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Abstract
Large-area epitaxial growth of III–V nanowires and thin films on van der Waals substrates is key to
developing flexible optoelectronic devices. In our study, large-area InAs nanowires and planar
structures are grown on hexagonal boron nitride templates using metal organic chemical vapor
deposition method without any catalyst or pre-treatments. The effect of basic growth parameters on
nanowire yield and thin film morphology is investigated. Under optimised growth conditions, a high
nanowire density of 2.1´ 109 cm−2 is achieved. A novel growth strategy to achieve uniform InAs
thin film on h-BN/SiO2/Si substrate is introduced. The approach involves controlling the growth
process to suppress the nucleation and growth of InAs nanowires, while promoting the radial growth
of nano-islands formed on the h-BN surface. A uniform polycrystalline InAs thin film is thus
obtained over a large area with a dominant zinc-blende phase. The film exhibits near-band-edge
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emission at room temperature and a relatively high Hall mobility of 399 cm−2/(Vs). This work
suggests a promising path for the direct growth of large-area, low-temperature III–V thin films on
van der Waals substrates.

Supplementary material for this article is available online

Keywords: InAs, nanowires, MOCVD, van der waals epitaxy, polycrystalline thin film

(Some figures may appear in colour only in the online journal)

1. Introduction

III–V compound semiconductor materials are of great
importance in various applications such as light emitting
diodes (LEDs) [1], lasers [2–4], sensors [5] and solar cells [6].
Recent years have seen a growing research interest in low-
temperature-grown semiconducting materials for various
applications such as sensors integrated above integrated cir-
cuits (IC), display technologies and back-end-of-line inte-
gration [7, 8]. Low-temperature (<500 °C) processing is
indeed crucial for these applications as the substrate or the
deposited layers involved might not be compatible with high-
temperature processes. Incorporating low-temperature-grown
semiconductor materials on cheap and flexible substrates has
the further merit of reducing production costs.

Epitaxial growth of III–V nanowires (NWs) and thin
films (TFs) have been explored extensively on conventional
substrates such as GaAs and Si. For NW growth, a well-
explored growth mechanism is the vapor–liquid–solid (VLS)
mechanism. However, using gold as a catalyst raises concerns
of its incorporation in the grown material. This issue has been
addressed by alternative growth methods such as self-cata-
lyzed and catalyst-free growth on various types of substrates.

The growth of III–V TFs has been mostly investigated on
lattice-matched substrates. When grown on substrates of
dissimilar lattice parameter (e.g. Si), buffer layers have been
employed to accommodate the strain due to lattice and ther-
mal mismatch. Such heteroepitaxial growth of III–Vs on Si or
dielectric SiO2/Si substrates has also been explored and
shown promising results [9]. However, high-quality hetero-
epitaxy remains challenging to achieve. The deposited mat-
erial often shows nano or micro-scale grain sizes and little
morphology control given the large lattice and thermal
mismatch.

Over the past decade, interest in III–V compound semi-
conductor NW and TF growth on unconventional and novel
substrates such as van der Waals (vdW) or two-dimensional
(2D) substrates has grown. The use of various vdW substrates
such as synthetic mica [10], graphene [11, 12], h-BN [13] and
MoS2 [14], with metal–organic chemical vapor deposition
(MOCVD), molecular beam epitaxy (MBE) and chemical
vapor deposition (CVD) has been reported. III–V TF growth
on 2D substrates, although very attractive for the obvious
reasons of relaxing the strict requirement of lattice and ther-
mal matching, has been largely unexplored.

With the rise of vdW epitaxy research in recent years,
monolayers of 2D materials, such as graphene, are being
utilized as an epitaxial template for uniform TF growth,

creating an opportunity for integrating III–V semiconductors
on Si [12]. Research in this area often focuses on using 2D
materials that are exfoliated mechanically, which presents
scalability issues. This can be alleviated if III–V semi-
conductors are grown on large-area vdW substrates, such as
synthetic mica, or wafer-scale 2D materials. Moreover, the
wealth of information available about NW growth mech-
anism, including position control, dimensions, crystal struc-
ture, NW quantum wells and quantum dots, can be emulated
in vdW epitaxy. Much progress has been achieved in recent
years in the growth of III–V NWs on graphene. A recent
review article on vdW epitaxy of III–V NWs gives an account
of various methods used to achieve NW and device structures
[15]. However, more research and development is required to
explore the most suitable 2D substrates and growth conditions
for potential commercial-scale heteroepitaxy and device
applications.

Hexagonal boron nitride (h-BN) is a 2D-layered material
very similar to graphene in terms of crystal structure and
lattice parameter. The significant difference lies in their
physical properties, such as band structure, optical and elec-
trical characteristics [16]. Highly crystalline quality III-
nitrides can be grown on h-BN [17]. The unique layered
structure of vdW substrates allows the peel-off of as-grown
micro- and nanostructures and TFs.

Despite the growing interest in this field, only a few
reports on the growth of III–V NWs and TFs on 2D material
substrates are available. This study reports on large-area
catalyst-free growth of InAs NWs and TFs on few-layer h-BN
transferred on to SiO2/Si substrate. h-BN on SiO2/Si sub-
strate was purchased from Grolltex Inc. USA, figure S1 in
supporting information provides more details about the h-BN
layer properties. By systematically studying various growth
conditions, it is shown that a high yield of vertically oriented
NWs and uniform TF growth are possible on the h-BN sur-
face. This work lays the foundation for further research
toward achieving high-density III–V NWs and single crys-
talline III–V TFs on 2D materials.

2. Experimental methods

Catalyst-free InAs NW and TF growth on large-area few-
layer h-BN on SiO2/Si substrates was conducted in a hor-
izontal-flow MOCVD reactor using trimethylindium (TMIn)
and arsine (AsH3) as the group III and group V precursors,
respectively, with hydrogen as the carrier gas. The MOCVD
reactor was first pumped down to a pressure of 100 mbar.
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InAs NWs and TFs were grown using a single-temperature
growth step. The reactor was heated to the desired growth
temperature (TG) in a hydrogen atmosphere before TMIn and
AsH3 were introduced to initiate growth. NW growth was
carried out for 15 min, after which the reactor was allowed to
cooled under ambient AsH3 until the temperature dropped
below 350 °C. The effects of TG (450 °C–600 °C) and V/III
ratio (3–40) on NW density, length and diameter were
investigated. The V/III ratio for NW growth was varied by
keeping the group III flow rate at 6.206 × 10−6 mol min−1

and changing the group V flow rate correspondingly. The
influence of both TG and V/III ratio were also studied for
achieving uniform TF growth. Experiments to study the effect
of V/III ratio on TF growth were carried out to obtain
maximum areal coverage of smooth TF. This was done first
by varying the group V flow between 4.464 × 10−4 and
6.696 × 10−3 mol min−1 while keeping the group III flow rate
constant at 1.241 × 10−5 mol min−1 (V/III ratio in the range
of 40-540), and then by varying the group III flow rate
between 5.820 × 10−5 and 1.241 × 10−5 mol min−1 while
keeping the group V flow rate constant at 2.500 ×
10−3 mol min−1 (V/III ratio in the range of 40–200). Mor-
phological and structural characterizations of the NWs and
TFs were carried out using scanning electron microscopy
(SEM, FEI Verios 460L), atomic force microscopy (Bruker
ICON AFM) and transmission electron microscopy (TEM,
JEOL JEM-2100F). Optical characterizations were carried out
by infrared reflectance and photoluminescence (PL) mea-
surements. Infrared reflectance was performed using a Four-
ier-transform infrared spectrometer (FTIR, Frontier, Perkin
Elmer) coupled with a microscope under ambient environ-
ment. A liquid-nitrogen-cooled HgCdTe detector was used
with a Cassegrain objective. Measurements were carried out
over a 100 × 100 μm2 area using a variable aperture. The
spectra were acquired at a resolution of 4 cm−1 and referenced
against a reflecting gold surface of the same area. Infrared PL
spectra were measured at room temperature using an FTIR
(iS50, Thermo Fisher) at an excitation wavelength of 638 nm
and a liquid-nitrogen-cooled HgCdTe detector through a 15×
objective.

3. Results and discussion

3.1. InAs nanowires on hBN/SiO2/Si

The effects of TG and V/III ratio are studied to achieve NWs
with high vertical yield, good morphology and crystal
structure.

3.1.1. Effect of growth temperature. The SEM images in
figures 1(a)–(d) show NWs grown at various TG and V/III
ratio of 10. At a low TG of 450 °C, nanoislands are
predominantly formed. This can be indicative of a low
adatom diffusion length on the h-BN surface at the given TG.
As the temperature is increased further, NWs grow in
considerable density with the highest density being 2.1 ´
109 cm−2 at 500 °C, which is an order of magnitude higher

than what is reported for InAs NWs grown on graphitic
substrates using a self-catalyzed growth strategy [18]. The
NW density then reduces as TG is increased further to 600 °C.
The morphologies of the NWs also evolves as a function of
TG. The plots of the length, diameter and NW density as a
function of TG are shown in figures 1(e) and (f). Here, we
observe that the NWs length is directly proportional and the
diameter inversely proportional to TG. The observed
morphology evolution is expected due to the competition
between axial and radial growth. With increasing TG, the axial
growth rate is enhanced at the expense of the radial growth
rate, due to the enhanced adatom diffusion length allowing
migration to the top of the NWs. This is further evident from
the non-tapered NW morphology. Therefore, longer NWs
with smaller diameters are observed with increasing TG.

The observed NW density variation is due to the same
phenomenon. At higher TG, the high mobility of the adatoms
results in fewer adatoms able to spontaneously nucleate to
form NWs, hence the observed reduction in NW density at
high TG. Furthermore, the vertical orientation of InAs NWs
on h-BN is indicative of a good epitaxial relationship between
them. This is similar to what has been reported for InAs NWs
grown on graphene, where the authors concluded that, the
epitaxial relationship is due to near-lattice-matching condi-
tions between the InAs NWs and graphene [18, 19].

3.1.2. Effect of V/III ratio. The effect of V/III ratio on the
morphology of NWs at a constant TG of 500 °C is shown in
the SEM images of figures 2(a)–(d), which corresponds to V/
III ratios of 3, 5.4, 10 and 40, respectively. Plots of the NW
density, length and diameter as a function of V/III ratio are
shown in figures 2(e) and (f). The density of the NWs
increases with V/III ratio from 3 to 5 but decreases
significantly afterwards. At a low V/III ratio, there is less
AsH3 in the growth environment and hence less nucleation,
leading to an overall decrease in the number of NWs. On the
other hand, at a high V/III ratio, the mobility of In adatoms is
reduced and more spontaneous nucleation occurs on the h-BN
surface, which results in the coalescence of these nuclei rather
than the formation of NWs, thereby leading to a reduction in
NW density. The activation energy for the heterogeneous
reaction at the growth interface decreases as the V/III ratio is
increased. The observed reduction in NW length and the
considerable increase in NW diameter with V/III ratio is
attributed to the radial growth competing with axial growth.
Once again, this stems from the reduced In adatom mobility at
higher V/III ratios, leading to a more prominent deposition
on the NW side-walls than at its tip. This results in the NW
coalescence and nanoislands are inevitably formed on the
h-BN surface during growth, as observed in figure 2(d). A
further increase in V/III ratio can lead to the formation of an
InAs TF on h-BN. Uniform TF growth is explored later in
this work.

A TEM investigation of the NWs shows that they are all
formed in a mixed zinc- blende/wurtzite (ZB/WZ) phase
with no specific dependence on the growth temperature or
V/III ratio (supporting information—figure S2).
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3.2. InAs TF on hBN/SiO2/Si

The epitaxy of III–Vs on 2D material templates usually
involves the modification of the vdW surface by etching
techniques to promote nucleation sites. A review on recent
developments in vdW epitaxy of III–V semiconductors on 2D
materials reports the various surface treatments carried out to
promote and control the growth [15]. These treatments,
however, deteriorate the surface and affect its physical
properties. One of the first attempts to grow a continuous TF
of GaAs on graphene was reported by Alaskar et al [12].
using MBE on mechanically exfoliated multilayer graphene
layers transferred on SiO2/Si substrates. They conclude that

the high surface tension, caused by the low surface energy of
2D materials and the low adsorption and migration energy of
Ga, In, Al, As species on the graphitic surface, is the principal
obstacle to achieve 2D growth of III-As materials on
graphene.

In this section, we explore how we can utilize the for-
mation of nanoislands described above (figures 1 and 2) to
grow a uniform InAs TF on h-BN/SiO2/Si by systematically
studying the growth parameters. TG is kept constant to study
the effect of the V/III ratio on the nanoislands formation and
coalescence. As shown by the schematic in figure 3(a), by
increasing the V/III ratio, the NWs aspect ratio is reduced
considerably and they start to coalesce into nanoislands. As

Figure 1. SEM images of InAs NWs grown on hBN/SiO2/Si at different growth temperatures: (a) 450 °C, (b) 500 °C, (c) 550 °C, and (d)
600 °C. All scale bars indicate 1 μm. (e) Distribution of NW length (red) and diameter (blue) as a function of growth temperature. (f) Density
of NWs as a function of growth temperature.

4

Nanotechnology 34 (2023) 495601 A G S Vilasam et al



shown in the SEM images in figures 3(b)–(d), increasing the
V/III ratio beyond 40 inhibits of NW formation whilst
simultaneously increasing the size of the nanoislands. Results
on the effect of growth conditions as presented in supporting
information figure S3 show that an optimum V/III ratio of
200 and TG of 475 °C can achieve a uniformely covered TF.
Here, the group III flow rate was kept constant while the
group V flow rate was varied, to maintain the same growth
rate across experiments. Dayeh et al [20] demonstrated that
the temperature profile of NW growth is strongly influenced
by the input V/III ratio. Because a high V/III ratio lowers the
activation energy for planar growth and reduces the adatom
diffusion length. Hence, it can be concluded that at low TG
and at relatively high V/III ratio, the In adatom mobility is

reduced causing crystallisation on the hBN substrate surface
rather than on the NW growth site.

Figures 4(a)–(c) depict the TF growth at V/III ratios of
74, 100 and 200, respectively. These ratios were achieved by
changing the group III flow rate while maintaining a fixed
group V flow rate of 2.5 × 10−3 mol min−1. The growth
temperature was set at 475 °C and the growth times were
adjusted to compensate for the growth rate variation, with the
goal that all samples have the same total amount of group III
precursor deposited (3.723 × 10−5 mol). The growth times
(indicated in figures 4(a)–(c)) are adjusted to compensate for
the growth rate variation, as a result of varying the group III
flow rate.

Figure 2. SEM images of InAs NWs grown on a hBN/SiO2/Si with different V/III ratios: (a) 3 , (b) 5.4, (c) 10, and (d) 40. All scale bars
indicate 1 μm. (e) NW density as a function of V/III ratio. (f) Distribution of NW length and diameter as a function of V/III ratio).
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The growths resulted in a uniform coverage of poly-
crystalline TF with smooth morphology, as shown in
figures 4(a)–(c). At a V/III ratio of 100, the TF exhibits a
smooth morphology (figure 4(b)) with relatively low RMS
surface roughness and narrow rocking curve full-width-at-
half-maximum (FWHM), compared to TFs grown at other V/
III ratios as shown in figure 4(h). Thus, the observed growth
window of low temperature (475 °C) and high V/III ratio
(100) shown in figure 4(b) is ideal for TF growth on h-BN
surface through a catalyst-free vapor-solid growth mode.

A time evolution study of the best morphology obtained
is carried out to analyse the TF growth mode on the hBN
surface. Figures 4(d)–(f) show the time evolution study with
2, 6 and 12 min growth durations, respectively. The SEM
analysis of the 2 min growth sample (inset shows a magnified
view), shows that 2D hexagonal platelets and islands are
formed simultaneously. Thus of Volmer–Weber (island
growth) and Stranski–Krastanov (SK) growth modes occur
simultaneously.. Ideally, to obtain a uniform TF with smooth
morphology, a layer-by-layer growth mode is required.
Although layer-by-layer nucleation can happen locally on a
vdW surface, lateral growth becomes challenging above a
certain nucleus size, due to the low surface energy and high
surface tension properties of the underlying hBN.

As growth progresses, the SK growth mode competes
over the island growth mode as evidenced by figures 4(d)–(f),

where the nanoisland structures coalesce with 2D platelet
structures and other nanoislands.

3.2.1. Crystal structure and strain properties of the thin films.
The cross-sectional TEM image of a focussed ion beam
(FIB)-cut TEM lamella of the best morphology TF (grown at
TG 475℃ and V/III ratio of 100) is shown in figure 5(a). The
TF has an average grain size of approximately 0.45 μm.
Figures 5(b) and (c) show the high resolution TEM (HRTEM)
images of the areas marked by coloured boxes in 5 (a). The
ZB and WZ/twin areas are highlighted in green and red,
respectively. The TF exhibits a predominantly a ZB crystal
structure with rotational twin defects and WZ/twin defects in
the grain boundaries as evident from figure 5(b). Bulk InAs
exists naturally in the ZB crystal phase.

Figure 5(d) shows a HRTEM image of InAs grown on
h-BN, captured along the [0 –11] zone axis, The image is
used to carry out the geometric phase analysis (GPA) to study
the local strain at the TF and h-BN interface. The two non-
parallel directions of [111] and [−111] are chosen for the
GPA. The in-plane and out-of-plane strain analysis along
[111] and [−111] directions, respectively shown in
figures 5(e) and (f), do not indicate a sharp interfacial strain
between h-BN and InAs. Figure 5(g) shows the fast Fourier
transform (FFT) of the HRTEM image of figure 5(d). From

Figure 3. (a) Schematic of the conditions for the suppression of NW axial growth and the coalescence of nanoislands. (b)–(d) 45°-tilted SEM
images showing the morphology of NWs and nanoislands at different V/III ratios.
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the FFT, the direction of InAs TF growth is deduced to be
along [111].

To further understand the h-BN/InAs interface and the
lack of a sharp interfacial strain in GPA (the colour variation
figures 5(e) and (f) represents the difference in the magnitude
of strain), we analysed the inverse fast Fourier transform
(IFFT) of the HRTEM images shown in figures 5(h) and (i).
IFFT analyses were carried out using the (111) and (−111)
diffraction spots (figure 5(g)). Although the out-of-plane
results along the [111] growth direction show the presence of
some dislocations within the InAs layer near the h-BN/InAs
interface, dislocations are not observed at the h-BN/InAs
interface itself. However, IFFT results of out-of-plane
g(−111) show the presence of misfit dislocations (marked
as MD in red) near the interface, as shown in figure 5(i).
Furthermore, stacking faults (marked as SF) commonly

present in face-centered cubic crystals on {111} planes due
to easy slip have been observed and are indicated with a
yellow line in figure 5(i). The fact that stacking faults are
present near the interface and away from the interface leads us
to conclude that they result from non-optimal growth rather
than originating from the h-BN/InAs interface. Finally, the
absence of a sharp interfacial strain in InAs grown on h-BN is
attributed to the presence of misfit dislocations at the h-BN/
InAs interface, which act as an efficient strain relaxation
mechanism.

Threading dislocations are generally caused by strain
induced in the TF when grown on a lattice-mismatched
substrate. Although h-BN and InAs are not lattice-matched,
strain-induced dislocations are not expected when grown
directly on a vdW substrate owing to the weak vdW nature of
bonding at the InAs/h-BN interface as opposed to the strong

Figure 4. Top-view SEM images of the InAs TFs grown at V/III ratios of 74 (a), 100 (b) and 200 (c). Top-view SEM images showing the
time evolution study of the TFs grown at 475 °C with a V/III ratio of 100 for 2 (d), 6 (e), and 12 (f) min. The inset in (d) shows a magnified
image of the 2 min sample, clearly showing 2D platelets (layer-by-layer growth) encircled in red and nano island encircled in yellow
nucleation happening simultaneously. The GIXRD spectrum of the sample shown in (a) is shown in (g), with the inset showing the rocking
curve of the (111) peak. AFM RMS surface roughness and rocking curve FWHM obtained from TF grown at V/III ratios of 74, 100 and 200
at a growth temperature of 475 °C are shown in figure (h).

7
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Figure 5. (a) FIB-cut TEM lamella of the polycrystalline InAs thin film grown on h-BN/SiO2/Si substrate. (b)–(c) HRTEM images of InAs/
hBN interface from the green and red areas on figure (a), showing ZB and WZ/twin sections, respectively. (d) HRTEM image for GPA strain
analysis the colour variation represents the difference in the magnitude of strain with red and green corresponding to the maximum and
minimum strain areas. (e) In-plane strain map (f) Out-of-plane strain map overlaid on the HRTEM image. (g) Fast Fourier transform of the
HRTEM image in (d). Fast Fourier transform of g(1 1 1) (h) and g(−111) (i).
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covalent bonding when grown on conventional bulk sub-
strates. In our previous work on the growth of vertically-
oriented GaAs NWs on synthetic mica, a 2D-layered material,
DFT calculations showed there is negligible charge transfer
across the GaAs/mica interface [10]. The calculated lowest
energy configuration showed that the GaAs/mica interface
has a physisorption-type bonding rather than covalent, owing
to the vdW nature. Hence, as expected in vdW epitaxy,
threading dislocations are absent in the InAs TF grown on
h-BN surface.

3.2.2. Optical and electrical properties of thin film. Results
from room temperature PL and reflectance measurements of
the TF sample grown under optimal conditions (TG 475 °C
and V/III ratio 100) are shown in figure 6. The sample
exhibits a PL emission peak at 0.39 eV with a FWHM of
69 meV. The reflectance spectrum also exhibits an absorption
peak centered at 0.39 eV. Furthermore, the reflectance is over
80% can be observed at other wavelengths, which is
consistent with a relatively smooth surface morphology of
the TF. Note that the PL emission peak is near the band edge
emission of bulk (ZB) InAs (bandgap Eg = 0.36 eV). The
blueshift (∼30 meV) in PL emission peak compared to the
bandgap energy of InAs can be attributed primarily to the
strain introduced in the epilayer while cooling down after
growth. In heteroepitaxial growth, a biaxial strain is induced
between two materials due to their lattice parameter
difference. When the TF is grown over the critical
thickness, the biaxial strain is relieved by misfit
dislocations. This can result in unstrained, bulk-like material
beyond the region of misfit dislocations. The misfit
dislocations from the GPA discussed earlier supports this
observation. However, during the cool down step from TG,
biaxial strain in the TF can be induced again, due to the
significant difference between the coefficient of thermal
expansion of the epilayer and the substrate.

We propose that the significant difference in linear
thermal expansion coefficients between InAs (4.52 ×
10−6 °C−1) and h-BN [21] (−3.58 × 10−6 °C−1; negative
values in the direction perpendicular to the plane) results in a
biaxial strain in the InAs layer, leading to a PL blueshift of
∼30 meV. The electrical properties of the polycrystalline
InAs TF was determined using a van der Pauw Hall

measurement system at room temperature. The TF shows an
n-type behaviour with a resistivity of 1.621 × 10−4 ohm cm, a
Hall mobility of 399 cm2/(Vs) and a carrier density of
9.510 × 1019 cm−3. While pure InAs bulk material exhibits
very high room temperature carrier mobility
(44000 cm2/(Vs)), polycrystalline III–V TFs reported in the
literature exhibit carrier mobilities in the range of
100–150 cm2/(Vs) [8]. As per the Matthiesen rule, major
factors affecting carrier mobility in a polycrystalline TF
sample are phonon scattering, Coulomb interaction and
surface roughness [22]. The TF presented in this work has
better electrical characteristics compared to those typically
grown at low temperatures (<500 °C) on amorphous
substrates reported in literature [23]. We attribute this relative
superiority to the greater areal coverage, relatively low
surface roughness of the as grown thin film compared to
other reported InAs thin film structures on unconventional
substrates [8] and a higher average grain size of InAs TF
grown on hBN surface. Thus, the TF presented in this work
serves as an excellent template for subsequent growth of other
III–V layers.

4. Conclusion

InAs NWs and TFs are successfully grown on a
h-BN/SiO2/Si vdW substrate without employing any catalyst
or surface modification techniques. A very high density of
NWs (2 × 109 cm−2) is achieved by varying the growth
temperature and V/III ratio. The NWs were found to have a
mixed WZ/ZB phase across the range of growth parameters
studied. A growth strategy to achieve uniform InAs TFs on
h-BN/SiO2/Si by supressing the NW growth and increasing
the radial growth of the nano-islands nucleated on the h-BN
surface is reported. The growth parameters such as temper-
ature and V/III ratio, with detail surface morphology, struc-
tural and optical properties are investigated. The structural
properties of the InAs TF are mostly affected by the temp-
erature and not the V/III ratio. Cross-sectional TEM, which is
supported by the XRD and GPA results, reveals a largely
[111] oriented ZB structure. The blueshift in PL is attributed
to the biaxial strain induced by the difference in thermal
expansion coefficient between h-BN and InAs TF. The vdW
nature of the interface is further evident from the lack of
threading dislocations extending to the top of the film. The
uniform coverage of the polycrystalline InAs TF combined
with its room temperature PL and a relatively high Hall
mobility of 399 cm2/(Vs) indicate that this technique can be
used to achieve large-area, low-temperature growth of III–V
TFs directly on van der Waals substrate using MOCVD.
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