j +K1 ¡ ®

2¢K1
¢

±

(
1 ¡ ¯2

(W1;i¡W1;j)2+(¢K1)2+2¯
µ
W1;i¡W1;j
W1;i+W1;j

¶
(W1;i¡W1;j)¢K1

(W1;i+W1;j+K1¡®2¢K1)2

)

Di®erentiating this expression with respect to ¢K1 we have:

@¦
@¢K1

=
¡®2 (1 ¡ º) ¡ ±¯2

2
42¢K1+2¯

(W1;i¡W1;j)2
W1;i+W1;j

3
5(W1;i+W1;j+K1)

(W1;i+W1;j+K1¡®¢K12 )3

¡±¯2
®(W1;i¡W1;j)2+®¯

(W1;i¡W1;j)2
W1;i+W1;j

¢K1

(W1;i+W1;j+K1¡®¢K12 )3

This expression is negative for any value of ¢K1, hence ¢K1 = 0 at the optimum.
2

Proof of Proposition 6.

The league's objective is to maximize

D =

° ®¢K1
2 ±

·
1 ¡

³
¯W1;i¡W1;j
W1;i+W1;j

´2
¸
+ º (W1;i +W1;j) + ° ®(K¡K1)

2+® + º
¡
W1;i +W1;j +K1 ¡ ®¢K1

2

¢

+±

8
>><
>>:
1 ¡ ¯2

2
4(W1;i¡W1;j)2+(¢K1)2+2¯

(W1;i¡W1;j)2
W1;i+W1;j

¢K1

3
5

(W1;i+W1;j+K1¡®¢K12 )2

9
>>=
>>;

(21)
Di®erentiating this expression with respect to ¢K1 one obtains:

@D
@¢K1

=

®
2 (° ¡ º)

¡±¯2

2
42¢K1+2¯

(W1;i¡W1;j)2
W1;i+W1;j

3
5(W1;i+W1;j+K1)+®(W1;i¡W1;j)2

µ
1+¯ ¢K1

W1;i+W1;j

¶

(W1;i+W1;j+K1¡®¢K12 )3
(22)

Proof of (iii): let ® = 0. In this case, @D
@¢K1

is negative for any value of ¢K1 since the second
term in the equation above is always negative. Hence, at the optimum we must have ¢K1 = 0.
Then D reduces to

D = ±

"
1 ¡

µ
W1;i ¡W1;j

W1;i +W1;j

¶2
#
+º (2(W1;i +W1;j) + (K ¡K2))+±

"
1 ¡ (W1;i ¡W1;j)

2

(W1;i +W1;j + (K ¡K2))
2

#
:
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This can be di®erentiated with respect to K2 obtaining

@D
@K2

= ¡º ¡ 2±
(W1;i ¡W1;j)

2

(W1;i +W1;j + (K ¡K2))
3 ;

this is always negative, hence K1 = K, and K2 = 0.
Proof of (ii): let ® = 1 and ° > º. In this case, @D

@¢K1
is positive for any value of ¢K1 since

the second term of Equation (22) is zero because ¯ = 1 ¡ ®. Therefore, ¢K1 is as large as
feasible (revenue sharing is minimal) and, following Proposition 2, we have

¢K1 =
2K1

2 + ®
=

2
3
K1:

Substituting this in Equation (21) we get

D =
°
3
K1 + 2± + º (W1;i +W1;j) + °

(K ¡K1)
3

+ º
µ
W1;i +W1;j +

K1

3

¶

which is strictly increasing in K1. Therefore, K2 = 0 and K1 = K.
Proof of (i): let 1 > ® > 0 and ° > º. Inspecting Equation (22) we note that @D

@¢K1
is

continuous in ±. Therefore, there exists a ± small enough such that @D
@¢K1

is positive for any value
of ¢K1 (say ± = 0 ). As noted above, this implies ¢K1 = 2

2+®K1. Substituting this in Equation
(21) we get

D =

° ®2+®K1 + ±
·
1 ¡

³
¯W1;i¡W1;j
W1;i+W1;j

´2
¸
+ º (W1;i +W1;j) + ° ®(K¡K1)

2+® + º
¡
W1;i +W1;j +K1

2
2+®

¢

+±

(
1 ¡ ¯2

·
(W1;i¡W1;j)2+( 2

2+®K1)2+2 2
2+®K1(W1;i¡W1;j)¯

µ
W1;i¡W1;j
W1;i+W1;j

¶¸

(W1;i+W1;j+K1
2

2+®)
2

)

which can be di®erentiated with respect to K1 to obtain

@D
@K1

= º
®

2 + ®
¡ 2

2
2 + ®

±¯2
2

2+®K1 (W1;i +W1;j) ¡ 2
2+®K1¯

(W1;i¡W1;j)2

W1;i+W1;j
¡ ® (W1;i ¡W1;j)

2

¡
W1;i +W1;j +K1

2
2+®

¢3 :

This is continuous in ± and therefore there exists some small ± such that @D@K1
is positive for any

value of K1. Hence K2 = 0 and K1 = K, concluding the proof.
2

Proof of Proposition 7.

Given that et;1 = et;2 = ®¢Kt=4, the league maximizes

¦ = 2(° ¡ º ¡ 1)e1;1 + ±
³
®
2 + ¯ W1;1

W1;i+W1;j

´ h
1 ¡ ¯2 (W1;i¡W1;j+¢K1)2

(W1;i+W1;j+K1¡2e1;1)2
i

+±
³
®
2 + ¯ W1;2

W1;i+W1;j

´ h
1 ¡ ¯2 (W1;i¡W1;j¡¢K1)2

(W1;i+W1;j+K1¡2e1;1)2
i
+ 2(° ¡ 1)e2;1 + ºK1

(23)
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subject to K = K1 +K2, ¢Kt · Kt;l (t = 1; 2).
It is straightforward that ¦ is decreasing in the e®ort in period 2. Hence the league sets

¢K2 = 0. Now,

@¦
@¢K1

= ®
2 (° ¡ º ¡ 1) ¡ ¯2f®2 (®(W1;i¡W1;j)2+2¢K1(W1;i+W1;j+K1))g

(W1;i+W1;j+K1¡2e1;1)3

¡
¯2¢K1
W1;i+W1;j

(K1(W1;i+W1;j)+(W1;i+W1;j)2+®2 (W1;i¡W1;j)2)
(W1;i+W1;j+K1¡2e1;1)3

¡
¯2(W1;i¡W1;j)2

µ
K1

W1;i+W1;j
+1+®2

¶

(W1;i+W1;j+K1¡2e1;1)3 < 0

(24)

Hence, ¢K1 = 0. Furthermore, it is straightforward that at ¢K1 = 0, @¦=@K1 > 0 while
@¦=@K2 = 0. Hence, we have the desired result.

2

Proof of Proposition 8.

Proceeding as in the proof of Proposition 1, one shows that

e2;i = e2;j =
®(¢K2 +A)

4
:

Then, proceeding as in the proof of Proposition 2, we obtain that the league chooses

K2;w =Max
½
4K2 + ®(K2 ¡A)

2(2 + ®)
;
K2

2

¾

which implies

¢K2 =Max
½
2K2 ¡ ®A

2 + ®
; 0

¾
:

If ¢K2 > 0, then K2 is given by (14) and K2 > ®
2A is equivalent to A < A¤. If ¢K2 = 0 then

K2 = ®
2A

¤, then K2 < ®
2A is equivalent to A > A¤.

2

Proof of Proposition 9.

Let
A¤1(A) =

2±
®(1¡°)

h
1 ¡ ¯2 (W1;i¡W1;j+¢K1+A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+ 2º
®(1¡°)(W1;i +W1;j +K1(A) +A¡ ®(¢K1 +A)=2)

A¤2(A) =
2±

®(1¡°)

h
1 ¡ ¯2 (W1;i¡W1;j¡¢K1¡A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+ 2º
®(1¡°)(W1;i +W1;j +K1(A) +A¡ ®(¢K1 +A)=2)
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with

K1(A) =
°®A

2 + ®(1 ¡ °) +
±(2 + ®)

2 + ®(1 ¡ °)

·
1 ¡ ¯2 (W1;i ¡W1;j)2

(W1;i +W1;j)2

¸
+
º(2 + ®)

2 + ®(1 ¡ °)(W1;i+W1;j) (25)

De¯ne the functions F1(A) and F2(A) as follows

F1(A) =

(
F1;s(A) if A · A¤1
F1;l(A) if A > A¤1

F2(A) =

(
F2;s(A) if A · A¤2
F2;l(A) if A > A¤2

where
F1;l(A) = °®A

2 + ±
h
1 ¡ ¯2 (W1;i¡W1;j+¢K1+A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+º(W2;i +W2;j +K1(A) +A¡ ®(¢K1 +A)=2)

F1;s(A) = °®A
2+®(1¡°) +

±(2+®)
2+®(1¡°)

h
1 ¡ ¯2 (W1;i¡W1;j+¢K1+A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+ º(2+®)
2+®(1¡°)(W1;i +W1;j +K1(A) +A¡ ®(¢K1 +A)=2)

F2;l(A) = °®A
2 + ±

h
1 ¡ ¯2 (W1;i¡W1;j¡¢K1¡A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+º(W2;i +W2;j +K1(A) +A¡ ®(¢K1 +A)=2)

F2;s(A) = °®A
2+®(1¡°) +

±(2+®)
2+®(1¡°)

h
1 ¡ ¯2 (W1;i¡W1;j¡¢K1¡A)2

(W1;i+W1;j+K1(A)+A¡®(¢K1+A)=2)2

i

+ º(2+®)
2+®(1¡°)(W1;i +W1;j +K1(A) +A¡ ®(¢K1 +A)=2)

Let
D = D1 + p1;1F1;s(A) + (1 ¡ p1;1)F2;s(A)

where D1 and p1;i are given by (12) and (11), respectively. Now, it is straightforward that there
exists ¹A2 such that if A < ¹A2, then F1(A) = F1;s(A) and F2(A) = F2;s(A). Therefore, if A < ¹A2,
then proceeding as in the proof of Proposition 4, one shows that if ° 2+®(1¡°)(2+®) > º, there exists ±
such that @D

@¢K1
> 0. Let

¹A1 =
2±

®(1 ¡ °)

·
1 ¡ ¯2 (W1;i ¡W1;j)2

(W1;i +W1;j)2

¸
+

2º
®(1 ¡ °)(W1;i +W1;j)

Proceeding as in the proof of Proposition 8, one shows that if A < ¹A1, then

¢K1 =
2K1(A) ¡ ®A

2 + ®
(26)

Then, then assumption of perfect competition in the broadcasting industry in period 1 (i.e.,
D1 = K1) implies that K1 is given by (25). Hence, taking ¹A =Min( ¹A1; ¹A2), we have the desired
result.

2
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Proof of Proposition 10.

Proof of part (i). From equations (18) and (19), we derive that

@¼t;i
@¹t;i(w)

=
®¢Kt;jKt;w

(¢Kt;1 +¢Kt;2)2
[(1 ¡ ¹t;i(w))Kt;w ¡ (1 ¡ ¹t;i(l))Kt;l] ¡ pt;iKt;w (27)

@¼t;i
@¹t;i(l)

= ¡ ®¢Kt;jKt;l
(¢Kt;1 +¢Kt;2)2

[(1 ¡ ¹t;i(w))Kt;w ¡ (1 ¡ ¹t;i(l))Kt;l] + (pt;i ¡ 1)Kt;l (28)

Assume that there exists an equilibrium with ¹t;i(w) > 0. This implies that

(1 ¡ ¹t;i(w))Kt;w ¡ (1 ¡ ¹t;i(l))Kt;l > 0

In turn, this implies that @¼=@¹t;i(l) < 0 in equilibrium. Hence, ¹t;i(l) = 0. Now, we need to
show that the system of equations

®¹t;j(w)
(¹t;1(w) + ¹t;2(w))2

[(1 ¡ ¹t;i(w))Kt;w ¡Kt;l] ¡ pt;iKt;w = 0 i = 1; 2 i 6= j (29)

has a solution in (0; 1)£ (0; 1) which satis¯es the second order conditions of pro¯t maximization.
From equation (27), it is straightforward that if ¹t;i(l) = 0 then @2¼t;i=(@¹t;i(w))2 < 0. Now,

when ¹t;1(w) and ¹t;2(w) converge to 0 at the same speed (so that there exists H > 0 such that
H < ¹t;i(w)=¹t;j(w) (i = 1; 2 and i 6= j) as when ¹t;1(w) and ¹t;2(w) converge to 0), then the LHS
of (29) goes to in¯nity. Furthermore, for any given ¹t;i(w) > 0, ®¹t;j(w)=(¹t;1(w) + ¹t;2(w))2

converges to 0 as ¹t;j(w) converges to zero. Hence, we deduce that by continuity, there exist
¹t;1(w) and ¹t;2(w) such that the system of equations (29) has a solution in (0; 1) £ (0; 1).
Proof of part (ii): We use a contradiction argument. Assume that Wt;i > Wt;j and ¹t;i(w) ¸
¹t;j(w). This implies that pt;i > pt;j. From (29), it follows that

¹t;j(w)
¹t;i(w)

>
(1 ¡ ¹t;j(w))Kt;w ¡Kt;l
(1 ¡ ¹t;i(w))Kt;w ¡Kt;l

The LHS of this inequality is smaller than 1 while the RHS is larger than 1. Hence, the inequality
does not hold and if Wt;i > Wt;j then ¹t;i(w) < ¹t;j(w). Now, ¹t;i(w) > ¹t;j(w) implies ¼t;i > ¼t;j
follows directly from (29).
Proof of part (iii): Let Rt = Kt=Kt;w. From (29), we deduce that

@¹t;i(w)
@Rt

= ¡ [¹t;j(w)(2 ¡Rt)(¹t;1(w) + ¹t;2(w))]¡1 (30)

Hence, ¹t;1(w) and ¹t;2(w) are increasing functions of Kt;w.
2
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Proof of Proposition 11.

Proof of (i): From Proposition 10, we know that in each period the e®ort level is increasing in
Kw. Hence, we only need to show that (p2;1 ¡ p2;2)2 is not increasing in ¢K2.

p2;1 ¡ p2;2 = ®
¹2;1(w) ¡ ¹2;2(w)
¹2;1(w) + ¹2;2(w)

+ ¯
W2;i ¡W2;j

W2;i +W2;j

Let Rt = Kt=Kt;w.

d(p2;1 ¡ p2;2)
dR2

=
2(¹2;2(w)

d¹2;1(w)
dR2

¡ ¹2;1(w)d¹2;2(w)dR2
)

(¹2;1(w) + ¹2;2(w))2
(31)

From equation (30), we derive that d(p2;1 ¡ p2;2)=dR2 = 0. It follows that Di2 is increasing in
¢K2 and so the leagues sets ¢K2 = K2.

Proof of (ii). Assume that ® = 1. In such a case,

¹2;1(w) = ¹2;2(w) =
2K2;w ¡K2

3K2;w

and
e2;1 = e2;2 =

2K2;w ¡K1

12
From part (i), we know that K2;w = K2. We deduce that

K2 =
± + º(W2;i +W2;j)

1 ¡ ®°=6 (32)

Now, consider the problem of the league in period 1. Teams face the same problem as in
period 2. Hence,

¹1;1(w) = ¹1;2(w) =
2K1;w ¡K1

3K1;w

Therefore, if team i wins in period 1, then

W2;i = W1;i +
µ
1 ¡ 2K1;w ¡K1

3K1;w

¶
K1;w

while if it looses,
W2;i = W1;i +K1;l

We deduce that, in period 1, the league maximizes

D = (± + º(W1;i +W1;j)(1 +
6

6 ¡ ° ) + (2K1;w ¡K1)(
°
6

¡ 6º
6 ¡ ° )

Hence, if °(6 ¡ °) > 36º then dD=dK1;w > 0. By continuity, we derive that there exists ® such
that if ® > ® dD=dK1;w > 0, ¢K1 > 0.

2
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A.2 Fully Rational Teams

Fully rational teams take into account the impact of their action at time 1 on their wealth in
period 2. Since probabilities of winning in period 2 and the revenue of the league in period 2
depend on teams' wealth, it follows that they take into the in°uence of their action in period
1 on their probability of winning in period 2 and on K2. In period 2, the problem of the fully
rational team is identical to that of a myopic team.

Formally, in period 1, fully rational team i solves the following problem

Maxe1;ip1;i
£
K1;w + p2;i(i)K¤

2;w(k; i) + (1 ¡ p2;i(i))K¤
2;l(i) ¡ e2;i(i)

¤

+(1 ¡ p1;i)
£
K1;l + p2;i(j)K¤

2;w(j) + (1 ¡ p2;i(j))K¤
2;l(j) ¡ e2;i(j)

¤
¡ e1;i

(33)

with i 6= j. e2;i(m), K¤
2;w(m) and K¤

2;l(m) represent the e®ort produced by team i in period 2,
the amount awarded to the winner in period 2, the amount awarded to the loser in period 2,
respectively, if team m wins in period 1 (m = i; j).

In the corner cases ® = 0 and ® = 1, we are able to derive closed form solution in the e®ort
game played by teams. First, if ® = 0, it is straightforward that teams do not produce any e®ort
. Hence, the problem faced by the league is identical to the case with myopic teams. Therefore,
the league sets ¢K1 = 0. If ® = 1 we have the following result.

Proposition 12 Assume that the league maximize the demand for sport and ® = 1. Then

e1;1 = e1;2 =
(3 ¡ °)¢K1

12

If °(3 ¡ °) ¸ 3º the league sets ¢K1 = 5K1=6. If °(3 ¡ °) < 3º the league sets ¢K1 = 0.

Proof: If ® = 1, then

K¤
2 (1) = K

¤
2(2) =

3
3 ¡ ° (± + º(W1;i +W1;j +K1 ¡ e1;1 ¡ e1;2))

and p2;j(i) = 1=2 (i; j = 1; 2). Proceeding as in the proof of Proposition 1, we obtain that the
equilibrium e®ort produced by teams in period 1 is

e1;i = e1 =
(3 ¡ °)¢K1

2[2(3 ¡ °) + 3º]

The objective of the league in period 1 is to maximize

D = 2
µ
° ¡ 3º

3 ¡ °

¶
e1 +

µ
1 +

3
3 ¡ °

¶
(± + º(W1;i +W1;j))
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Hence, if °(3 ¡ °) < 3º, the league sets ¢K1 so as to minimize the e®ort level produced by
teams, i.e., ¢K1 = 0. Conversely, if °(3 ¡ °) > 3º the leagues sets ¢K1 so as to maximize the
level of e®ort by teams, i.e.,

(3 ¡ °)¢K1

2[2(3 ¡ °) + 3º]
= K1;l

Given that ¢K1 = 2K1;w ¡K1 and K1;l = K1 ¡K1;l, we obtain

K1;w =
5(3 ¡ °) + 6º
6[(3 ¡ °) + º]

We deduce that ¢K1 = 5K1=6. By continuity, it implies that if °(3 ¡ °) > 3º, there exists ®
such that if ® > ®, then ¢K1 > 0.

2
From Proposition 12 we deduce that fully rational teams choose a lower e®ort level than

myopic teams. The reason is that they take into account the in°uence of their e®ort in period 1
on the demand of period 2 through their wealth. It follows that by decreasing their e®ort level,
they increase their future wealth, hence increasing the revenue of the league in period 2 and their
expected gain in that period.
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A.3 Tables

Table 1. Revenue allocation in the LNF (season 1999-2000, in Million FF)

Ranking Fixed Amount Variable Amount Total
1 54.5 45.5 100
2 54.5 40.25 94.75
3 54.5 36.75 91.25
4 54.5 31.5 86
5 54.5 29.75 84.25
6 54.5 28 82.5
7 54.5 24.5 79
8 54.5 21 75.5
9 54.5 19.25 73.75
10 54.5 17.5 72
11 54.5 14 68.5
12 54.5 10.5 65
13 54.5 8.75 63.25
14 54.5 7 61.5
15 54.5 5.25 59.75
16 54.5 2 56.5
17 54.5 2 56.5
18 54.5 2 56.5

Table 2. Ratio of revenues for the season 1999-2000 is some top European soccer leagues.
Source: L'Equipe.

Country Best/Worst
England 2.2
France 1.8

Germany 1.7
Italy 3.4
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