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ABSTRACT 

We develop an algorithm for detecting teacher cheating that combines information on

unexpected test score fluctuations and suspicious patterns of answers for students in a classroom.

Using data from the Chicago Public Schools, we estimate that serious cases of teacher or

administrator cheating on standardized tests occur in a minimum of 4-5 percent of elementary school

classrooms annually. Moreover, the observed frequency of cheating appears to respond strongly to

relatively minor changes in incentives. Our results highlight the fact that incentive systems,

especially those with bright line rules, often induce behavioral distortions such as cheating.

Statistical analysis, however, may provide a means of detecting illicit acts, despite the best attempts

of perpetrators to keep them clandestine.
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I. Introduction 

High-stakes testing has become an increasingly prominent feature of the educational 

landscape.  Every state in the country except for Iowa currently administers state-wide 

assessment tests to students in elementary and secondary school.  Twenty-four states require 

students to pass an exit examination to graduate high school.  Twenty states reward schools on 

the basis of exemplary or improved student performance on standardized exams and 32 states 

sanction schools on the basis of poor student performance on these exams.  In the state of 

California, a policy providing for merit pay bonuses of as much as $25,000 per teacher in schools 

with large test score gains was recently put into place.  Recent federal legislation promises to 

accelerate this trend.  The reauthorization of the Elementary and Secondary Education Act 

(ESEA) requires states to test students in third through eighth grade each year and to judge the 

performance of schools based on student achievement scores.   

Proponents of high-stakes testing argue that requiring students to demonstrate proficiency 

in basic skills provides increased incentives for learning, as well as preventing unqualified 

students from being promoted to higher-level grades where their inadequate preparation may 

interfere with other students’ learning.  By linking teacher salary and employment to student test 

scores, schools are held accountable for their students’ performance.  Opponents of test-based 

accountability, on the other hand, argue that linking incentives to performance on standardized 

tests may unfairly penalize certain students and will lead teachers to substitute away from other 

teaching skills or topics not directly tested on the accountability exam (Holmstrom and Milgrom 

1991).  Studies of districts that have implemented such policies provide mixed evidence, 
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suggesting some improvements in student performance along with indications of increased 

teaching to the test and shifts away from non-tested areas.1  

In this paper, we explore a very different concern regarding high-stakes testing—cheating 

on the part of teachers and administrators.2  As incentives for high test scores 

                                                           
1 See, for example, Deere and Strayer (2001), Grissmer et. al. (2000), Heubert and Hauser (1999), Jacob (2001a, 
2001b), Klein et. al. (2000),Richards and Sheu (1992), Smith and Mickelson (2000), and  Tepper (2001). 
2  Hereafter, we uses the phrase “teacher cheating” to encompass cheating done by either teachers or administrators. 

increase, unscrupulous teachers may be more likely to engage in a range of illicit activities, 

including changing student responses on answer sheets, filling in the blanks when a student fails 

to complete a section, allowing students extra time to complete tests, providing correct answers 

to students, or obtaining copies of an exam illegitimately prior to the test date and teaching 

students using knowledge of the precise exam questions.  While such allegations may seem far-

fetched, documented cases of such cheating have recently been uncovered in California (May 

2000), Massachusetts (Marcus 2000), New York (Loughran and Comiskey  1999), Texas 

(Kolker 1999), and Great Britain (Hofkins 1995, Tysome 1994). 

Although the absolute number of teachers and administrators who have been caught 

cheating to date is very small, there are indications that the prevalence of cheating may be far 

more widespread.  A survey of elementary school teachers in two large school districts asked 

teachers to what extent they believed an array of questionable actions were practiced by teachers 

in their school.  Almost ten percent of the teachers responded that they believed that teachers in 

their school “often” or “frequently” give students answers to test questions.  Six percent of the 

respondents believed that teachers “often” or “frequently” changed answers on a student’s 

answer sheet (Shephard and Doughtery 1991).  In another study, 35 percent of North Carolina 
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teachers in grades 3, 6, 8 and 10 reported having witnessed cheating, including giving extra time 

on tests, changing students’ answers, suggesting answers to students and directly teaching 

sections of the test (Gay 1990).  

Nonetheless, there has been very little previous empirical analysis of teacher cheating.3  

The few studies that do exist involve investigations of specific instances of cheating and 

generally rely on the analysis of erasure patterns and the controlled re-testing of students.4  While 

this earlier research provides convincing evidence of isolated cheating incidents, our paper 

represents the first systematic attempt to (1) identify the overall prevalence of teacher cheating 

empirically and (2) analyze the factors that predict cheating.  To address these questions, we use 

detailed administrative data from the Chicago Public Schools (CPS).  In particular, for the years 

1993-2000, we have the question-by-question answers given by every student in grades 3-7 

taking the Iowa Test of Basic Skills (ITBS).5  This test is administered annually to virtually all 

elementary school students in the CPS.  In addition to the test responses, we also have access to 

                                                           
3  In contrast, there is a well-developed statistics literature for identifying whether one student has copied answers 
from another student (Wollack 1997; Holland 1996; Frary 1993; Bellezza and Bellezza 1989; Fray, Tideman and 
Watts 1977; Angoff 1974).  These methods involve the identification of unusual patterns of agreement in student 
responses and, for the most part, are only effective in identifying the most egregious cases of copying.  Educational 
Testing Services (ETS), the company that administers national tests such as the SAT, LSAT, and GRE, has funded 
much of this research (Cizek 1999).   
4 .  In the mid-eighties, Perlman (1985) investigated suspected cheating in a number of Chicago public schools 
(CPS).  The study included 23 suspect schools— identified on the basis of a high percentage of erasures, unusual 
patterns of score increases, unnecessarily large orders of blank answer sheets for the ITBS and tips to the CPS 
Office of Research—along with 17 comparison schools.   When a second form of the test was administered to the 40 
schools under more controlled conditions, the suspect schools did much worse than the comparison schools.  An 
analysis of several dozen Los Angeles schools where the percentage of erasures and changed answers were 
unusually high revealed evidence of teacher cheating (Aiken 1991).  One of the most highly publicized cheating 
scandals involved Stratfield elementary, an award-winning school in Connecticut.  In 1996, the firm that developed 
and scored the exam found that the rate of erasures at Stratfield was up to five times greater than other schools in the 
same district and that 89 percent of erasures at Stratfield were from an incorrect to a correct response.  Subsequent 
re-testing resulted in significantly lower scores (Lindsay 1996). 
5  We do not, however, have access to the actual test forms that students filled out so we are unable to analyze these 
tests for evidence of suspicious patterns of erasures. 
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each student’s full academic record, including past test scores, the school and room to which a 

student was assigned, special education status, free-lunch eligibility, race, gender, and age. 

Our approach to detecting classroom cheating uses two types of indicators: unexpected 

test score fluctuations and unusual patterns of answers for students within a classroom.  Teacher 

cheating increases the likelihood that students in a classroom will experience large, unexpected 

increases in test scores one year, followed by very small test score gains (or even declines) the 

following year.  Teacher cheating, especially if done in an unsophisticated manner, is also likely 

to leave tell-tale signs in the form of blocks of identical answers, unusual patterns of correlations 

across student answers within the classroom, or unusual response patterns within a student’s 

exam (e.g., a student who answers a number of very difficult questions correctly while missing 

many simple questions).   

Empirically, however, not every classroom with test score fluctuations and suspicious 

answer strings is cheating.  Sometimes such patterns arise by chance.  To identify the number of 

cheating classrooms, we would like to compare the observed distribution of test score 

fluctuations and suspicious answer strings to a counterfactual in which no cheating occurs.  

Because we do not have the luxury of observing this counterfactual, we must instead make 

assumptions about what the patterns would look like absent cheating.  Our identification strategy 

hinges on three key assumptions: (1) cheating increases the likelihood a class will have large test 

score fluctuations and suspicious answer strings, (2) if cheating classrooms had not cheated, their 

distribution of test score fluctuations and answer strings would be identical to non-cheating 

classrooms, and (3) the same pattern of correlation between test score fluctuations and suspicious 

answers observed for non-cheating classrooms in other parts of the distribution also holds in the 
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upper tail of the distribution.  If these assumptions hold, then we can use part of the observed 

distribution of outcomes that is unlikely to contain many cheaters (e.g. the 50th-75th percentile of 

suspicious answer strings) to determine the natural correlation between test score fluctuations 

and suspicious answer strings in non-cheating classrooms.  That allows us to predict the patterns 

we would expect to observe in the tail of the distribution if no cheating occurred.  The gap 

between the predicted and observed frequency of classrooms that are extreme on both the test 

score fluctuation and suspicious answer string measures provides our estimate of cheating.  

Because this identification strategy is necessarily indirect, we devote a great deal of space in the 

paper to presenting a wide variety of tests attempting to confirm the validity of our approach, the 

sensitivity of the results to alternative assumptions, and the plausibility of our findings.  

Figure 1 provides a simple visual means of demonstrating the empirical approach taken.  

The horizontal axis in the figure ranks classrooms according to how suspicious their answer 

strings are according to our measures.6  The vertical axis is the fraction of the classrooms that 

have unusually large test score increases one year followed by especially small gains the next 

year.  The graph combines all classrooms and all subjects in our data.7  Consistent with our 

assumptions, for most of the range, there is virtually no relationship between how suspicious a 

classroom’s answer strings are and the likelihood of large test score fluctuations.  As one 

approaches the extreme right tail of the distribution of suspicious answer strings, however, the 

probability of large test score fluctuations rises dramatically, consistent with our conjecture that 

cheating classrooms should be extreme on both of our measures.  To estimate the prevalence of 

                                                           
6  We defer a precise discussion of how we construct our cheating indicators to Section III. 
7 To construct the figure, classes were rank ordered according to their answer strings and divided into 200 equally-
sized segments.   The circles in the figure represent these 200 local means.  The line displayed in the graph is the 
fitted value of a regression with a seventh-order polynomial in a classroom’s rank on the suspicious strings measure.  
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cheating, we will essentially compare the actual area under the curve in the far right tail of Figure 

1 to the predicted area under the curve in the right tail under our maintained assumptions about 

how the two measures co-vary in non-cheating classrooms.  Essentially, we predict that in the 

absence of cheating, the relationship between suspicious answer strings and large test score 

fluctuations would be linear over the entire range, rather than rising sharply in the tail.  That 

sharp rise, we argue, is a consequence of cheating. 

 Empirically, we find evidence of cheating in approximately 200 classrooms per year in 

our data, or four to five percent of the classes in our sample.  This estimate is likely to be a lower 

bound on the true incidence of cheating for two reasons.  First, we focus only on the most 

egregious type of cheating, where teachers systematically altering student test forms.  There are 

other more subtle ways in which teachers can cheat, such as providing extra time to students, that 

our algorithm is unlikely to detect.  Second, even when test forms are altered, our approach is 

only partially successful in detecting illicit behavior.  When we ourselves simulate cheating by 

altering student answer strings and then testing for cheating in the artificially manipulated 

classrooms, many instances of moderate cheating go undetected.  This is particularly true if a 

teacher employs a limited amount of sophistication in the cheating (e.g. avoiding changing large 

blocks of consecutive questions for many students). 

A number of patterns in the results reinforce our confidence that what we measure is 

indeed cheating.  First, cheating on one part of the test (e.g., math) is a strong predictor of 

cheating on other sections of the test (e.g., reading).  Second, cheating is correlated within 

classrooms over time and across classrooms in a particular school.  Third, the students in 

classrooms with large test score gains that are most likely attributable to cheating lose most of 
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their gains the following year.  In contrast, students in classrooms with large test-score gains that 

do not have suspicious answer string patterns retain the majority of their gains the next year, 

despite some loss due to mean reversion.  Fourth, simulation results demonstrate that there is 

nothing mechanical about our identification approach that automatically generates patterns like 

those observed in the data.  When we randomly assign students to classrooms and search for 

cheating in these simulated classes, our methods find little evidence of cheating.  Finally, there is 

no evidence that we are mistaking teachers focusing effort on specific subject areas (e.g. algebra, 

fractions) for cheating.  The classrooms we label as cheaters are no more likely to have their 

most suspicious answers cluster within a single topic than other classes. 

 In addition, the prevalence of cheating appears to respond to relatively minor changes in 

teacher incentives.  The importance of standardized tests in the Chicago Public Schools increased 

substantially with a change in leadership in 1996.  Schools that scored low on reading tests were 

placed on probation and faced the threat of reconstitution (although no elementary school has 

actually been reconstituted).  In addition, students in certain grades were required to meet 

minimum test scores cutoffs in math and reading in order to advance to the next grade.  

Following the introduction of these policies, the prevalence of cheating rose sharply in 

classrooms with large numbers of low-achieving students.  In contrast, classrooms with average 

or higher-achieving students showed no increase in cheating.  Finally, cheating prevalence 

appears to be systematically lower in cases where the costs of cheating are higher (e.g. in mixed-

grade classrooms in which two different exams are administered simultaneously) or the benefits 

of cheating are lower (e.g. in classrooms with more special education or bilingual students who 

take the standardized tests, but whose scores are excluded from official calculations). 
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The remainder of the paper is structured as follows.  Section II presents a simple 

statistical model for detecting teacher cheating.  Section III introduces the particular indicators 

we employ for detecting teacher cheating.  Section IV provides a brief overview of the 

institutional details of the Chicago Public Schools and the data set that we use.  Section V 

presents the basic empirical results on the prevalence of cheating.  Section VI analyzes in greater 

detail the factors that influence which teachers cheat and for which students within the classroom 

the teachers cheat.  Section VII discusses the results and the implications for increasing reliance 

on high-stakes testing.  The appendix provides precise details of the construction of the cheating 

indicators used in the analysis. 

 

II. A Statistical Model of Teacher Cheating 

Assume that we have two measures of a classroom’s outcome on a standardized test.  

SCOREc captures how well class c scores on the test, relative to how the same students have 

done on past standardized tests and will do on future tests.  ANSWERSc measures how unusual 

are the pattern of answers given by students in class c (e.g. are there are unusual blocks of 

answers, or an especially high degree of correlation across student responses).  For simplicity in 

presenting the model, we assume that these two measures take on one of two values:  SCOREc = 

{low,high} and ANSWERSc = {typical,unusual}.  Further suppose there are two types of 

classrooms:  those in which teachers cheat, and those in which they do not.  Define CHEATc 

equal to one if cheating occurs, and zero otherwise.  Our first critical assumption is as follows: 

(A1)  Had cheating classrooms not cheated, their distribution of the two outcome measures, 

SCORE and ANSWERS, would be identical to that of non-cheating classrooms. 
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Second, we assume that although cheating behavior is not directly observed, cheating increases 

the probability that a classroom will have a high average test score and an unusual pattern of 

answer strings: 

(A2) 
)0|Pr()1|Pr(

)0|Pr()1|Pr(

==>==

==>==

cccc

cccc

CHEATunusualANSWERSCHEATunusualANSWERS

CHEAThighSCORECHEAThighSCORE
 

 
We define Snc as the probability that a non-cheating class has a high value of SCORE and 

Anc as the probability that a non-cheating class has an unusual value for ANSWERS.  For 

purposes of exposition, let us assume that for non-cheating classrooms, the two measures 

SCORE and ANSWERS are uncorrelated (although this assumption will be relaxed in the 

empirical work).  It then follows that: 

(A3)    
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),0|Pr(
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 The following Lemma follows directly from assumptions (A1) – (A3): 

Lemma 1: 

. and 

 then ),|Pr(let 

 and  )|Pr(Let 
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Lemma 1 says that the average fraction of high test scores among classes with typical answer 

strings provides an upper bound on the probability that non-cheating classrooms will have high 

test scores.  Similarly, the observed fraction of unusual answer strings among classes with low 
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test score fluctuations is an upper bound on the probability that non-cheating classrooms will 

have unusual answer strings.  The reason these values are upper bounds is because some 

classrooms that have “low” test scores or “typical” answer strings may actually be cheaters that 

our methods fail to detect.  Even if cheaters are low on one dimension (either SCORE or 

ANSWERS), they are still more likely to be elevated on the other measure, leading us to overstate 

the baseline rate of high test scores or unusual answer strings among non-cheaters.  Only if all 

cheating classrooms have high test scores and unusual answer strings will the bounds in Lemma 

1 be strict. 

Denote the total number of classrooms as N and the total number of classrooms that have 

both high test scores and unusual answer strings as Nhu.  Then, a lower bound on the number of 

cheating classrooms is how many extra rooms there are with both high test scores and unusual 

answer strings, relative to the number that would be expected if no classrooms cheated: 

(1) )(ˆ
ncnchucheat ASNNN ××−=  

cheatN̂  represents a lower bound on the number of cheating classrooms for two reasons.  First, 

some cheating classrooms will not be detected by our measures and so will not register as having 

high test scores and unusual strings.  Second, by Lemma 1, the probabilities of high test scores or 

unusual answer strings among non-cheating classes are upper bounds on the true values.  

Calculations like those in equation (1) provide the basis for our estimation of the number 

of cheating classrooms.  In our empirical work, we generalize (1) by allowing for correlation 

between test scores and answer string patterns in non-cheating classrooms, but the logic is 

unchanged. 
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One important caveat to note is that we cannot identify any individual classroom as 

cheating or not cheating with perfect certainty.  The probability that a class with high test score 

fluctuations and unusual answer strings is cheating is given by:  

(2) 
hu

cheat
ccc N

N
unusualANSWERShighSCORECHEAT ==== ),|1Pr(  

As the thresholds for what constitutes a “high” test score or an “unusual” answer strings are 

made more stringent, huN will decline and, consequently, our level of certainty rises that any 

particular classroom exhibiting these characteristics is cheating.   In essence, raising these 

thresholds will decrease the number of false positives in our estimates. 

 

III. Indicators of Teacher Cheating 

We employ two types of measures to detect cheating.  One indicator captures predictable 

fluctuations in test scores that are likely to be associated with cheating.  The other indicator 

summarizes the extent to which answer strings in a classroom appear unusual or suspicious.  In 

this section, we discuss informally the indicators we use to detect cheating, and then provide a 

concrete example that compares data from two actual classrooms: one in which there appears to 

be cheating and one in which there does not.  Readers interested in a more rigorous description 

of how the indicators are constructed are directed to the Appendix. 

In selecting our measures of cheating, we focus on detecting teacher actions that lead to 

large, artificial increases in test scores for a large number of students in the class.8  By focusing 

                                                           
8We have no way of knowing whether the patterns we observe arise because a teacher explicitly alters students’ 
answer sheets, directly provides answers to students during a test, or perhaps makes test materials available to 
students in advance of the exam (for instance, by teaching a reading passage that is on the test).  If we had access to 
the actual exams, it might be possible to distinguish between these scenarios through an analysis of erasure patterns. 
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on the entire classroom, we are unlikely to misclassify cheating by individual students as teacher 

cheating.  Teacher actions such as “teaching to the test” or allowing students extra time to 

complete exams are not likely to be detected by our measures because they are unlikely to 

generate sufficiently unusual response patterns in the answer strings. 

Within this already restrictive definition of teacher cheating, we narrow our focus even 

further by excluding a particular form of cheating that appears to be quite prevalent in the data: 

teachers randomly filling in answers left blank by students.  For example, in some classrooms, 

almost every student will end the test with a long string of “B’s” or an alternating pattern of “B” 

and “C.”   The fact that almost all students in the class coordinate on the same pattern strongly 

suggests that the students themselves did not fill in the blanks, or were under explicit instructions 

by the teacher to do so.  Since there is no penalty for guessing on the test, filling in the blanks 

can only increase student test scores.  While this type of teacher behavior is likely to be viewed 

by many as unethical, we do not make it the focus of our analysis because (1) it is difficult to 

provide definitive evidence of such behavior (a teacher could argue that he or she instructed 

students well in advance of the test to fill in all blanks with the letter “C” as part of good test-

taking strategy), and (2) in our minds it is categorically different than a teacher who 

systematically changes student responses to the correct answer. 

 

Cheating Indicator #1: Unexpected Test Score Fluctuations  

Given that the aim of cheating is to raise test scores, an obvious potential indicator of 

teacher cheating is a classroom that experiences unexpectedly large gains in test scores relative 

to how those same students tested in the previous year.  Since test score gains that result from 
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cheating do not represent real gains in knowledge, there is no reason to expect the gains to be 

sustained on future exams taken by these students (unless, of course, next year’s teachers also 

cheat on behalf of the students).  Thus, large gains due to cheating should be followed by smaller 

than usual test score gains for these students in the following year.  In contrast, if large test score 

gains are due to a talented teacher, the student gains are likely to have a greater permanent 

component, even if some regression to the mean occurs. 

In practice, the choice of a cutoff for what represents an “unexpectedly” large test score 

gain or loss is somewhat arbitrary.  Our admittedly simple approach is to rank each classroom’s 

average test score gains relative to all other classrooms in that same subject, grade, and year,9 

and construct the following statistic: 

(3) 2
1,,

2
,, )_1()_( +−+= tbctbccbt gainrankgainrankSCORE  

where rank_gaincbt is the percentile rank for class c in subject b in year t.  Classes with relatively 

big gains on this year’s test and relatively small gains on next year’s test will have high values of 

SCORE.  Squaring the individual terms gives more relatively more weight to big test score gains 

this year and big test score declines the following year.10  In the empirical analysis, we consider 

three possible cutoffs for what it means to have a “high” value on SCORE, corresponding to the 

80th, 90th, and 95th percentiles among all classrooms in the sample. 

 

                                                           
9 We also experimented with more complicated mechanisms for defining large or small test score gains  (e.g., 
predicting each student’s expected test score gain as a function of past test scores and background characteristics and 
computing a deviation measure for each student which was then aggregated to the classroom level), but because the 
results were similar we elected to use the simpler method.  We have also defined gains and losses using an absolute 
metric (e.g., where gains in excess of 1.5 or 2 grade equivalents are considered unusually large), and obtain 
comparable results. 
10  In the following year the students who were in a particular classroom are typically scattered across multiple 
classrooms.  We base all calculations off of the composition of this year’s class. 
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Cheating Indicator #2:  Suspicious Answer Strings 

Teacher cheating, particularly if accomplished by the teacher actually changing answers 

on test forms, is likely to leave a discernible trail in student answer strings.  The quickest and 

easiest way for a teacher to cheat is to alter the same block of consecutive questions for a 

substantial portion of students in the class.  More sophisticated interventions might involve 

skipping some questions so as to avoid a large block of identical answers, or altering different 

blocks of questions for different students.   

We combine four different measures of how suspicious a classroom’s answer strings are 

in determining whether a classroom may be cheating.  The first measure focuses on the most 

unlikely block of identical answers given by students on consecutive questions.  Using past test 

scores, future test scores, and background characteristics, we predict the likelihood that each 

student will give each possible answer (A, B, C or D) on every question using a multinomial 

logit.  This means that each student’s predicted probability of choosing a particular response is 

identified by the likelihood that other students (in the same year, grade and subject) with similar 

background characteristics will choose that response.  We then search over all combinations of 

students and consecutive questions to find the block of identical answers given by students in a 

classroom least likely to have arisen by chance.11  The more unusual is the most unusual block of 

test responses (adjusting for class size and the number of questions on the exam, both of which 

increase the possible combinations over which we search), the more likely it is that cheating 

                                                           
11  Note that we do not require the answers to be correct.  Indeed, in many classrooms, the most unusual strings 
include some incorrect answers.  Note also that these calculations are done under the assumption that a given 
student’s answers are uncorrelated (conditional on observables) across questions on the exam, and that answers are 
uncorrelated across students.  Of course, this assumption is unlikely to be true.  Since all of our comparisons rely on 
the relative unusualness of the answers given in different classrooms, this simplifying assumption is not problematic 
unless the correlation within and across students varies by classroom. 
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occurred.  Thus, if ten very bright students in a class of thirty give the correct answers to the first 

five questions on the exam (typically the easier questions), the block of identical answers will not 

appear unusual.  In contrast, if all fifteen students in a low-achieving classroom give the same 

correct answers to the last five questions on the exam (typically the harder questions), this would 

appear quite suspect. 

The second measure of suspicious answer strings involves the overall degree of 

correlation in student answers across the test.  When a teacher changes answers on test forms, it 

presumably increases the uniformity of student test forms across students in the class.  This 

measure is meant to capture more general patterns of similarity in student responses that goes 

beyond just identical blocks of answers.  Based on the results of the multinomial logit described 

above, for each question and each student we create a measure of how unexpected the student’s 

response was.  We then combine the information for each student in the classroom to create 

something akin to the within-classroom correlation in student responses.  This measure will be 

high if students in a classroom tend to give the same answers on many questions, especially if the 

answers given are unexpected, i.e. correct answers on hard questions or systematic mistakes on 

easy questions.  

Of course, within-classroom correlation may arise for many reasons other than cheating 

(e.g., the teacher may emphasize certain topics during the school year).  Therefore, a third 

indicator of potential cheating is a high variance in the degree of correlation across questions.  

That is, on some questions students’ answers are highly correlated, but on other questions they 

are not.  If the teacher changes answers for multiple students on selected questions, the within-

class correlation on those particular questions will be extremely high, while the degree of within-
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class correlation on other questions is likely to be typical.  This leads the cross-question variance 

in correlations to be larger than normal in cheating classrooms.  

Our final indicator compares the answers that students in one classroom give compared to 

other students in the system who take the identical test and get the exact same score.  Questions 

vary significantly in difficulty.  The typical student will answer most of the easy questions 

correctly and get most of the hard questions wrong (where “easy” and “hard” are based on how 

well students of similar ability do on the question).  If students in a class systematically miss the 

easy questions while correctly answering the hard questions, this may be an indication of 

cheating. 

Our overall measure of suspicious answer strings is constructed in a manner parallel to 

our measure of unusual test score fluctuations.  Within a given subject, grade, and year, we rank 

classrooms on each of these four indicators, and then take the sum of squared ranks across the 

four measures:12  
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In the empirical work, we again use three possible cutoffs for potential cheating: 80th, 90th, and 

95th percentiles. 

 

A comparison of two actual classrooms 

Figure 2, which presents student answer strings test scores for two classrooms, provides 

an example of how our cheating indicators work in practice.  The top panel of data is a class in 

which we suspect teacher cheating took place; the bottom panel corresponds to a typical 
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classroom.  Each row in Figure 2 represents one student’s answers to each item on the test.  

Columns correspond to the different questions asked.  The letter “A,” “B,” “C,” or “D” means a 

student provided the correct answer.  If a number is entered, the student answered the question 

incorrectly, with “1” corresponding to a wrong answer of “A,” “2" corresponding to a wrong 

answer of “B,” etc.  On the right-hand side of the table, we also present student test scores for the 

preceding, current, and following year. 

Focusing first on the patterns in the answer strings in Figure 2, we see that for most of the 

test, correct and incorrect answers are sporadically interspersed with no discernible pattern.  In 

the top panel of the figure, however, over half of the students in the class provide the same 

answers to nine consecutive questions towards the end of the test, suggesting teacher cheating.  

That places the classroom in the 99th percentile on our first measure of suspicious strings which 

focuses on blocks of identical answers.   In the bottom panel, the most unusual block of answers 

is the “2CAD2C” given by two students (the fifth and sixth students listed) starting on question 

23 of the test.  The bottom classroom ranks in the 43rd percentile on this measure. 

Questions on which students in our two sample classrooms have somewhat elevated 

within-class correlations are demarcated by an “*” at the bottom of the column corresponding to 

that question.  For cases of extreme correlations, an “!” is given.  Not surprisingly, the 

correlation is very high on the questions that are part of the suspicious string in the class 

suspected of cheating.  It is also somewhat elevated on the block of questions with similar 

answers in the non-cheating classroom.  For the remaining parts of the exam, the indicator is 

similar across the two classrooms.  The within-class degree of correlation in the top classroom 

                                                                                                                                                                                           
12  Because different subjects and grades have differing numbers of questions, it is difficult to make meaningful 
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places it at the 99th percentile among classrooms.  The bottom class, in contrast, is in the 49th 

percentile on this measure.  With respect to the variance in within-class correlation across 

questions, the top class is at the 99th percentile; the bottom class is at the 32nd. 

Although not shown directly in the table, the top classroom also fares poorly on our last 

measure of suspicious strings – the degree to which students in this class tend to get the same 

questions right and wrong as students in other classes.  Because the questions near the end of the 

test are difficult (note how few of the students in the second class get these questions correct), 

students in this first class look very unusual relative to other students in the system.  The class 

once again ranks near the 99th percentile on this measure, compared to only the 17th percentile 

for the class in the bottom panel. 

Turning our attention to the test scores on the right-hand side of Figure 2, mean test 

scores in the previous year are similar for the two classes.  On that year’s test, however, the top 

classroom suspected of cheating experienced an enormous jump in test scores (1.7 grade 

equivalents on average, compared to a mean of 0.9 for all classrooms in this subject, grade, and 

year).  The bottom classroom had a typical gain.  In the following year, students in the top class 

actually see test score declines on average, whereas students in the bottom panel continue to 

progress at a normal rate.  Note also that it is only the students in the top panel who are part of 

the unusual answer strings that exhibit enormous test score gains followed by large declines.  

Among the handful of students in the top panel that do not appear to have been the beneficiaries 

of the cheating, the test score gains in the current and following year are typical.  The classroom 

                                                                                                                                                                                           
comparisons across tests on the raw indicators.  
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in the bottom part of Figure 2 would not qualify as having unusual test score fluctuations by any 

of our cutoffs; the top classroom qualifies on even the strictest definition.     

 

IV. Data and Institutional Background 

Elementary students in Chicago public schools take a standardized, multiple-choice 

achievement exam known as the Iowa Test of Basic Skills (ITBS).  The ITBS is a national, 

norm-referenced exam with a reading comprehension section and three separate math sections.13  

Third through eighth grade students in Chicago are required to take the exams each year.  Most 

schools administer the exams to first and second grade students as well, although this is not a 

district mandate.  

Our base sample includes all students in third to seventh grade for the years 1993.14  For 

each student, we have the question-by-question answer string on each year’s ITBS reading 

comprehension and mathematics tests, school and classroom identifiers, the full history of prior 

and future test scores, and demographic variables including age, sex, race, and free lunch 

eligibility. We also have information about school-level characteristics including mobility, 

poverty and attendance rates, racial composition and average teacher characteristics including 

percent with an MA+ degree, years of experience, and undergraduate major.  We do not, 

however, have individual teacher identifiers, so we are unable to directly link teachers to 

classrooms or to track a particular teacher over time. 

                                                           
13 There are also other parts of the test which are either not included in official school reporting (spelling, 
punctuation, grammar) or are given only in select grades (science and social studies), for which we do not have 
information. 
14  We exclude eighth graders because our algorithm requires test score data for the following year and the ITBS test 
is not administered to ninth graders.  Another standardized test is given to ninth graders, but a substantial fraction of 
the students fail to take that test and it is not directly comparable to the elementary exams. 
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Because our cheating proxies rely on comparisons to past and future test scores, we drop 

observations that are missing reading or math scores in either the preceding year or the following 

year.15  Students with missing demographic data are also excluded from the analysis.  Finally, 

because our algorithms for identifying cheating rely on identifying suspicious patterns within a 

classroom, our methods have little power in classrooms with small numbers of students.  

Consequently, we drop all classrooms for which we have fewer than ten valid students in a 

particular grade after our other exclusions.  A handful of classrooms with impossibly large 

number of students – presumably multiple classrooms combined into one – are also dropped. Our 

final data set contains roughly 20,000 students per grade per year distributed across 

approximately 1,000 classrooms, for a total of over 40,000 classroom-years of data (with four 

subject tests per classroom-year) and over 700,000 student-year observations. 

Summary statistics for the full sample of classrooms are shown in the first column of 

Table 1, with the unit of observation being at the level of class*subject*year.  The second 

column of Table 1 reports student-level summary statistics for the subset of our sample of 

classrooms we classify as likely to have cheated.  Classrooms we suspect of cheating are more 

likely to be subject to the accountability policies and students in these classes are 

disproportionately from the bottom half of the achievement.  School-level teacher characteristics 

do not differ much between the whole sample and the suspected cheaters. 

The ITBS exams are administered over a week long period in early May.  Third grade 

teachers are permitted to administer the exam to their own students, while other teachers switch 

classes to administer the exams.  The exams are generally delivered to the schools one to two 

                                                           
15  Test data may be missing either because a student did not attend school on the days of the test, or because the 
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weeks before testing, and are supposed to be kept in a secure location by the principal or the 

school’s test coordinator, an individual in the school designated to coordinate the testing process 

(often a counselor or administrator).  Each section of the exam consist of 30 to 60 multiple 

choice questions which students are given between 30 and 75 minutes to complete.16   Students 

mark their responses on answer sheets, which are scanned to determine a student’s score.  

Teachers or administrators then “clean” the answer keys, erasing stray pencil marks, removing 

dirt or debris from the form, and darkening item responses that were only faintly marked by the 

student.  At the end of the week, the test coordinators at each school deliver the completed 

answer keys and exams to the CPS central office.  School personnel are not permitted to keep 

copies of the actual exams, although school officials acknowledge that a number of teachers each 

year do so.  The CPS has administered three different versions of the ITBS between 1993 and 

2000.  The CPS alternates forms each year, with new forms being offered for the first time in 

1993, 1994 and 1997.17        

The exams are scored electronically by CPS central office staff.  There is no penalty for 

guessing, so that a student’s raw score is simply calculated as the sum of correct responses on the 

exam.  The raw score is then translated into a metric known as grade equivalents, which are 

normed so that a student at the 50th percentile in the nation scores at the eighth month of her 

                                                                                                                                                                                           
student transferred into the CPS system in the current year or left the system prior to the next year of testing. 
16The mathematics and reading tests measure basic skills.  The reading comprehension exam consists of three to 
eight short passages followed by up to nine questions relating to the passage.  The passages include poetry, fictional 
stories, and narratives on historical, scientific or literary topics.  The questions assess factual recall (e.g., Who was 
the main character in the story?) as well as critical analysis (e.g., What was the main idea of the passage?) and 
interpretation (e.g., How do you think Jose felt at the end of the story?).  The math exam consists of three sections 
that assess number concepts, problem-solving and computation. 
17 These three forms are used for re-testing, summer school testing, and mid-year testing as well, so that it is likely 
that over the years, teachers have seen the same exam on a number of occasions.  
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current grade.  For example, an average third grader taking the test in the eighth month of third 

grade will score a 3.8.  Similarly, a sixth grader that scores a 5.8 is one year behind grade level.  

 

V. Estimating the Prevalence of Cheating 

We undertake a determination of the prevalence of cheating in three steps.  First, we 

analyze whether our cheating measures are actually effective at detecting cheating.  To do this, 

we artificially alter student answers in ways that might mimic teacher cheating and then see if we 

catch the classrooms for which we ourselves have cheated.  In addition, we also alter student 

answers in a way that may reflect a class that has large, legitimate test score gains due to an 

outstanding teacher, demonstrating that our measures are much less likely to mistakenly classify 

such gains as cheating.  Second, we examine the empirical distribution of our cheating measures 

in the portion of the sample unlikely to be heavily contaminated by cheating.  This provides the 

basis for constructing a non-cheating counterfactual against which the actual data is compared.  

Finally, we present the basic findings with respect to the estimated cheating rate. 

 

a) Do the cheating measures actually detect cheating classrooms? 

Because we do not know which classrooms are cheating, we have no direct way of 

knowing whether our measures actually detect cheating.  One indirect way of testing this 

hypothesis, however, is to simulate cheating and then ascertain whether our measures detect this 

artificial cheating.  In this section, we simulate two different types of teacher cheating.  The first 

is a very naive version, in which a teacher starts cheating at the same question for a number of 

students and changes consecutive questions to the right answers for these students, creating a 
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block of identical and correct responses.  The second type of cheating is much more 

sophisticated: we randomly change answers from incorrect to correct for selected students in a 

class.18  For the purposes of comparison, we also present results attempting to simulate the 

effects of a good teacher inducing the same gain among students in the class.  The impact of a 

good teacher will differ in two ways from a cheating teacher: (1) some of the gains will be 

preserved in the following year, and (2) the students will not get random answers correct, but 

rather, will tend to show the greatest improvement on the easiest questions that the students were 

getting wrong.  For both types of cheating and the good teacher scenario, we run simulations 

changing 3, 6 or 9 questions for 25, 50 or 100 percent of the students in the classroom.  We alter 

the answer strings for every classroom, one classroom at a time, tallying the fraction of the cases 

in which the artificially cheating classroom exceeds our strictest threshold (95th percentile) on 

both ANSWERS and SCORE.  We present the results for 5th grade reading in 1993.  This grade 

and year was selected because we want our baseline sample to be as free of cheating as possible.  

In theory, the incentives for teachers to cheat in that grade and year are low because this is before 

accountability reforms and fifth-grade test outcomes were not widely publicized at that time.  

Table 2 reports the results of the simulation.  As a point of reference, 1.13 percent of the 

classrooms in the actual data exceed the thresholds we use in the table for labeling a classroom 

as cheating.  For the most minor case of cheating (3 questions for 25 percent of the class), our 

cheating indicator picks up less than 4 and 2 percent respectively of the unsophisticated and 

sophisticated cheating. The good teacher is no more likely to be labeled a cheater in this case 

than is a randomly drawn classroom in the actual data.  As the extent of cheating increases – 

                                                           
18  We have also experimented with forms of cheating with intermediate degrees of sophistication.  Not surprisingly, 
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either by increasing the number of students or the number of questions altered – the success of 

the algorithm improves greatly, but it is still far from perfect.  If six questions are altered for half 

the class, more than 50 percent of the unsophisticated cheaters are detected, as well as more than 

one-third of the sophisticated cheaters.  The likelihood that a good teacher is labeled as a cheater 

is still less than 3 percent.  By the most extreme cases we examine (9 questions for 100 percent 

of the class), roughly 90 percent of classrooms are categorized as cheating.  In the case, good 

teachers will be identified as cheating nearly 40 percent of the time as well.  Thus, to the extent 

that there are teachers capable of such remarkable feats (it implies that the mean test score gain 

in the classroom in one year is well over two grade-equivalents, something observed in roughly 

one in 1,000 classrooms in our sample, even with cheaters included), there is a substantial 

likelihood we will mistakenly label them as cheaters.19   

In summary, our cheating indicators are quite effective at detecting extreme instances of 

cheating, even if done in a sophisticated manner by the teacher.  Many more limited cases of 

cheating will not be detected by our measures, particularly if the cheating is done cleverly.   

Thus, to the extent that actual cheating done by teachers is moderate in degree and/or of a 

sophisticated kind, many cheaters will slip through the cracks, and our estimates of the 

prevalence of cheating classrooms are likely to be (perhaps very loose) lower bounds on the true 

values. On the other hand, our algorithm does yield some false positives, which works in the 

opposite direction. 

                                                                                                                                                                                           
the effectiveness of our measures in detecting moderately sophisticated types of cheating falls in between our ability 
to detect cheating in the two polar cases we present. 
19  To the extent this is a major concern (e.g., if these results were going to be used in disciplinary actions), there are 
alternative measures that could be employed which are less likely to catch actual cheaters, but also dramatically 
reduce the likelihood that a good teacher would falsely be accused of cheating.  One such measure would be to 
require that most or all of the current year’s gain is lost in the following year. 
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b) Projecting the distribution of the cheating measures in a counterfactual with no cheating  

If we knew with certainty the classrooms that were cheating, then the distribution of our 

cheating measures in non-cheating classrooms would be directly observable.20  Our sample, 

however, is made up of an unknown mixture of cheating and non-cheating classes.  Since 

cheating classrooms are likely to have large test score fluctuations and unusual answer strings, 

they are likely to be concentrated in the upper tails, leaving the remainder of the distribution 

relatively free of cheating. By observing patterns in that portion of the distribution, it is possible 

to make reasonable predictions as to what the upper tail might look like absent cheating. 21 

 The top panel of Table 3 presents breakdowns of the fraction of cases in which SCORE 

is above each of our cutoffs, as a function of the quartile that ANSWERS falls into, omitting the 

top quartile of ANSWERS because that is where the cheating classrooms are likely to be.  Among 

classrooms with ANSWERS are in the 0-25th percentile (i.e. not suspicious at all), 16.3 percent 

have test score gains above the 80th percentile, 6.2 percent are above the 90th percentile, and 2.3 

percent are above the 95th percentile.  As one moves to the right in the table, the answer strings 

are becoming more suspicious.  The frequency of high values of SCORE rises slightly moving to 

the right, but the relationship is weak.  This mirrors the pattern presented earlier in Figure 1. 

                                                           
20Of course, if we knew which classrooms were cheating, then this assumption would not be necessary in the first 
place. 
21 There are two potential biases at work in this sort of analysis.  First, some cheating classrooms are likely to evade 
our measures and slip into the sample we are describing as non-cheaters.  Cheating classrooms will probably be 
especially prevalent in the 50-75th quartile – classes that are somewhat above average in terms of suspiciousness.  
Thus, one might observe a spurious rise in the frequency of extreme values as one moves from classrooms that are 
not all suspicious to those that are somewhat suspicious, simply because the fraction of undetected cheaters rises.  
On the other hand, it may be the case that the degree of correlation between ANSWERS and SCORE may vary over 
the distribution.  In particular, there may be a positive correlation between those two variables in the right-tail of the 
distribution, even if teachers are not cheating.  This would lead us to overstate the number of cheaters.. 
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The bottom panel of Table 3 reverses the exercise, showing how the likelihood of having 

suspicious answer strings changes as one moves from low quartiles of SCORE to high quartiles.  

Note that the patterns are reversed.  Classes that are in the bottom quartile on SCORE have 

relatively high rates of suspicious strings. The probabilities of suspicious strings for classes in 

the second and third quartile are nearly identical to one another, and much lower than those of 

the first quartile.   

The key question here is the frequency with which one would observe extreme values of 

one of the cheating measures when the other cheating measure is also an outlier, assuming no 

cheating occurred.  One can imagine a variety of sensible approaches to predicting the upper tail 

using the information in Table 3.  For example, one could fit a linear or quadratic model to the 

patterns observed in the lower portion of the distribution and extrapolate the estimates.  In 

practice, however, the trends in the 0-75th percentile of the distribution are so weak that the 

results we obtain are not sensitive to the precise formulation.  Consequently, we simply use the 

values in the 50-75th percentile as our estimate of what would have happened in the upper tail, 

absent cheating.    

 

c) Estimating the Prevalence of Cheating 

Our key equation for estimating the frequency of cheating, presented earlier in the 

modeling section, is  

(1) )(ˆ
ncnchucheat ASNNN ××−=  



 

 

27

which simply says that the estimated number of cheating classes is equal to the number of classes 

that are outliers on both the cheating measures, minus the number of classes we would expect by 

chance to be high on both measures based on the distribution of the measures in non-cheating 

classrooms.  Guided by the results presented above, we compute ncS  as the fraction of classes 

with SCORE above a certain threshold, conditional on being in the 50-75th percentile on answers, 

and vice-versa for ncA . 

 The top panel of Table 4 presents our estimates of the percentage of classrooms that are 

cheating on average on a given subject test (i.e. reading comprehension or one of the three math 

tests) in a given year.  We present a 3 x 3 matrix of estimates corresponding to how stringent the 

thresholds are for judging whether a classroom’s test score fluctuations and answer string 

patterns qualify as suspicious.  The estimated prevalence of cheaters ranges from 1.1 percent to 

2.1 percent, depending on the particular set of cutoffs used.  As would be expected, the number 

of cheaters is generally declining as higher thresholds are employed.  Nonetheless, it is 

encouraging that over such a wide range of cutoffs, the range of estimates is relatively tight. 

The bottom panel of Table 4 presents estimates of the percentage of classrooms that are 

cheating on any of the four subject tests in a particular year.  If every classroom that cheated did 

so only on one subject test, than the results in the bottom panel would simply be four times the 

results in the top panel.  In many instances, however, classrooms appear to cheat on multiple 

subjects.  Thus, the prevalence rates range from 3.4-5.6 percent of all classrooms.22 

                                                           
22  Computation of the overall prevalence is relatively complicated because it involves calculating not only how 
many classrooms are actually above the thresholds on multiple subject tests, but also how frequently this would 
occur in the absence of cheating.  The full programming solution to this problem is available from the authors.  
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Table 5 presents breakdowns of cheating by grade and subject.  Rows in the table 

correspond to grades and columns represent different subject tests.  Several interesting findings 

stand out.  The third grade has the highest cheating rates, which is likely due to the fact that this 

grade is the only one in which teachers are permitted to administer the exams to their own 

students.  Cheating rates also tend to be higher in sixth grade, which may be due to the fact that 

this grade has traditionally been a focus of greater attention on the part of teachers and 

administrators because statewide achievement exams are also administered in this grade.  If one 

looks at specific subject tests, cheating rates are slightly higher on reading comprehension and 

the first and third math exams, while noticeably lower on the second math exam.  This may be 

because the second math exam is located in the middle of the answer key, making it more 

difficult to quickly change student answers.   In addition, in the upper grades, this section 

consists largely of questions that ask students to interpret graphs, charts and tables, and most 

students do relatively well on this section, so it is possible that teachers do not feel that they need 

to artificially inflate scores in this area.   

 

VI. Are We Really Detecting Cheating? 

If accurate, the results above suggest cheating rates of 4-5 percent among Chicago 

elementary school classrooms. Because of the necessarily indirect nature of our identification 

strategy, a healthy skepticism towards our conclusions may be warranted. In this section, we 

provide a range of supplemental analyses suggesting that the results are indeed cheating and 

addressing possible competing explanations as to why the patterns we observe may have arisen. 
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a) Will our method find cheating, even if no cheating exists? 

Our identification relies on assumptions about how variables will be distributed in the 

tails of a distribution that is not directly observed.   It is conceivable that our assumptions are 

inaccurate, falsely generating what appears to be evidence of cheating, even when no such 

cheating occurred. 

  As a test of this possibility, we randomly assigned students to hypothetical classrooms.  

These synthetic classrooms thus consisted of groups of students who in actuality had no 

connection to one another.  We then analyzed these hypothetical classrooms using the same 

algorithm applied to the actual data.  As one would hope, no evidence of cheating was found in 

the simulated classes.  Indeed, the estimated prevalence of cheating was slightly negatve in this 

simulation, i.e. classrooms with large test score increases in the current year followed by big 

declines the next year were slightly less likely to have unusual patterns of answer strings.  Thus, 

we conclude that there is no evidence that our identification approach finds cheating even when 

no cheating is actually present. 

  

b) Are classrooms with suspicious answer strings less likely to maintain large test score gains?  

Test score gains due to cheating should be completely transitory, assuming that the 

likelihood of having a cheating teacher next year is the same for students who do or do not have 

a cheating teacher this year.  In contrast, while there might be substantial mean reversion for 

classrooms with large test score gains for reasons other than cheating, there might also be a 

permanent component to such gains. 
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In conducting such a hypothesis test, we cannot, of course, use information about next 

year’s test score as a basis for labeling a classroom a likely cheater (as we generally do in our 

cheating classification, see equation (2)).  We can, however, compare classrooms with large test 

score gains this year that either do or do not have suspicious patterns of answer strings. The more 

suspicious the answer strings, the more likely is cheating, and the greater the expected mean 

reversion in the following year’s test scores. 

  Table 6 presents the results of this analysis.  The top panel of the table restricts the 

sample to the ten percent of classrooms with the greatest test score gains in reading in the current 

year, relative to other classes in that grade and year.  The middle panel and bottom panel look at 

the top 5 percent and top 1 percent respectively of classroom test score gains.23 Reported in the 

table are the mean excess gain in these classes in the base year (i.e., the gains above and beyond 

the mean gain for all classrooms in the system on a given subject, grade, and test that year), the 

excess gain for the same students the following year, and the percent of the base year excess gain 

that is maintained.  Columns in the table correspond to how suspicious the classroom’s answer 

string patterns were: below the 50th percentile, 50th-80th percentile, 80th-95th percentile, 95th-

99th, and greater than the 99th percentile.  We expect the fraction of cheating classrooms to 

increase as the answer strings become more suspicious.  Consequently, the fraction of the current 

year’s excess test score gain relative to the mean classroom in that subject, grade, and year that is 

maintained the following year should decrease moving from left to right in the table. 

Looking first at the top panel of Table 6, among the ten percent of classes with the 

greatest test score gains, those whose answer strings are not at all suspicious (below the 50th 

                                                           
23 Reiterating what was written above, it cannot be emphasized enough that this table differs from our previous 
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percentile on ANSWERS) gain on average .59 grade equivalents more than the system-wide mean 

in the base year.  Students in these classrooms do perform slightly worse than expected the 

following year (-.11 grade equivalents).  Nonetheless, at the end of the next year, these students 

maintain 81 percent of the base year excess gain through the following year (i.e., (.59-

.11)/.59=.81).  As one moves from left to right in the table towards classrooms more likely to be 

cheating, an increasing fraction of the current year’s gains are lost, as predicted.  In the most 

extreme cases of the one percent of the answer strings that are most suspicious, less than 13 

percent of the apparent gains in the current year evaporate in the next year’s test.24  Note also 

that classes with suspicious answer strings are greatly over-represented among those achieving 

large test score gains, consistent with the prediction that our two cheating indicators will be 

highly positively correlated in the upper tail. 

One possible concern that arises from the top panel of the table is whether the mean 

reversion is greater on the right-hand-side columns of the table simply because the base-year 

gains are larger.  The bottom two panels of Table 6 demonstrate that this is not the case.  When 

the sample is restricted to classrooms whose test score gains are in the top five percent or top one 

percent of all classes, very similar patterns appear.  Classrooms that do not have suspicious 

answer strings continue to exhibit little mean reversion, even though the base year gains in this 

subset are even greater than the base year gains in the far right column of the top panel.  The 

more suspicious the answer strings, the greater the mean reversion.  Thus, these results are 

                                                                                                                                                                                           
analysis in that we are in no way conditioning on the following year’s test scores, unlike when we construct our 
cheating estimates. 
24  We do not expect the test score gains to completely disappear because even among the classes with very 
suspicious answer strings, not all of the classrooms are cheating. 
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consistent with the hypothesis that cheating is the explanation for the large number of classes 

with both suspicious answer strings and large test score gains. 

 

c) Do the same teachers and schools tend to cheat repeatedly? 

If what we are detecting is truly cheating, then one would expect that a teacher who 

cheats on one part of the test would be more likely to cheat on other parts of the test.  Also, a 

teacher who cheats one year would be more likely to cheat the following year.  Finally, to the 

extent that cheating is either condoned by the principal or carried out by the test coordinator, one 

would expect to find multiple classes in a school cheating in any given year, and perhaps even 

that cheating in a school one year predicts cheating in future years. If what we are detecting is 

not cheating, then one would not necessarily expect to find strong correlation in our cheating 

indicators across exams for a specific classroom, across classrooms, or across years.25  

Table 7 reports regression results testing these predictions.  The dependent variable is an 

indicator for whether we believe a classroom is likely to be cheating on a particular subject test 

using our most stringent definition (above the 95th percentile on both cheating indicators).   The 

baseline probability of qualifying as a cheater for this cutoff is 1.1 percent.  To fully appreciate 

the enormity of the effects implied by the table, it is important to keep this very low baseline in 

mind.  We report estimates from linear probability models (probits yield similar marginal 

effects), with standard errors clustered at the school level.  

                                                           
25 Alternatively, if one thought that cheating were an individual teacher phenomenon, but school improvement, 
instructional quality or curricular content were a school-wide phenomena, then one might construe correlations 
within schools and over time as evidence against cheating.  Given the fact that most teachers do not monitor their 
own exams, and that the test coordinator plays such a large role in the testing process within each school, we tend to 
think this scenario is less plausible.   
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Column 1 of Table 7 shows that cheating on other tests in the same year is an extremely 

powerful predictor of cheating in a different subject.  If a classroom cheats on exactly one other 

subject test, the predicted probability of cheating on this test increases by over ten percentage 

points.  Since the baseline cheating rates are only 1.1 percent, classrooms cheating on exactly 

one other test are ten times more likely to have cheated on this subject than are classrooms that 

did not cheat on any of the other subjects (which is the omitted category).  Classrooms that cheat 

on two other subjects are almost 30 times more likely to cheat on this test, relative to those not 

cheating on other tests.  If a class cheats on all three other subjects, it is 50 times more likely to 

also cheat on this test. 

There also is evidence of correlation in cheating within schools.  A ten percentage-point 

increase in cheating classrooms in a school (excluding the classroom in question) on the same 

subject test raises the likelihood this class cheats by roughly .016 percentage points.  This 

potentially suggests some role for centralized cheating by a school counselor, test coordinator or 

the principal, rather than by teachers operating independently.  There is little evidence that 

cheating rates within the school on other subject tests affects cheating on this test.   

When making comparisons across years (columns 3 and 4), it is important to note that we 

do not actually have teacher identifiers.  We do, however, know what classroom a student is 

assigned to.  Thus, we can only compare the correlation between past and current cheating in a 

given classroom.  To the extent that teacher turnover occurs or teachers switch classrooms, this 

proxy will be contaminated by serious measurement error.  Even given this important limitation, 

cheating in the classroom last year predicts cheating this year.  In column 3, for example, we see 

that classroom’s that cheated in the same subject last year are 9.6 percentage points more likely 
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to cheat this year, even after we control for cheating on other subjects in the same year and 

cheating in other classes in the school.  Column 4 shows that prior cheating in the school 

strongly predicts the likelihood that a classroom will cheat this year.   

 

d) Is it really student cheating rather than teacher cheating that we are detecting?  

Although our explanation focuses on teachers, it is also conceivable that there is 

something unusual about students in classes that we label as cheating (e.g., a particular set of 

student skills, high effort at the beginning of the test but not at the end, students copying off 

other student exams) that might lead to suspicious answer strings.  If that is the case, then one 

would predict that the same students who have suspicious answer strings one year would also be 

likely to have suspicious answer strings the next year – much as we observed above that cheating 

in a classroom one year predicts cheating in a classroom the next year. We test this hypothesis in 

two ways.  First, for each student in a given subject and year, we compute how unlikely it was 

for the most unusual block of answers that student was part of to occur (this corresponds to the 

first of the suspicious string measures we introduced in Section III).  We then calculate the 

student-level correlation from one year to the next on that measure.  The correlation is 

approximately .01, suggesting that students who are part of suspicious blocks of answers one 

year are not especially likely to be part of suspicious blocks the following year.  Similarly, we 

compare the same student across years to determine whether some students tend to 

systematically get hard questions correct and easy questions wrong (the last of the suspicious 

string measures we introduced).  The year-to-year correlation in that measure is .07.  The 

absence in persistence in suspicious answer patterns over time for a given student makes it 
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unlikely that our results are being driven by student cheating, since one would expect that 

students who cheat one year would be likely to cheat with high probability the next year as well. 

 

e) Are we mistaking emphasis on certain subject material for cheating? 

If a math teacher spends several months on fractions with a particular class, one would 

expect the class to do particularly well on all of the math questions relating to fractions and 

perhaps worse than average on other math questions.26  Such patterns might wrongly lead us to 

deem a classroom’s answer strings to be suspicious.27        

Table 8 shows OLS estimates of the relationship between whether a classroom is 

categorized as a cheater and the nature of the across-question correlations in the classroom on the 

first math exam.  Seven different math skills/areas are tested in this exam: numeration, geometry, 

measurement, fractions, algebra, statistics and estimation.  The dependent variable in the first 

and third columns is the number of different item-types for the three and five questions in a 

particular classroom that are most suspicious.  The dependent variable in the second and fourth 

columns is a binary indicator of whether the three (five) most suspicious questions all fell in one 

area.  Note first that the mean values, reported in brackets, show that there is generally very little 

concentration in the types of questions that are most suspicious within a classroom.  For instance, 

                                                           
26 One might imagine a similar scenario on the reading exam. If a teacher spends an entire semester studying the 
Underground Railroad, and the reading exam that year happens to include a passage on this topic, it would not be 
surprising to find that an extremely high number of students in the class correctly answer all of the items relating to 
this passage, which may appear as a highly suspicious answer string.  However, it is also likely that when teachers 
cheat on the reading comprehension exam, they focus on a specific passage since each passage and the associated 
questions are generally on the same page.  Thus, on the reading exam, it is difficult to distinguish between instances 
of cheating and honest passage knowledge by the students.     
27 Although there is no reason for such classrooms to have elevated test score gains or especially large losses in the 
following year, which reduces concern that teacher emphasis on specific subject material will lead us to exaggerate 
the degree of cheating.    
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in the typical classroom the three most suspicious questions were spread over 2.4 different types 

of items, and in only 7.7 percent of classrooms did all three questions fall within the same type.   

The coefficient estimates in Table 8 suggest that the patterns in classrooms categorized as 

cheaters were only slightly different than in other classrooms.  Focusing on the basic 

specification in the top row of the table, the point estimates in columns (1) and (3) are small and 

statistically insignificant.  The coefficient in column (4) is significantly higher in the cheating 

classrooms.  That result, however, appears to be an artifact of the particular classification of item 

types.  When one uses a more disaggregated classification scheme (the second row), or excludes 

the very broad category of numeration (the third row), any evidence that cheating classrooms 

tend to have more concentration in their suspicious answers disappears. These results are not 

sensitive to the inclusion of a variety of classroom and school covariates. 

 

VII. Does Teacher Cheating Respond to Incentives? 

From the perspective of economics, perhaps the most interesting question related to 

teacher cheating is the degree to which it is sensitive to incentives.  As noted in the introduction, 

there were two major changes in the incentives faced by teachers and students over our sample 

period.  Prior to 1996, ITBS scores were primarily used to provide teachers and parents with a 

sense of how a child was progressing academically.  Beginning in 1996 with the appointment of 

Paul Vallas as CEO of Schools, the CPS launched an initiative designed to hold students and 

teachers accountable for student learning.   
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The reform had two main elements.  The first was putting schools “on probation” if less 

than 15 percent of students scored at or above national norms on the ITBS reading exams.28  

Probation schools that do not exhibit sufficient improvement may be reconstituted, a procedure 

that involves closing the school and dismissing or reassigning all of the school staff.29  It is clear 

from our discussions with teachers and administrators that being on probation is viewed as an 

extremely undesirable circumstance.  The second piece of the accountability reform was an end 

to social promotion – the practice of passing students to the next grade regardless of their 

academic skills or school performance.  Under the new policy, students in third, sixth and eighth 

grade must meet minimum standards on the ITBS in both reading and mathematics in order to be 

promoted to the next grade.  The promotion standards were implemented in Spring 1996 for 

eighth grade students and in Spring 1997 for third and sixth graders.  Promotion decisions are 

based solely on scores in reading comprehension and mathematics.30 

Table 9 presents OLS estimates of the relationship between teacher cheating and a variety 

of classroom and school characteristics.31  The unit of observation is a 

classroom*subject*grade*year.  The dependent variable is an indicator of whether the classroom 

cheated.  Here we define cheating using our 95th percentile cutoff—that is, a classroom is 

                                                           
28The CPS did not use math performance to determine probation status. 
29  Seven high schools have been reconstituted to date, although no elementary schools have suffered this fate.  For a 
more detailed analysis of the probation policy, see Jacob (2001) and Jacob and Lefgren (2001b).   
30 In 1997, the promotion standards for third, sixth and eighth grade were 2.8, 5.3, and 7.0 respectively, which 
roughly corresponded to the 20th percentile in the national achievement distribution.  Students who do not meet the 
standard in June are required to attend a six-week summer school program, after which they retake the exams.  
Those students who pass the August exams move on to the next grade.  Students who again fail are required to 
repeat the grade, with the exception of 15-year-olds who attend newly created “transition” centers.  In 1997, roughly 
30-40 percent of the students in these grades attended summer school and 20 percent of third graders and 12 percent 
of sixth and eighth graders were retained.  For a more detailed analysis of the social promotion policy, see Jacob 
(2001) and Jacob and Lefgren (2001a). 
31 Logit models evaluated at the mean yield comparable results, so the estimates from a linear probability model are 
presented for ease of interpretation.  
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designated a cheater if its SCORE and ANSWERS are above the 95th percentile in that grade, 

subject and year.32  In column 1, the policy changes are restricted to have a constant impact 

across all classrooms.  We see that the introduction of the social promotion and probation 

policies is positively correlated with the likelihood of classroom cheating, although the point 

estimates are not statistically significant at conventional levels.  However, cheating does appear 

to be responsive to other costs and benefits.  Classrooms that tested poorly last year are much 

more likely to cheat.  For example, a classroom with average student prior achievement one 

classroom standard deviation below the mean is 23 percent more likely to cheat.  Classrooms 

with students in multiple grades are 65 percent less likely to cheat than classrooms where all 

students are in the same grade.  This is consistent with the fact that it is likely more difficult for 

teachers in such classrooms to cheat, since they must administer two different test forms to 

students, which will necessarily have different correct answers.   Moreover, classes with a higher 

proportion of students who are included in the official test reporting are more likely to cheat—a 

10 percentage point increase in the proportion of students in a class who test scores “count” will 

increase the likelihood of cheating by roughly 20 percent.  Teachers who administer the exam to 

their own students are 0.67 percentage points—approximately 50 percent—more likely to cheat.  

Finally, there is no statistically significant impact on cheating of reusing a test form that has been 

administered in a previous year.  That finding is of interest because it suggests that teachers 

taking old exams and teaching the precise questions to students is not an important component of 

what we are detecting as cheating (although anecdotal evidence suggests this practice exists). 

                                                           
32 The results are not sensitive to the cheating cutoff used.  Note that this measure may include error due to both 
false positives and negatives.  Since the measurement error is in the dependent variable, it will simply decrease the 
precision of our estimates.  
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Much more interesting results emerge when we interact the policy changes with the 

previous year’s test scores for the classroom.  For both probation and social promotion, cheating 

rates in the lowest performing classrooms prove to be quite sensitive to the change in incentives.  

In column 2, a classroom one-standard deviation below the mean increases cheating by 0.43 

percentage points in response to the school probation policy and roughly 0.65 percentage points 

due to the ending of social promotion.  Given the baseline cheating rate of 1.1 percent, these 

effects are substantial.  The magnitude of these changes are particularly large considering that no 

elementary school on probation has ever been reconstituted since this policy was put into place, 

and that the social promotion policy has a direct impact on students, but not obvious 

ramifications for teacher pay or rewards.33  A classroom one standard deviation above the mean 

does not see any significant change in cheating in response to these two policies.  Such classes 

are very unlikely to be located in schools at risk for being put on probation, and also are likely to 

have few students at risk for being retained.   The specification shown in column 3 includes a 

number of classroom and school characteristics, which do not appear to change the coefficients 

on the policy variables.   Consistent with the prior achievement results, classrooms in schools 

with lower achievement, higher poverty rates and more Black students are more likely to cheat.  

Interestingly, classrooms in schools with higher quality teachers are less likely to cheat while 

                                                           
33 While this trend is particularly disturbing due to the relatively minor incentives, given the relatively small number 
of classrooms engaged in cheating, it is unlikely that such explicit test manipulation has had a large impact on the 
average achievement levels in Chicago, or the observed increase in achievement since the introduction of high-
stakes testing.  Table 8 suggests that the accountability policies increased the likelihood of cheating in any one 
subject by roughly 0.5 to 1.0 percentage points (depending on whether the effects of social promotion and probation 
are additive and which grade/subject one considers).  Now suppose that a teacher manipulates the reading exams for 
his or her students in a manner that artificially raises their test scores by 2 grade equivalent (which is much larger 
than we actually observe in the data).  This would inflate the system-wide average reading levels by only 0.01 GEs.       
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classrooms in schools with younger teachers are more likely to cheat.  Column 4 illustrates that 

the effects on the policy variables are robust to including school*year fixed effects.34 

It is also interesting to examine for which students teachers change answers when they do 

cheat.  One might imagine that teachers would cheat for lower-achieving students, or those who 

the teacher believed could or should have done better on the exam.  However, it is not clear how 

precisely teachers are able to target their cheating behavior.  It is likely that time pressure and 

concerns about detection will limit the time teachers spend on cheating, and a brief inspection of 

an answer key will only provide a rough idea of how the student would score without 

manipulation of his or her answers.  Table 10 presents estimates of the relationship between 

observable student characteristics and cheating.  The unit of analysis is a student and the sample 

is restricted to students in classrooms that were categorized as cheating using the 95th percentile 

cutoff.  The dependent variable takes on the value of one if an individual student’s answer string 

and test score pattern was suspicious at the 95th percentile level, suggesting that the teacher had 

cheated for that student in the particular subject and year.  The results are not sensitive to the 

particular cutoffs used.  The first two columns include all cheating schools; the final two 

columns narrow the sample to low-achieving schools, where the cheating appears to be 

concentrated.  All of the specifications include fixed effects for classroom*year so that the 

coefficients are estimated off of variation across students within a particular classroom.  Because 

a student’s test score at t-1 is highly correlated with the cheating indicator (by definition), the 

                                                           
34 Another possible incentive that teachers might respond to is the likelihood of punishment.  Punishment for 
cheating, however, is extremely rare, with only two known instances of cheating teachers being disciplined.  
Beginning in 1996, CPS began doing audits of test scores.  Initially, these were mostly random in nature.  More 
recently, they have focused on classrooms with large test score gains.  Our data on audits is incomplete, however.  
When we included information on audits in the regressions, no statistically significant coefficients were obtained. 
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equations are estimated using 2SLS where a student’s test scores at t-2 are used to instrument for 

the student’s t-1 achievement level. 

In column 1, teachers are roughly 6 percentage points more likely to cheat for students 

who scored in the second quartile (between the 25th and 50th percentile) in the prior year, as 

compared to students scoring at the third or fourth quartiles.  Interestingly, teachers appear least 

likely to cheat for the lowest-achieving students (the coefficient on the bottom quartile indicator 

is negative although not statistically significant).  Teachers are also less likely to cheat for 

students who are excluded from test reporting, as would be expected. Teachers also appear to 

less frequently cheat for boys and for older students. 

Column 2 presents an alternative specification that includes a linear measure of the 

student’s prior achievement along with the interaction between prior achievement and an 

indicator for the high-stakes testing regime (encompassing both the probation and social 

promotion policies). 35  Here we see that, prior to the introduction of the accountability policy, 

teachers were more likely to cheat for higher achieving students.  The shift by teachers to 

cheating for lower-achieving students after accountability measures were introduced is consistent 

with the change in incentives.  School probation is based on the fraction of students exceeding a 

minimum threshold of competence.  Student promotion requires a student meeting a hurdle well 

below the median student in the system.  Columns 3 and 4 demonstrate that the same basic 

relationships hold for the subset of lower-achieving schools. 

 

                                                           
35 Ideally, one would also like to include interactions between prior student achievement and the social promotion 
and school probation policies in specifications that parallel Column 1.  Unfortunately, the standard errors become so 
large that no useful conclusions can be drawn. 
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VIII.  Conclusion 

This paper develops an algorithm for determining the prevalence of teacher cheating on 

standardized tests and applies the results to data from the Chicago Public Schools.  Our methods 

reveal over 1,000 separate instances of classroom cheating, representing 4-5 percent of the 

classrooms.  Moreover, we find that teacher cheating appears quite responsive to relatively minor 

changes in incentives. 

Our results suggest that the implementation of test-based accountability in schools must 

be approached with caution.  If accountability policies create strong incentives without 

instituting safeguards against cheating, we would predict substantial increases in teacher (or 

administrator) cheating.  This will not only decrease the effectiveness of the reform in 

identifying struggling schools or highlighting effective pedagogical practices, but will also 

undermine public confidence in school reform.  As high-stakes testing becomes increasingly 

widespread, these concerns will grow.  Fortunately, there are several, relatively inexpensive 

ways in which schools systems might prevent cheating.  Districts could hire an outside agency to 

proctor the exams rather than having teachers administer the tests.  Similarly, teachers in one 

school might be required to administer exams at another school.    

More generally, this paper fits into a small but growing body of research focused on 

identifying corrupt or illicit behavior on the part of economic actors (e.g. Porter and Zona 1993, 

Fisman 2000, Di Tella and Schargrodsky 2001, Duggan and Levitt, forthcoming).  Because 

individuals engaged in such behavior actively attempt to cover their trails, the intellectual 

exercise associated with uncovering their misdeeds differs substantially from the typical 

economic application in which the researcher starts with a well defined measure of the outcome 
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variable (e.g. earnings, economic growth, profits) and then attempts to uncover the determinants 

of these outcomes.  In the case of corruption, there is typically no clear outcome variable, 

making it necessary for the researcher to employ non-standard approaches in generating such a 

measure.  We hope that the methods utilized in this paper provide some guidance to those 

seeking to identify corruption in other domains. 
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Appendix A: The Construction of Suspicious String Measures 

We rely on two different indicators of cheating: (1) unusually large test score gains that 

are not sustained on future exams and (2) unexpected response patterns among students within 

the same classroom.  We measure the likelihood of classroom response patterns in four different 

ways.  This appendix describes in greater detail how we construct each of the four measures of 

unexpected or suspicious responses.   

The first measure focuses on the most unlikely block of identical answers given on 

consecutive questions.  This is meant to pick up teachers who change a series of questions for 

some number of students in their classroom.  For example, a teacher may fill in the correct 

responses for the last six questions on the exam for ten low-achieving students in the class.  We 

calculate the probability that this block of answers would have occurred if student responses 

within a classroom were uncorrelated.  The more unlikely is the most unexpected block of test 

responses, the more likely it is that cheating occurred. 

Using past test scores, future test scores and background characteristics, we predict the 

likelihood that each student will give each answer on each question.  For each item, a student 

has four choices (A, B, C or D), only one of which is correct.  We estimate a multinomial logit 

for each item on the exam in order to predict how students will respond to each question. We 

estimate the following model for each item, using information from other students in that year, 

grade and subject.   
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where Yisc indicates the response of student s in class c on item i, the number of possible 

responses (J) is four, and and Xs is a vector that includes measures of prior and future student 

achievement in math and reading as well as demographic variables (such as race, gender and 

free lunch status) for student s.  Thus, a student’s predicted probability of choosing a particular 

response is identified by the likelihood of other students (in the same year, grade and subject) 

with similar background characteristics choosing that response.         

 Notice that by including future as well as prior test scores in the model we decrease the 

likelihood that students with unusually good teachers will be identified as cheaters, since these 

students will likely retain some of the knowledge learned in the base year and thus have higher 

future test scores.  Also note that by estimating the probability of selecting each possible 

response, rather than simply estimating the probability of choosing the correct response, we take 

advantage of any additional information that is provided by particular response patterns in a 

classroom. 

  Using the estimates from this model, we calculate the predicted probability that each 

student would answer each item in the way that he or she in fact did.   
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  for k = response actually chosen by student s on item i   

This provides us with one measure per student per item.  Taking the product over items within 

student, we calculate the probability that a student would have answered a string of consecutive 

questions from item m to item n as he or she did:  
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We then take the product across all students in the classroom who had identical responses in the 

string.  If we define z as a student, mn
zcS  as the string of responses for student z from item m to 

item n, and mn
scS and as the string for student s, then we can express the product as:  

(4) 
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Note that if there are ns students in class c, and each student has a unique set of responses to 

these particular items, then mn
scp~ collapses to mn

scp  for each student and there will be ns distinct 

values within the class.  On the other extreme, if all of the students in class c have identical 

responses, then there is only one distinct value of mn
scp~ .  We repeat this calculation for all 

possible consecutive strings of length three to seven; that is for all mnS  such that 73 ≤−≤ nm .  

We have experimented with searching over longer strings, but this does not change our results.     

To create our first indicator of suspicious string patterns, we take the minimum of the 

predicted block probability for each classroom.   

Measure 1:  )~(minM1 mn
scsc p=     

This measure captures the least likely block of identical answers given on consecutive questions 

in the classroom. 

The second measure of suspicious answer strings is intended to capture more general 

patterns of similarity in student responses. When a teacher changes answers on student test 

forms, it presumably increases the uniformity of responses across students in the class.  Thus, the 

overall degree of correlation in student answers across the test may be quite high, even if there is 

not one particularly unusual block of identical answers. 
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To construct this measure, we first calculate the residuals for each of the possible choices 

a student could have made for each item.    

(5) 
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where ejisc is the residual for response j on item i by student s in classroom c.  We thus have four 

separate residuals per student per item.   

To create a classroom level measure of the response to item i, we need to combine the 

information for each student.  First, we sum the residuals for each response across students 

within a classroom.   

(6)  ∑=
s

jiscjic ee  

If there is no within class correlation in the way that students responded to a particular item, this 

term should be approximately zero.  Second, we sum across the four possible responses for each 

item within classrooms.  At the same time, we square each of the component residual measures 

to accentuate outliers and divide by number of students in the class (nsc) to normalize by class 

size. 
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The statistic vic captures something like the variance of student responses on item i within 

classroom c.  Notice that we choose to first sum across the residuals of each response across 
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students and then sum the classroom level measures for each response, rather than summing 

across responses within student initially.  We do this in order to emphasize the classroom level 

tendencies in response patterns. 

 Our second measure of suspicious strings is simply the classroom average (across items) 

of this variance term across all test items.   

  Measure 2: 
ni

v
v i

ic

cc

∑
==2M  where ni is the number of items on the exam. 

Note that within-classroom correlation may arise for many reasons other than cheating.  For 

example, a teacher may emphasize a certain topic or set of skills during the school year.     

 Our third measure focuses on the variance (as opposed to the mean) in the degree of 

correlation across questions.  If the teacher changes answers for multiple students on some set of 

questions, the within-classroom correlation on those particular items will be extremely high 

while the degree of within-classroom correlation on other questions will likely be typical.  This 

will cause the cross-question variance in correlations to be larger than normal in cheating 

classrooms. 

 Measure 3:  
ni

vv
i

cic

vc c

∑ −
==

2

2
)(

M3 σ  

Our final indicator focuses on the extent to which a student’s response pattern was 

different from other student’s with the same aggregate score that year.  Questions vary 

significantly by difficulty.  The typical student will answer most of the easy questions correctly 

and get most of the hard questions wrong.  If students in a class miss the easy questions while 

answering the hard questions correctly, this could be an indicator of cheating.   
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Let qisc equal one if student s in classroom c answered item i correctly, and zero 

otherwise.  Let As equal the aggregate score of student s on the exam. We then determine what 

fraction of students at each aggregate score level answered each item correctly.  If we let nsA 

equal then number of students with an aggregate score of A, then this fraction, A
iq , can be 

expressed as 

(8)   { }

A

AAzs
isc

A
i ns

q
q sz

∑
=∈= :  

We then calculate a measure of how much the response pattern of student s differed from the 

response pattern of other students with the same aggregate score.  We do so by subtracting a 

student’s answer on item i from the mean response of all students with aggregate score A, 

squaring these deviations and then summing across all items on the exam.       

(9) ( )∑ −=
i

A
iiscsc qqZ 2   

We then subtract out the mean deviation for all students with the same aggregate score, AZ , and 

sum the students within each classroom to obtain our final indicator. 

 Measure 4:  ( )∑ −=
s

A
scc ZZM4  
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Figure 1:  The Relationship Between Unusual Test Scores and Suspicious Answer Strings 

 

 
 
Notes: The measure of suspicious answer strings on the horizontal axis is measured in terms of the classroom’s rank 
within its grade, subject and year, with zero representing the least suspicious classroom and one representing the 
most suspicious classroom.  The 95th percentile cutoff for both the suspicious answer strings and test score 
fluctuation measures.  The results are not sensitive to the cutoff used.  The observed points represent averages from 
200 equally spaced cells along the x-axis.  The predicted line is based on a probit model estimated with seventh 
order polynomials in the suspicious string measure.    
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Figure 2: Sample Answer Strings and Test Scores from Two Classrooms 
 Student Test Scores 

Student Answer Strings 
(each row represents one student’s answers) Year t-1 Year t Year t+1 

Suspected Cheating Classroom    
112A4A342CB214D0001ACD24A3A12DADBCB4A0000000 1.9 5.3 4.4 
1B2A34D4AC42D23B141ACD24A3A12DADBCB4A2134141 4.3 5.6 4.3 
DB2ABAD1ACBDDA212B1ACD24A3A12DADBCB400000000 3.0 6.5 5.1 
D43A3A24ACB1D32B412ACD24A3A12DADBCB422143BC0 5.2 5.9 4.9 
D43AB4D1AC3DD43421240D24A3A12DADBCB400000000 4.8 5.3 3.6 
1142340C2CBDDADB4B1ACD24A3A12DADBCB43D133BC4 3.6 6.3 4.9 
DBA2BA21AC3D2AD3C4C4CD40A3A12DADBCB400000000 1.9 6.1 3.6 
DBAA4ADC4CBD24DBCB2A1110A3A12DADBCB400000000 3.3 6.3 6.2 
144A3ADC4CBDDADBCBC2C2CC43A12DADBCB4211AB343 3.0 6.8 4.9 
D43ABA3CACBDDADBCBCA42C2A3212DADBCB42344B3CB 4.8 7.1 6.6 
214AB4DC4CBDD31B1B2213C4AD412DADBCB4ADB00000 3.6 6.1 4.3 
313A3AD1AC3D2A23431223C000012DADBCB400000000 3.8 4.7 5.1 
D4AAB2124CBDDADBCB1A42CCA3412DADBCB423134BC1 5.5 6.6 7.7 
3B3AB4D14C3D2AD4CBCAC1C003A12DADBCB4ADB40000 3.0 6.5 6.6 
DBAAB3DCACB1DADBC42AC2CC31012DADBCB4ADB40000 3.8 7.1 5.6 
DB223A24ACB11A3B24CACD12A241CDADBCB4ADB4B300 4.9 6.5 5.8 
D122BA2CACBD1A13211A2D02A2412D0DBCB4ADB4B3C0 3.6 6.1 6.2 
1423B4D4A23D24131413234123A243A2413A21441343 4.9 2.5 5.6 
DB4ABADCACB1DAD3141AC212A3A1C3A144BA2DB41B43 5.9 6.5 7.7 
DB2A33DCACBD32D313C21142323CC300000000000000 3.8 4.4 5.6 
1B33B4D4A2B1DADBC3CA22C000000000000000000000 5.0 4.4 7.2 
D12443D43232D32323C213C22D2C23234C332DB4B300 3.3 3.8 3.6 
D4A2341CACBDDAD3142A2344A2AC23421C00ADB4B3CB 6.4 5.9 6.2 

* * ** **!*!!!!!!!!!*! ! * 4.1 5.8 5.5 
Correlation across students on each question 

(* = high , ! = very high) Average Test Scores 

Typical Classroom    
DB3A431422BD131B4413CD4221A1CDA332342D3AB4C4 4.0 5.1 5.1 
D1AA1A11ACB2D3DBC1CA22C23242C3A142B3ADB243C1 4.6 5.9 5.3 
D42A12D2A4B1D32B21CA2312A3411D00000000000000 4.5 3.8 6.4 
3B2A34344C32D21B1123CDC000000000000000000000 3.3 2.8 5.1 
34AABAD12CBDD3D4C1CA112CAD2CCD00000000000000 3.8 5.6 6.4 
D33A3431A2B2D2D44B2ACD2CAD2C2223B40000000000 4.6 4.9 5.8 
23AA32D2A1BD2431141342C13D212D233C34A3B3B000 3.3 4.4 4.9 
D32234D4A1BDD23B242A22C2A1A1CDA2B1BAA33A0000 5.1 5.6 5.9 
D3AAB23C4CBDDADB23C322C2A222223232B443B24BC3 4.7 5.6 7.0 
D13A14313C31D42B14C421C42332CD2242B3433A3343 2.2 3.8 4.9 
D13A3AD122B1DA2B11242DC1A3A12100000000000000 4.5 4.1 5.9 
D12A3AD1A13D23D3CB2A21CCADA24D2131B440000000 3.6 5.3 5.9 
314A133C4CBD142141CA424CAD34C122413223BA4B40 3.3 4.7 4.4 
D42A3ADCACBDDADBC42AC2C2ADA2CDA341BAA3B24321 5.6 6.9 8.5 
DBAA34DC2CB2DADB24C412C1ADA2C3A341BA20000000 5.0 5.9 7.0 
D1341431ACBDDAD3C4C213412DA22D3D1132A1344B1B 3.8 5.3 5.3 
1BA41A21A1B2DADB24CA22C1ADA2CD32413200000000 4.3 5.3 6.8 
DBAA33D2A2BDDADBCBCA11C2A2ACCDA1B2BA20000000 4.5 6.8 7.9 

* * ** * 4.2 5.1 6.0 
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Notes: The data in the table represent actual answer strings and test scores from two CPS classrooms taking the 
same exam.  The top classroom is suspected of cheating; the bottom classroom is not.  Each row corresponds to an 
individual student.  Each column represents a particular question on the exam.  A letter indicates that the student 
gave that answer and the answer was correct.  A number means that the student gave the corresponding letter answer 
(e.g. 1=”A”), but the answer was incorrect.  A value of “0” means the question was left blank.  Student test scores, 
in grade equivalents, are shown in the last three columns of the table.  The test year for which the answer strings are 
presented is denoted year t.  The scores from years t-1 and t+1 correspond to the preceding and following years’ 
examinations.
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Table 1: Summary Statistics 

 

Cross-Classroom 
Analysis 

(classroom level data, 
one observation per 
class*year*subject 

Within-Classroom 
Analysis (student level 

data, includes only 
students in classrooms 
labeled cheaters using 

the 95th % cutoff) 
Variables   

Accountability Policy   
Social promotion policy 0.215 0.289 
School probation policy 0.127 0.164 
Test form offered for the first time 0.371 0.327 
Student Characteristics   
In bottom quartile of achievement in prior year -- 0.416 
In second quartile of achievement in prior year -- 0.283 
In third quartile of achievement in prior year -- 0.202 
Excluded from official test reporting in current year -- 0.041 
Reading percentile 2 years prior -- 34.3 
Math percentile 2 years prior -- 38.3 
Black -- 0.732 
Hispanic -- 0.194 
Male -- 0.486 

Age -- 11.0 
(1.5) 

Special Education -- 0.061 
Living in foster care -- 0.050 
Living with non-parental relative -- 0.076 
Teacher cheated for this student  – 80th percentile cutoff -- 0.448 
Teacher cheated for this student  – 90th percentile cutoff -- 0.294 
Teacher cheated for this student  – 95th percentile cutoff -- 0.180 
Classroom Characteristics   
Mixed grade classroom 0.073 0.021 
Teacher administers exams to her own students (3rd grade) 0.206 0.291 
Percent of students who were tested and included in official 
reporting  0.883 0.915 

Average prior achievement  
(as deviation from year*grade*subject  mean) 

-0.004 
(0.661) 

-0.151 
(0.558) 

% Black 0.595 0.726 
% Hispanic 0.263 0.196 
% Male 0.495 0.491 
% Old for grade 0.086 0.082 
% Living in foster care 0.044 0.053 
% Living with non-parental relative 0.104 0.082 
Cheater – 95th percentile cutoff 0.013 1.00 
School-Level Teacher Characteristics   
Average quality of teachers’ undergraduate institution in the 
school 

-2.550 
(0.877) 

-2.801 
(0.846) 

Percent of teachers who live in Chicago 0.712 0.723 
Percent of teachers who have a MA or PhD 0.475 0.480 
Percent of teachers who majored in education 0.712 0.719 
Percent teachers under 30 years of age  0.114 0.111 
Percent of teachers at the school less than 3 years 0.547 0.546 
School Characteristics   
% students at national norms in reading last year 28.8 26.0 
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% students receiving  free lunch in school 84.7 88.5 
Predominantly Black school 0.522 0.687 
Predominantly Hispanic school 0.205 0.164 
Mobility rate in school 28.6 29.5 
Attendance rate in school 92.6 92.3 

School size 722 
(317) 

784 
(304) 

Number of observations 163,474 39,216 
Notes: Robust standard errors clustered by school*year are shown in parenthesis. Other variables included in the 
regressions but not shown here include cubic terms for the number of students in the class as well as indicators of the 
percent of students who were black, Hispanic, receiving free lunch, old for grade, in a special education program, 
male, living in foster care, and living with a non-parental relative.   
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Table 2: The Fraction of Classrooms Identified as Cheaters 
Using Simulated Data for 5th Grade Math in 1993 

  Percent of class affected 

Manner in which the test forms are 
altered 

Number of 
questions 

changed per 
student 

25 50 100 

3 3.95 20.06 56.40 

6 15.16 53.95 87.29 

Scenario I – Unsophisticated 
cheater Teacher changes a randomly 
selected block of answers for a 
randomly selected group of students.  
Students do not retain any gains. 9 29.47 77.68 89.45 

3 2.26 10.08 52.54 

6 5.56 33.80 86.06 

Scenario II – Sophisticated cheater 
Teacher changes every other 
incorrect question for randomly 
selected students in the class.  
Students do not retain any gains. 9 11.68 57.25 91.43 

3 0.75 0.75 2.64 

6 0.75 2.64 17.04 

Scenario III – A Good teacher who 
provides real gains for students 
Teacher enhances learning so that 
students correctly answer marginal 
questions.  Students retain 80% of 
gains. 9 1.41 7.91 37.48 

Notes: The results in this table are from simulations in which the authors alter test answers in an attempt to imitate 
cheating or outstanding teaching.  For each classroom, we manipulate the answer strings in the manner stated in the 
table, and then determine whether the classroom would qualify as cheating by our definition, holding constant the 
other classrooms in that grade and year.  The results presented are for fifth grade reading in 1993, using our measure 
of cheating based on the 95th percentile of both ANSWERS and SCORE.  The baseline cheating rate in the raw data 
for this subject, grade and year is 1.13 percent. 
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Table 3: The Relationship between Measures of Unusual Test Scores 
and Suspicious Answer Strings in Parts of the Distribution 

Unlikely to Contain Many Cheating Classrooms 

  ANSWERS falls within the range 

  0-25th percentile 25-50th percentile 50-75th percentile 

80th percentile 0.163 0.175 0.187 

90th percentile 0.062 0.073 0.088 
Percent of 

observations with 
SCORE above: 

95th percentile 0.023 0.028 0.038 

  SCORE falls within the range 

  0-25th percentile 25-50th 
percentile 

50-75th 
percentile 

80th percentile .245 .151 .137 

90th percentile .118 .062 .060 

Percent of 
observations with 

ANSWERS 
above: 

95th percentile .049 .026 .026 

Notes: Values in the table are the percentage of classrooms in the sample meeting the criteria of each cell in a 
particular year on a particular subject test.  The unit of observation is a classroom*subject*year.  If SCORE and 
ANSWERS were independently distributed, the values in the first and fourth rows of the table will be .20, in the 
second and fifth rows the values will be .10, and in the 3rd and sixth rows the values will be .05. 
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Table 4: Estimated Prevalence of Teacher Cheating 
(Percent of All Classrooms in a Single Year) 

Percent cheating on a particular test subject (e.g.Reading comprehension, Math 1) 

 
 

 
Cutoff for Test Score Fluctuations (SCORE): 

 

  
80th percentile 

 
90th percentile 

 
95th percentile 

80th percentile 2.1 2.1 1.8 

90th percentile 1.8 1.8 1.5 

Cutoff for 
suspicious 

answer strings 
(ANSWERS) 

95th percentile 1.3 1.3 1.1 

 
Percent cheating on at least one of the four tests given 

   
Cutoff for Test Score Fluctuations (SCORE): 

  
80th percentile 

 
90th percentile 

 
95th percentile 

80th percentile 4.5 5.6 5.3 

90th percentile 4.2 4.9 4.4 

 
Cutoff for 
suspicious 

answer strings 
(ANSWERS) 

95th percentile 3.5 3.8 3.4 
Notes: The top panel of the table presents estimates of the percentage of classrooms cheating on a particular subject 
test in a given year based on three alternative cutoffs for ANSWERS and SCORE.  In all cases, the prevalence of 
cheating is based on the excess number of classrooms with unexpected test score fluctuation among classes with 
suspicious answer strings relative to classes that do not have suspicious answer strings.  The bottom panel of the 
table presents estimates of the percentage of classrooms cheating on at least one of the four subject tests that 
comprise the overall test.  In the bottom panel, classrooms that cheat on more than one subject test are only counted 
once.  Our sample includes over 35,000 3rd-7th grade classrooms in the Chicago Public Schools for the years 1993-
1999.  
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Table 5: The Prevalence of Cheating by Grade and Subject 
 95th Percentile 

Grade Reading 
Comprehension 

Math 1 
(Number Concepts 

& Estimation) 

Math 2 
(Data Interpretation & 

Problem Solving) 

Math 3 
(Computation) 

3rd 2.41 1.46 1.41 1.23 

4th 1.29 1.26 0.76 1.04 

5th 0.90 1.04 0.49 1.30 

6th 1.18 1.05 0.78 1.42 

7th 0.63 0.80 0.32 0.95 

 90th Percentile 

Grade Reading 
Comprehension 

Math 1 
(Number Concepts 

& Estimation) 

Math 2 
(Data Interpretation & 

Problem Solving) 

Math 3 
(Computation) 

3rd 4.05 2.72 2.50 1.92 

4th 1.72 1.90 1.19 1.64 

5th 1.04 1.47 0.64 2.09 

6th 1.39 1.93 0.89 2.55 

7th 1.10 1.49 0.74 1.64 
Notes: The top panel of the table presents estimates of the percentage of classrooms cheating on a particular subject 
test in a given year based on the 90th percentile cutoff for ANSWERS and SCORE and the bottom panel presents 
those for the 90th percentile cutoff.   In all cases, the prevalence of cheating is based on the excess number of 
classrooms with unexpected test score fluctuation among classes with suspicious answer strings relative to classes 
that do not have suspicious answer strings. 
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Table 6: Mean Reversion in Classrooms with Large Test Score Gains 
Categorize by Suspiciousness of Answer Strings 

 Class percentile rank on suspiciousness of answer strings 
 Low 

(0-50th) 
Moderate 
(50-80th) 

High 
(80-95th) 

Very High 
(95-99th) 

Highest 
(>99th) 

Panel A:  Sample includes top 10% of classrooms on average test score gain measure 
Current year test score gain 
(relative to the system mean) 0.59 0.61 0.67 0.78 0.93 

Subsequent year test score 
gain (relative to the system 
mean)  

-0.11 -0.21 -0.34 -0.53 -0.81 

Percent of excess gain lost in 
the following year 81.0 65.6 49.3 32.1 12.9 

Number of classrooms 6,781 4,190 3,094 1,616 884 
Panel B:  Sample includes top 5% of classrooms on average test score gain measure 

Current year test score gain 
(relative to the system mean) 0.71 0.74 0.79 0.91 1.01 

Subsequent year test score 
gain (relative to the system 
mean)  

-0.13 -0.25 -0.38 -0.60 -0.86 

Percent of excess gain lost in 
the following year 81.7 66.2 51.9 34.1 14.9 

Number of classrooms 2,858 1,964 1,674 1,054 735 
Panel C:  Sample includes top 1% of classrooms on average test score gain measure 

Current year test score gain 
(relative to the system mean) 0.99 1.00 1.07 1.20 1.26 

Subsequent year test score 
gain (relative to the system 
mean)  

-0.19 -0.29 -0.47 -0.80 -1.06 

Percent of excess gain lost in 
the following year 80.8 71.0 56.1 33.3 15.9 

Number of classrooms 332 288 335 353 356 
Notes: Values reported in the top two rows of the table are the excess test score gains in the current year and the 
following year for the ten percent of classrooms experiencing the greatest test score gains, broken down by how 
suspicious the classes answer strings are in the current year.  Excess test scores are defined as the mean test score 
gain in the class (measured in grade equivalents) relative to the system mean in that grade, subject, and year.  The 
third row of the table presents the fraction of the excess gain that a classroom loses in the following year.  The larger 
is this number, the more transitory were the previous year’s gains.  Spurious gains due to cheating are expected to be 
more transitory than gains due to true learning.   
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Table 7: Patterns of Cheating within Classrooms and Schools 
 Dependent variable =  

Class suspected of cheating  
(Class is above the 95th percentile on both SCORE and 
ANSWERS on a particular subject test: mean=0.011) 

Independent Variables Full Sample 
Sample of classes and 

school that existed in the 
prior year 

Classroom cheated on exactly one 
other subject this year on this  

0.105 
(0.008) 

0.103 
(0.008) 

0.101 
(0.009) 

0.101 
(0.009) 

Classroom cheated on exactly two 
other subjects this year 

0.289 
(0.027) 

0.285 
(0.027) 

0.243 
(0.031) 

0.243 
(0.031) 

Classroom cheated on all three other 
subjects this year 

0.627 
(0.051) 

0.622 
(0.051) 

0.595 
(0.054) 

0.595 
(0.054) 

Cheating rate among all other classes 
in the school this year on this subject -- 0.166 

(0.030) 
0.134 

(0.027) 
0.129 

(0.027) 
Cheating rate among all other classes 
in the school this year on other subjects -- 0.023 

(0.024) 
0.059 

(0.026) 
0.045 

(0.029) 
Cheating in this classroom in this 
subject last year -- -- 0.096 

(0.012) 
0.091 

(0.012) 
Number of other subjects this 
classroom cheated on last year  -- -- 0.023 

(0.004) 
0.018 

(0.004) 
Cheating in this classroom ever in the 
past -- -- -- 0.006 

(0.002) 
Cheating rate among other classrooms 
in this school in past years -- -- -- 0.090 

(0.040) 
Full set of grade*subject*year 
interactions included? Yes Yes Yes Yes 

R-squared 0.090 0.093 0.109 0.109 
Number of Observations 165,578 165,578 94,182 94,170 
Notes:  The dependent variable is an indicator for whether a classroom is above the stated cutoff on ANSWERS and 
SCORE on a particular subject test.   Estimation is done using a linear probability model. Columns that include 
measures of cheating in prior years, observations where that classroom and/or school does not appear in the data in 
the prior year are excluded.  Standard errors are clustered at the school level to take into account correlations across 
classroom as well as serial correlation.   
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Table 8: The Relationship between within-class Correlations, Item Types, and Cheating 
 Dependent variable 

 For the 3 most highly 
correlated questions … 

For the 5 most highly 
correlated questions … 

Independent Variable = 
Classroom labeled a cheater 

The number 
of different 
item types 

Whether all 
of the 

questions 
were of a 

single type 

The number 
of different 
item types 

Whether all 
of the 

questions 
were of a 

single type 

Classroom labeled a cheater 
-0.009 
(0.027) 
[2.403] 

0.018 
(0.011) 
[0.076] 

0.039 
(0.037) 
[3.335] 

0.022 
(0.005) 
[0.014] 

Alternative Specifications     

Consider estimation sub-groups as 
separate item categories 

-0.068 
(0.022) 
[2.642] 

0.020 
(0.006) 
[0.020] 

-0.120 
(0.033) 
[3.927] 

0.001 
(0.001) 
[0.001] 

Exclude numeration items because 
this category encompasses a wide 
variety of different math skills (e.g., 
operations with positive and negative 
numbers, inequalities, exercises 
involving number lines, definitions of 
integer, whole number, fraction, etc.) 

0.039 
(0.029) 
[1.983] 

-0.020 
(0.018) 
[0.235] 

0.122 
(0.036) 
[2.723] 

-0.004 
(0.011) 
[0.066] 

Notes: The unit of observation for this analysis is classroom*grade*year and the sample is limited to results from the 
Math Section I exam.  The cheating indicator used is based on the 95th percentile cutoff.  All estimates include fixed 
effects for grade and year.  Robust standard errors that account for the correlation within a school*year are shown in 
parenthesis and the baseline (non-cheating) means are shown in square brackets.      
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Table 9: OLS Estimates of the Relationship between Cheating 
and Classroom Characteristics 

 Dependent variable =  
Indicator of classroom cheating  

Independent variables (1) (2) (3) (4) 

Social promotion policy 0.0011 
(0.0013) 

0.0011 
(0.0013) 

0.0015 
(0.0013) 

0.0023 
(0.0009) 

School probation policy 0.0020 
(0.0014) 

0.0019 
(0.0014) 

0.0021 
(0.0014) 

0.0029 
(0.0013) 

Prior classroom achievement -0.0047 
(0.0005) 

-0.0028 
(0.0005) 

-0.0016 
(0.0007) 

-0.0028 
(0.0007) 

Social promotion*classroom achievement  -- -0.0049 
(0.0014) 

-0.0051 
(0.0014) 

-0.0046 
(0.0012) 

School probation*classroom achievement -- -0.0070 
(0.0013) 

-0.0070 
(0.0013) 

-0.0064 
(0.0013) 

Mixed grade classroom -0.0084 
(0.0007) 

-0.0085 
(0.0007) 

-0.0089 
(0.0008) 

-0.0089 
(0.0012) 

% of students included in official reporting  0.0252 
(0.0031) 

0.0249 
(0.0031) 

0.0141 
(0.0037) 

0.0131 
(0.0037) 

Teacher administers exam to own students 0.0067 
(0.0015) 

0.0067 
(0.0015) 

0.0066 
(0.0015) 

0.0061 
(0.0011) 

Test form offered for the first time -0.0007 
(0.0011) 

-0.0007 
(0.0011) 

-0.0011 
(0.0010) --a 

Average quality of teachers’ undergraduate institution  -- -- -0.0026 
(0.0007) -- 

Percent of teachers who have worked at the school 
less than 3 years  -- -- -0.0045 

(0.0031) -- 

Percent teachers under 30 years of age -- -- 0.0156 
(0.0065) -- 

Percent of students in the school meeting national 
norms in reading last year -- -- 0.0001 

(0.0000) -- 

Percent free lunch in school -- -- 0.0001 
(0.0000) -- 

Predominantly Black school -- -- 0.0068 
(0.0019) -- 

Predominantly Hispanic school -- -- -0.0009 
(0.0016) -- 

School*Year Fixed Effects No No No Yes 
Number of observations 163,474 163,474 163,474 163,474 

Notes: The unit of observation is classroom*grade*year*subject and the sample includes years eight years (1993 to 
2000), four subjects (reading comprehension and three math sections) and five grades (three to seven).  The 
dependent variable is the cheating indicator derived using the 95th percentile cutoff.  Robust standard errors clustered 
by school*year are shown in parenthesis. Other variables included in the regressions in column 1 and 2 include a 
linear time trend, grade, cubic terms for the number of students, a linear grade variable, and fixed effects for 
subjects.  The regression shown in column 3 also includes the following variables: indicators of the percent of 
students in the classroom who were black, Hispanic, male, receiving free lunch, old for grade, in a special education 
program, living in foster care and living with a non-parental relative, indicators of school size, mobility rate and 
attendance rate, and indicators of the percent of teachers in the school Other variables include the percent of teachers 
in the school who had a masters or doctoral degree, lived in Chicago and were education majors. a Test forms vary 
only by year so this variable will drop out of the analysis when school*year fixed effects are included. 
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Table 10: In Cheating Classrooms, for Whom do Teachers Cheat? 

 Dependent variable =  
Teacher cheated for the student 

Independent variables (1) (2) (3) (4) 
Prior achievement in the bottom 
quartile  

0.011 
(0.038) -- -0.007 

(0.075) -- 

Prior achievement in the 2nd quartile  0.057 
(0.024) -- 0.069 

(0.039) -- 

Prior achievement in the 3rd quartile  0.023 
(0.067) -- -0.012 

(0.141) -- 

Prior achievement (linear measure)  -- 0.0004 
(0.0003) -- 0.0005 

(0.0004) 
Prior achievement (linear) * High-
stakes -- -0.0007 

(0.0004) -- -0.0007 
(0.0005) 

Excluded from test reporting -0.045 
(0.014) 

-0.048 
(0.014) 

-0.045 
(0.021) 

-0.052 
(0.020) 

Male -0.009 
(0.004) 

-0.009 
(0.004) 

-0.014 
(0.005) 

-0.013 
(0.005) 

Black 0.005 
(0.011) 

0.006 
(0.011) 

0.004 
(0.024) 

0.001 
(0.023) 

Hispanic -0.010 
(0.010) 

-0.008 
(0.009) 

0.006 
(0.023) 

0.004 
(0.022) 

Age -0.010 
(0.004) 

-0.012 
(0.004) 

-0.015 
(0.005) 

-0.017 
(0.005) 

Sample Full Low-Achieving Schools 
Number of observations 39,216 23,010 
Notes: The sample includes only those classrooms that were categorized as cheating based on the 95th percentile 
cutoff in a particular subject and year.  The dependent variable takes on the value of one if a student’s answer string 
and test score pattern was suspicious at the 90th percentile level, suggesting that the teacher had cheated for that 
student in the particular subject and year.  All models include fixed effects for classroom*year.  Low achieving 
schools are defined as those in which fewer than 25% of students met national norms in reading in 1995.  The 
equations are estimated using 2SLS where a student’s test scores at t-2 are used to instrument for the student’s t-1 
achievement level.  Robust standard errors are shown in parenthesis. 

 
 




