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ABSTRACT

This is the final Technical Completion Report of Projects No. W-830 funded by the Water and
Wildlands Resources Center of the University of California. This report consists of two parts. Part
1 entitled, "Hydraulic Characterization of Aquifers, Reservoir Rocks and Soils: A History of Ideas"
is an integrated review of the development of hydraulic characterization methods in the fields of
Civil Engineering, Soil Physics, Groundwater Hydrology and Petroleum Engineering. The
narrative portion of this part is followed by a set of over 500 references pertaining to hydraulic
characterization which represent our current knowledge of hydraulic characterization methodologies
in the earth sciences and engineering. The second part entitled, "A Numerical-Model/Spreadsheet
Integrationfor Hydraulic Characterization of Aquifers, Reservoir Rocks and Soils" presents a new
interpretive tool that is under development for hydraulic characterization of groundwater systems,
petroleum reservoirs and soils. Both the literature survey presented in Part 1 and the development
of the interpretive tool presented in Part 2 are continuing research efforts. The narrative portion of
Part 1, after informal peer review is expected to be submitted for publication in an archival journal.
A systematic review of the more-than 500 references is a challenging, time-consuming task. Efforts
will continue on a detailed review of the compiled literature for eventual publication. The
development of the interpretive tool is part of a Masters research project of a graduate student. A
prototype computer software, AQTRUST is expected to be ready by the time the M.S. research is
com ple ted by the summer of 1997. A preliminary demonstration of the software will take place
during the Fall Annual meeting of the American Geophysical Union, San Francisco, in December,
1996. When future publications materialize from these continuing investigations, the support of the
Water and Wildlands Resources Center will be appropriately acknowledged.
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ABSTRACT

Estimation of the hydraulic properties of aquifers, petroleum reservoir rocks and soil systems
is a fundamental task in many branches of earth sciences and engineering. The transient diffusion
equation proposed by Fourier early in the 19th century for heat conduction in solids constitutes the
basis for inverting hydraulic test data collected in the field to estimate the two basic parameters of
interest, namely, hydraulic conductivity and hydraulic capacitance. Combining developments in
fluid mechanics, heat conduction and potential theory the civil engineers of the nineteenth century
such as Darcy, Dupuit and Forchheimer solved many useful problems of steady-slate seepage of
water. Interest soon shifted towards the understanding of the transient flow process. The 1920s saw
remarkable developments in several branches of the earth sciences; Terzaghi's analysis of
deformation of water-saturated earth materials, the invention of the tensiometer by Willard Gardner,
Meinzer's work on the compressibility of elastic aquifers and the study of the mechanics of oil and
gas reservoirs by Muskat and others. In the 1930s, these led to a systematic analysis of pressure
transients from aquifers and petroleum reservoirs through the work of Theis and Hurst. Over the
past fifty years, many researchers have built on the the foundations laid in the 1930s. Notable
among these are, Boulton, Bredehoeft, Cooper, Jacob, Hantush, Hubbert, Philip, Ramey, Warren
and Root, and others. The response of a subsurface flow system to a hydraulic perturbation is
governed by its geometric attributes as well as its material properties. In inverting field data to
estimate hydraulic parameters, one makes the fundamental assumption that the flow geometry is
known a priori. This approach has generally served us well in matters relating to resource
development, primarily concerned with forecasting fluid pressure declines. Over the past two
decades, earth scientists have become increasingly concerned with environmental contamination
problems. The resolution of these problems requires that hydraulic characterization be carried out
at a much finer spatial scale, for which adequate information on geometric detail is not forthcoming.
Traditional methods of interpretation of field data have relied heavily on analytic solutions to
specific, highly idealized initial-values problems. The availability of efficient numerical models and
versatile spread-sheets offer promising opportunities to relax many unavoidable assumptions of
analytical solutions and interpret field data much more generally, with fewer assumptions. Perhaps
the time has come to look for a new conceptual foundation to quantitatively characterize subsurface
systems to meet the emerging sophisticated needs.
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INTRODUCTION

In order to solve practical problems of interest in the fields of groundwater seepage,

hydrogeology, agricultural engineering, petroleum engineering, environmental engineering, soil

physics and geophysics, it is necessary to have reliable estimates of hydraulic parameters such as

permeability, hydraulic capacitance and porosity. Since the early work of Darcy, Dupuit,

Forchheimer and others in Europe during the second half of the nineteenth century, a substantial

body of literature has accumulated in diverse fields of earth sciences and engineering pertaining to

methods for estimating hydraulic characteristics by inverting data collected from experiments

conducted on field installations. For a student of the earth sciences, it is of considerable interest not

only to gain an understanding of how the ideas relating to hydraulic characterization have evolved

historically but also to decipher the fundamental notions which unite all these methods.

It is reasonable to state that all the hydraulic characterization methods in use today have two

themes in common; an equation of motion, familiarly known as Darcy's Law, which gives formal

identity to the notion of permeability and the equation of transient heat conduction, originally

proposed by Fourier in 1807, which has established itself as the working model for diffusion-type

processes in physical sciences. The equation of motion is imbedded in the diffusion equation.

Intrinsic to the transient diffusion equation (stemming from Fourier's equation of transient heat

conduction) are the parameters hydraulic conductivity and hydraulic capacitance'. In turn, hydraulic

capacitance includes, among other properties, the porosity of the porous medium. The transient

diffusion equation provides the foundation for hydraulic characterization. Ultimately, all the

hydraulic characterization methods consist of fitting the field data to the transient diffusion equation

and finding the best combination of parameters which agree with the field data. Thus hydraulic

characterization methods are "inverse" methods concerned with the estimation of parameters

compatible with the diffusion model.

In the inversion venture outlined above, earth scientists and engineers have historically relied

IThe terms storatlvity and specific storage are often used in groundwater hydrology to denote hydraulic capacitance
and specific hydraulic capacity of water-saturarcd geologic materials. For purposes of generality we shall prefer, in this
work, the term hydraulic capacitance, which includes storatlvity as a special case. Hydraulic capacitance represents the
quantity of water released from storage due to a unit change in potential due to a combination of three independent
processes, namely, pore volume change, change in water saturation and expansion of water.
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on the use of "analytic solutions" (also referred to as closed-form solutions). A variety of ingenious

techniques (type-curve matching, early-time and late-time approximations) have been devised to

back the parameters out from the field data. Taking advantage of developments in digital

computers, researchers have, over the past two decades, been successfully experimenting with

numerical models to estimate hydraulic parameters by way of "calibration" exercises. With the

improvements in the reliability of solutions generated by numerical models and the increased

availability of powerful "spreadsheets", there are indications that numerical models will soon

become preferred tools of inversion of field data to estimate hydraulic parameters. Numerical

models are especially attractive because they can help minimize many assumptions that enter into

the idealizations which are essential for obtaining closed-form solutions.

At present, as the personal computer drastically changes our approach to analyzing field data

from hydraulic tests, it is worth our while to summarize our current knowledge of hydraulic

characterization in a systematized manner and to look ahead into the future. So motivated, the

present work is an attempt to take an integrated view of concepts, ideas and methods developed in

agricultural engineering, soil physics, hydrogeology, petroleum engineering, civil engineering,

geophysics and related fields. This is a substantial task, considering the vast amount of literature

that has accumulated on this topic over many decades. Under the circumstances, the goal of the

present study is a modest one of generating an overall synthesized understanding of the field based

primarily on literature from the U.S. Even in this regard, no claim is made that the literature

compiled is comprehensive or complete. The hope is that the literature surveyed is adequate enough

to capture the essential elements of the major ideas and concepts of relevance. Hall (1954)

presented a well-reasoned review of literature on the topic of seepage towards wells. His survey is

especially comprehensive in regard to the 19th century European literature. Hall's paper has been

a valuable source of information in regard to the European literature discussed in the present work.

This work primarily focusses on field methods rather than laboratory methods. The hydraulic

response of a subsurface flow system is governed by its geometric attributes as well as its material

properties. In inverting field data to estimate hydraulic parameters, tradition is to assume that the

geometric attributes of the flow system is known and the hydraulic parameters are assumed to be

the unknowns to be estimated. This work is restricted to those methods in which geometric details

(symmetry, layering) are assumed known a priori. Over the past two decades, an increasing body
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of literature has accumulated on the application of stochastic methods and probability concepts to

the hydraulic characterization of heterogeneities (especially hydraulic conductivity) in subsurface

flow systems. These methods are outside the scope of the present work.

The history of science is such that ideas are born and methods are fabricated in response to pure

curiosity or practical needs. Integration of ideas to identify underlying unity among diversity comes

later. Individual disciplines in the earth sciences have generally been focussed on problems of

special interest to their needs. For example, until recently, soil physicists have devoted much of.

their attention to the process of infiltration into soils and the movement of water in the root zone.

Thus, although the various earth disciplines have a common thread of unity in terms of physical

processes governing hydraulic characterization, these disciplines have traditionally maintained

distinct identities with very limited flow of ideas between themselves. A consequence is that when

one attempts an integration of ideas as in the present work, the portrayal of the individual disciplines

cannot be very even. This is unavoidable.

HISTORY OF IDEAS

It is now well recognized that our conceptual model for understanding the occurrence and

movement of fluids in geological materials is based on treating fluid flow as a process

mathematically analogous to heat conduction in solids. As a consequence, the working

mathematical model for the flow of fluids in geologic materials is the partial differential equation

of heat conduction, originally proposed by Fourier (1807i. Fifty years later, Darcy (1856)

described a simple equation of motion for the steady flow of water through sands, now widely

known as Darcy's Law. Intrinsic to Darcy's Law is the parameter hydraulic conductivity which is

a measure of the ability of a porous material to transmit water. Earlier, in 1842, Poiseuille had

already studied the flow of fluids through capillary tubes, applying rigorous principles of fluid

mechanics. Thus, it is reasonable to assume that in defining the mathematical form of the equation

of motion and in defining the hydraulic conductivity parameter of earth materials, Darcy was

2 As described by Grattan-Guinness (1972), Fourier's 1807 monograph on the propagation of heat was not formally
published. After much additional work to answer criticisms of the reviewers (Laplace, Lagrange, Monge and LaCroix),
Fourier's classic, Theorie Analytique de fa Chaleur, was published in 1822
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influenced by Fourier's work on heat conduction as well as developments in fluid mechanics of

engineered materials (capillary tubes) and open channels.

Immediately following Darcy's insightful contribution, analogy with heat conduction was

actively used by engineers in Austria, France and Germany to solve practical problems of

groundwater seepage which were of interest to civil engineers during the second half of the 19th

century. Although Fourier's general equation addressed the transient heat conduction process, these

civil engineers restricted themselves to the steady state fluid flow problem. Whereas the transient

process involves two parameters (conductance and capacitance) the steady state problem involves

only the conductivity parameter.

The following discussion of development of ideas in Europe during the 19th century is based

on Hall (1954), who, as a civil engineer, reviewed the European literature in considerable detail.

Julian Dupuit, a contemporary of Darcy was a theoretically oriented civil engineer who dealt with

problems of open channel flow as well as seepage through soils. The chapter on seepage in his book

on open channel flow (Dupuit 1863) later proved to be a standard reference on the subject. It is

interesting that Dupuit, starting from the hydraulic principles of open-channel flow, derived an

expression for movement of water through soils which proved to be equivalent to Darcy's empirical

Law. By integrating the equation in a radial system, Dupuit derived solutions for steady flow in a

confined aquifer (artesian well) and in an unconfined aquifer (gravity well). He idealized the well

to be at the center of a circular island so as to satisfy the mathematical needs of a credible boundary

conditions. The assumptions of horizontal flow he made in the case of a gravity well in an

unconfined aquifer, while yet accounting for the variation in the saturated thickness of the aquifer

is used even now and is referred to as the Dupuit assumption. To be mathematically consistent with

the boundary conditions, Dupuit idealized the well as being located at the center of a circular island.

In Germany, Adolf Thiem and later, his son, Gunther Thiem, carried out pioneering work on

groundwater seepage, especially in the study of flow of water to wells. They are also credited with

the collection of extensive observational information on the subject. Although he later became

aware of the contributions of Dupuit and Darcy, Adolph Thiem independently derived the

expressions for steady radial flow of water in confined and unconfined aquifers. In the field of

groundwater hydrology, Gunther Thiem (1906) is widely known for the equation describing the

steady radial flow of water in a confined aquifer, although that solution was derived earlier by
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Dupuit (1863). Gunther Thiem distinguished himself by systematizing and documenting the

application of field methods, rather than creating new methods himself.

At this juncture it is appropriate to briefly digress and discuss terminologies. The word

groundwater (grundwasser in german) appears in the literature by the early 1880s in the work of A.

Thiem. The engineers of the late 19th century distinguished between "gravity wells" and "artesian

wells". The former referred to wells in a phreatic aquifer whose upper boundary is a free surface

or the water table over which the pressure is atmospheric. The latter referred to what is currently

recognized as a confined aquifer. Although the possibility of a seepage face above the water level

in a gravity well was recognized, the term "seepage face" had not yet been coined. Aquifers were

commonly referred to as "groundwater streams" (Hall 1954).

Perhaps the most well-known researcher of this era was Phillip Forchheimer of Austria, whose

distinguished career spanned nearly a half century and influenced the work of many researchers who

followed him. He was among the earliest to recognize the concepts of isopotential lines and

streamlines in regard to groundwater seepage and extended these concepts systematically to generate

flownets as a means of quantitatively analyzing steady flow fields, including flow of water to wells

under varying geometric conditions. Forchheimer formally wrote down the Laplace equation

(Forchheimer 1898) to describe the steady flow of groundwater and went on to use mathematical

techniques such as conformal mapping to solve problems. It appears (Hall 1954) that he was

influenced by the work on conformal mapping of Holzrnuller (1882) for the solution of heat

conduction problems. In addition to formally explaining the results of earlier workers such as

Dupuit and Thiem, Forchheimer presented new results for single wells as well as groups of wells

and sloping aquifers.

In the Uni ted States, Slichter (1899) pioneered the study of groundwater systems by

mathematically analyzing the steady flow of water through geologic media. In particular, he

investigated mutual interference between artesian wells and the perturbation of the regional steady-

state groundwater flow field by a producing water well. Slichter was unaware of Forchheimer's

work and formulated the Laplace equation independently. He obtained solutions using the

conformal mapping method. It appears that Slichter too, like Forchheimer, was influenced by the

work of Holzmliller (1882). Another important contribution of Slichter was that he investigated the

physical significance of hydraulic conductivity, which was merely treated as an empirical coefficient
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by Darcy. By studying the geometric properties of various spherical packs, Slichter (1899)

identified the geometric component and the viscous drag components of hydraulic conductivity.

An important milestone relating to flow of water in geologic materials was the contribution of

Buckingham (1907). Buckingham, a physicist, studied the flow of water in unsaturated soils and

concluded that the moisture movement was proportional to spatial gradient of capillary potential.

He further postulated that the "constant" of proportionality was in fact a function of the capillary

potential itself in partially saturated soils. It is remarkable that Buckingham, who was probably not

aware of Darcy's work (Sposito 1987), gave a theoretical basis for Darcy's empirical law and

extended the law to the unsaturated zone. Buckingham's hydraulic conductivity, which is a function

of capillary pressure, is central to the fields of soil physics and multi-phase flow analysis still in use

today. Buckingham (1914) is also widely known for his seminal contribution on dimensional

analysis. Most of the methods used to invert field data to obtain hydraulic parameters on the basis

of analytic solutions routinely use dimensionless groups to minimize the number of variables which

need to be handled. The rationale for defining these dimensionless groups stems from the "pi

theorem" proposed by Buckingham in 1914.

The early Twentieth Century saw the simultaneous initiation of a profound concept in several

earth science disciplines: soil science, soil mechanics, groundwater hydrology and petroleum

engineering. This was the recognition of the importance of time (Narasimhan 1986; Narasimhan

1988). In their own field settings, researchers in these fields recognized that almost all subsurface

fluid flow systems are dynamic in nature. In the field of soil physics, Green and Ampt (1911)

proposed a simple approximation to quantify the vertical infiltration of water into an unsaturated

soiL The Green and Ampt idealization assumes that as water infiltrates into a soil, a sharp, piston-

like zone of saturation advances with time. This approximation is still used in interpreting field data

from infiltrometer tests to estimate in situ hydraulic conductivity of soils.

Willard Gardner was among the earliest (Gardner and Widtsoe 1921) to quantify transient

moisture movement in unsaturated soils in terms of a transient diffusion equation, analogous to

Fourier's transient heat conduction equation. It is now known that his failure to achieve satisfactory

agreement between experiment and theory was due to the fact that he did not account for the

dependence of hydraulic conductivity on capillary potential, suggested a decade earlier by

Buckingham. In other words, he tried to fit experimental data to a linear partial differential
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equation, when in fact, a non-linear parabolic equation should have been used.

The early 1920's saw the publication of the classic book, Introduction to the Mathematical

Theory of Conduction of Heat in Solids, by Carslaw (1921). This book (and its revision, Carslaw

and Jaeger, 1947) constituted a remarkably well-organized compendium of a variety of closed-form

solutions to problems in steady state and transient heat conduction problems. The availability of

these solutions and the methods used to derive these solutions have proved to be of great benefit to

earth scientists and engineers over the past seventy-five years in solving a host of fluid flow

problems of the earth's subsurface.

The 1920's saw the publication of two major contributions in the earth sciences. Terzaghi

(1924) experimentally studied the deformation of water-saturated clays and established the

relationships between external stresses, pore-fluid pressure and deformation. In the process, he

introduced the notion of effective stress. Some would consider Terzaghi's paper to have founded

the discipline of soil mechanics. Terzaghi proceeded to write down and solve the equation for

transient movement of water in a one dimensional clay column by analogy with the heat conduction

equation. In his paper, Terzaghi was meticulous in establishing the one-to-one correspondence

between the attributes of the heat-conduction system and the porous-medium flow system. Probably

he was the first to point out that the compressibility of a clay is analogous to specific heat of a solid.

A second major contribution of the 1920's was the paper by Meinzer (1928), whom many would

consider to be the founder of the discipline of groundwater hydrology in the United States.

Meinzer's descriptive paper was a careful synthesis of observations by many geologists of the U.

S. Geological Survey of the early twentieth century who had studied the decline in water pressures

in artesian aquifers such as the Dakota aquifer in North Dakota. Based on mass balance calculations

these observations led to the inference that the decline in water pressures were correlated with the

decrease in porosity and an increase in water volume which together accounted for the mass of water

mined from the aquifer. Considering the fact that the strains so caused in the porous medium and

the water are extremely small (less than one part in a million), it was remarkably perceptive of

Meinzer and his coworkers to have drawn their inferences based on rough estimates of water

balance. Meinzer (1937), in fact, had made rough estimates that the land should have subsided by

4 to 5 inches in the North Dakota artesian basin and this was viewed with skepticism by some

contemporary geologists and engineers.
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Contemporaneously with Terzaghi's new leadership in the field of soil mechanics, important

developments were also taking place in analyzing seepage through soils. Forchheimer (1930)

published his book Hydraulik and Dachler (1936) published his book on groundwater flow,

containing a host of steady seepage problems, including flow to wells. For the first time, a

successful attempt was made by Weber (1928) to analyze the non-steady flow of water to a gravity

well (that is, non-steady flow to a fully penetrating well in an unconfined aquifer). The approach

taken by Weber to analyze this problem is worth some discussion because it differs significantly

from the more rigorous mathematical approach of Muskat, Hurst and Theis, who solved a parabolic

partial differential equation.

Weber (1928) considered a well in which the water level is maintained constant (constant

drawdown test). As pumping progresses, the radius of the cone of depression (also referred to as

the radius of influence) increases with time. As a first step in the analysis of this problem, Weber

derived an approximate expression for the radius of influence, assuming that water is released from

storage by physical drainage of the volume of the aquifer through which the water table moves and

that the volume of water so drained per unit volume is the "effective porosity" (the modern notion

of specific yield). Mass balance requires that the volume of water so drained is equal to the

cumulative production at the well. Once the effective radius is estimated, drawdown as a function

of distance from the well is estimated from the steady-state solution of radial flow to a gravity well.

About a decade later, similar results were obtained by Steinbrenner (1937) in Austria.

The 1930s witnessed important developments in the fields of soil physics, groundwater

hydrology and petroleum engineering. By the late 1920s, the tensiometer had become well

developed thanks to the efforts of Willard Gardner et al. (1922)3 and his coworkers. Routine

measurements of moisture content and its relation to capillary pressure had become possible

(Richards 1928). Combining Buckingham's (1907) work on the equation of water motion in

unsaturated soils with the newly available soil moisture retention curves, Richards (1931) formally

wrote down, for the first time, the non-linear partial differential equation describing transient flow

of water in unsaturated soils. The slope of the moisture content versus capillary pressure curve came

3 This Abstract is reportedly the first published reference (Wilford Gardner, personal communication, 1991) to the
tensiometer, an instrument which has played a vital role in the evolution of modern soil physics
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to be the hydraulic capacitance and was referred to as moisture capacity. Because of the difficulties

of obtaining closed form solutions to non-linear differential equations, Richards equation remained

unsolved for nearly two decades. It would be the early 1950s before Childs and Collis-George

(1950) showed that the severity of nonlinearity of the parabolic equation could be lessened by using

volumetric moisture content as the dependent variable, rather than capillary potential. Following

this suggestion, Klute (1952), Philip (1955) and others began obtaining solutions for Richards

equation under highly simplified conditions using numerical methods.

In the field of petroleum reservoir engineering, the 1930s was an eventful decade. The need for

applying rigorous methods of mathematical physics to understanding the dynamics of oil and gas

reservoirs had been recognized. The decade started with careful theoretical and experimental study

of steady-state flow systems as a prelude to the study of transient systems which followed

immediately thereafter. Muskat and Botset (1931) experimentally studied the steady flow of gases

in geologic materials and verified that the mass flux of gas was proportional to the drop in the

square of the pressure along the flow path. They then went on to formulate the non-linear parabolic

equation for transient gas flow in a reservoir and solved the special case of steady radial flow in a

circular reservoir with a well at the center and a constant pressure outer boundary. Wyckoff et al.

(1932) experimentally studied, with the help of physical models, the radial flow of water in a sand

body with a free surface (an unconfined aquifer) and verified the assumptions of Dupuit (1863).

They also extensively discussed the importance of the seepage face, the capillary fringe and water

movement in the unsaturated zone above the water table.

The work on estimating reservoir permeability from transient field tests was initiated by Moore

et at. (1933). They clearly articulated a need for estimating, from field tests, important properties

of reservoir rocks so that the drainage of oil reservoirs could be studied. This little-known work is

very significant for many reasons. Although detailed mathematical derivations were not presented,

the authors formally laid down the parabolic equation involving a slightly compressible fluid,

obtained solutions for a well of finite radius producing at constant pressure from a finite cylindrical

reservoir, calculated drawdown and buildup and demonstrated how the solution can be made use of

to estimate reservoir permeability. Furthermore, the authors presented their results in terms of the

two important dimensionless groups, dimensionless time and dimensionless drawdown. These

dimensionless groups have since become part of the petroleum engineering and groundwater
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hydraulics literature. The mathematical details of this work were presented by Hurst (1934). At

about the same time, Muskat (1934) presented a detailed analysis of transient flow of compressible

fluids in oil and gas reservoirs. He derived solutions for wells of finite radius as well as vanishingly

small radius in a circular reservoir with prescribed potential boundary or with prescribed flow rate

at the well. He then went on to verify the veracity of his model with pressure decline data from an

oil field in east Texas. Hurst (1934) formulated the parabolic equation in radial coordinates for

slightly compressible fluids (liquids) and obtained solutions for production at constant pressure and

at constant discharge from a well of finite radius, pumping a cylindrical reservoir of finite radius.

Both Hurst and Muskat considered hydraulic capacitance arising purely from fluid expansion and

neglected changes in porosity. In 1937 Muskat published his definitive work on the flow of

homogeneous fluids through porous media in which he elucidated the fundamental problems of

modern petroleum reservoir engineering and the mathematical methods for solving them.

In the field of groundwater hydrology, Theis (1935) set up and obtained a solution to the

parabolic equation similar to that of Hurst (1934) and Muskat (1934) but considered a laterally

infinite aquifer with a well of vanishingly small radius (line-source well) producing at a constant

rate. He verified the credibility of his model by applying it to field data from an unconfined aquifer.

Theis used the term storage coefficient to denote the hydraulic capacitance parameter in the

parabolic equation, a term which still enjoys common usage. Although he was quite cognizant of

the analogy between heat capacity and hydraulic capacitance (Freeze 1985) Theis did not explicitly

discuss the physical meaning to storage coefficient in his paper. It appears that Theis took a fairly

limited view of storage coefficient, restricted to the particular boundary value problem he was

interested in, namely, a laterally infinite aquifer of finite thickness, in which water flows

horizontally. Thus, Theis (1940) explains storage coefficient as the volume of water released from

a vertical prism of the aquifer of unit cross sectional area in response to a unit change in hydraulic

head. Moreover, Theis (1940) identifies the role of compressibility in regard to storage coefficient

in an artesian aquifer but does not recognize expansion of water. This restricted view of storage

coefficient came to enjoy popular usage among groundwater hydrologists in the U.S. Geological

Survey in subsequent decades.

Theis' work has proved to be a milestone not only in groundwater hydrology, but in the earth

sciences in general. In addition to constituting the basic and simplest technique used widely for
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interpreting data from transient aquifer tests, the Theis' model is also frequently used as the standard

against which the transient behavior of more complex aquifers is studied for comparison. One of

the factors contributing to the popularity of Theis' work appears to be the fact that hydrologists of

the U.S. Geological Survey actively developed workable techniques for using Theis' solution to

interpret field data from aquifer tests and widely communicated their results through publications

of the Survey, readily available to field geologists. Also, the contributions provided a large scale

regional perspective of hydraulic characterization in terms of earth processes in ~eneral while

contributions in the fields of civil engineering, petroleum engineering and soil physics took a limited

local view of the characterization venture. A landmark publication in this regard was U.S.

Geological Survey Water Supply Paper No. 887 by Wenzel (1942), which elaborately described the

various methods for interpreting pumping test data.

It is worth noting here that Moore et al. (1933), Muska: (1934) and Hurst (1934) were all

concerned with laterally limited reservoirs, whereas groundwater hydrologists such as Theis (1935)

were concerned, in general, with laterally infinite systems. Also, petroleum engineers concentrated

on developing techniques for analyzing data from the production well whereas groundwater

hydrologists devoted attention to pumped-well analysis as well as analysis of interference test data

(that, is data from passive, observation wells which respond to the removal of water at the pumped

well). More than one reason can be attributed to these differences in the styles of design and

analysis of hydraulic tests between petroleum engineers and groundwater hydrologists. According

to Brigham (1996) petroleum engineers had to work in general with active well-fields in which

many wells were producing fluids at the same time. Under such conditions, planes of no-flow

boundaries developed between producing wells, leading to the dynamic isolation of each well.

Groundwater hydrologists, on the other hand did not often deal with well fields. Moreover, oil

occurs very commonly associated with dissolved natural gas and, as the pressure drops during

production, gas tends to come out of solution. A consequence is that the apparent compressibility

of such oil may be order of magnitude higher than gas-free oil, leading to a great increase in the

effective hydraulic capacitance. In turn, increased hydraulic capacitance contributes to small radius

of influence around a production well and hence, the reduced need for interference analysis.

Another possible explanation for the differences in styles between petroleum engineering and

groundwater hydrology is that petroleum reservoirs often constitute closed systems while
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groundwater systems are in general open in nature.

Upon reflection, it is evident that the notion of capacitance is essential for describing the

transient flow process. In the work of Gardner and Widtsoe (1921), hydraulic capacitance was

purely governed by the rate of change of saturation with capillary pressure, referred to as moisture

capacity in the soil physics literature. In Terzaghi's work, hydraulic capacitance was governed only

by the compressibility of a relatively soft porous material for which one could reasonably neglect

the compressibility of water. Meinzer's work combined porous medium compression and fluid

expansion in giving form to hydraulic capacitance. Hurst (1934) and Muskat (1934) restricted

hydraulic capacitance solely to expansion of the liquid (Narasimhan 1986; Narasimhan 1988). In

general, in a saturated-unsaturated deformable porous medium, hydraulic capacitance includes all

the three components, namely, pore-volume change, change in water saturation and expansion of

water (Narasimhan and Witherspoon 1977).

At present, it is almost invariably assumed by hydrogeologists that the Theis method is

applicable to confined aquifers in which water release from storage is due to the elastic properties

of the porous medium and of water. However, it must be noted that in his classic paper Theis

(1935) applied his method to an unconfined aquifer and stated, "the equation applies rigidly only

to water bodies and applicable only to unconfined water bodies - in which the water in the

volume of sediments through which the water table has fallen is discharged instantaneously with the

fall of the water table. II However, it had been recognized by previous workers that the drainage of

water in an unconfined aquifer is an extremely complex physical process and therefore, as noted by

Hall (1954), the instantaneous drainage assumption of Theis is a shortcoming of the Theis method

as applied to unconfined aquifers.

Arthur Casagrande is a respected name in the field of soil mechanics. Although he did not

publish many papers on the theory of flow to wells, Hall (1954) notes that commencing from 1934

Casagrande introduced his students at Harvard University to novel ideas in regard to seepage theory,

including flow of water to wells. As part of his lectures, Casagrande had demonstrated that, for

large values of time, the drawdown predicted by the Weber (1928) method and that predicted by the

Theis' method are essentially the same.

In the field of civil engineering, a little known but major discovery was made in the early 1930s

which was to influence the attention of earth scientists and engineers for the next half a century.

14



Rappleye (1933) of the u.s. Coast and Geodedic Survey carefully documented substantial"areal

subsidence" of land in the Santa Clara Valley of California based on rerunning of first-order leveling

surveys during 1931-32. He reported that between 1920 and 1933 a bench-mark in San Jose had

subsided by 4.1 feet and that as much as 0.5 feet of that subsidence had occurred during 1932-33.

Although heavy groundwater pumpage was suspected to be the cause of the subsidence (Tibbetts

1933). it was left to Meinzer (1937) to advance a rational physical mechanism correlating

groundwater pumpage and observed land subsidence. Not only did Meinzer recognize the

applicability of his North Dakota observations (Meinzer 1928) to the San Jose subsidence, but also

conjectured that the substantial magnitude of subsidence observed was probably due to a

preponderance of soft. fine-grained sediments in the Santa Clara basin. As we shall see later.

Meinzer's conjecture was confirmed subsequently by meticulous field observations by Poland and

coworkers in the Santa Clara Valley and the San Joaquin Valley of California.

The decade of the 1940s was quite eventful in the study of transient groundwater systems.

Hubbert (1940) published the Theory of Ground-water Motion, a paper which still remains

definitive. In this paper Hubbert elaborated the physical meaning of a fluid potential, formally

defined permeability on the basis of balance between impelling forces and resistive forces, derived

a tangent law for the refraction of flow lines and went on to establish the foundations for the study

of regional groundwater systems and petroleum reservoirs.

We saw earlier that Theis (1940) took a restricted view of storage coefficient limited to

horizontal flow in an elastic aquifer. However, Jacob (1940) took a much more fundamental view

of storage coefficient in the sense of hydraulic capacitance and derived an expression combining the

deformability of the porous medium (its bulk modulus) and the compressibility of water. He thus

gave formal identity to the processes heuristically recognized by Meinzer (1928; 1937). He also

went on, in this classic paper, to derive an expression for the change in water pressures in aquifers

subjected to external stress changes such as those caused by passing railroad trains or barometric

pressure changes and defined the parameter, tidal efficiency. Jacob's theoretical work paved the way

for interpreting hydraulic parameters of aquifers by analyzing these responses. Jacob went on to

make two other major contributions during the 1940s. In 1946 he published a paper on radial flow

to a leaky aquifer, which opened up a fertile area of research relating to leaky aquifers and leaky

caprocks of petroleum reservoirs. It is not quite clear as to how much Jacob was influenced by the
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land subsidence research of the 1930s. It is now well-established that the study of leaky aquifer

systems and the study of land subsidence in sedimentary basins go hand in hand. Also, motivated

by engineering issues of production efficiency, Jacob (1947) devoted attention to hydraulic

efficiency of the well, as water dynamically flows from the aquifer. He defined the notion of

effective well radius and the well-loss function. In accounting for well-losses, Jacob accounted for

non-laminar flow conditions arising due to high flow-velocities in the vicinity of well-screen. Such

flows are some times referred to as "non-Darcy" flow. In the field of petroleum engineering, van

Everdingen and Hurst (1949) used the Laplace Transformation to quantify the effects of well-hare

storage on pressure transients around a pumping well and also accounted for skin effects arising from

formation damage in the immediate vicinity of the well.

These developments in the fields of hydrogeology and petroleum engineering occurred primarily

because the researchers mentioned above were interested in aquifers and reservoirs with fairly large

areal extent, lying at depths of a few hundred meters or more. In such formations, the region of

pressure perturbation around the well often extended to several hundred meters or more. However,

in the fields of soil physics and civil engineering, transient flow problems of interest were of a

smaller spatial scale. Soil scientists and agronomists were primarily interested in the plant root zone

of the soil above the water table, seldom exceeding a few meters from the land surface. Civil

engineers and geotechnical engineers on the other hand were interested in seepage and ground

settlement problems extending from a few meters to perhaps a few tens of meters. The nature of

problems tackled by these researchers was such that they needed to estimate hydraulic parameters

rather quickly and inexpensively. Soil physicists dealing with soils in the vadose" zone were

confronted not only with significant spatial variability on the scale of their observation but also had

to contend with a very difficult-to-solve highly non-linear diffusion process. Out of practical

necessity, judicious compromise between mathematical rigor and practical need gave rise to greatly

simplified models, resulting in field techniques based on infiltrometers, constant-head

permeameters, auger-hole tests and variable-head permeameters.

The auger-hole methods and piezometer methods were pioneered by Kirkham (1946), Luthin

4 The phrase vadose zone denotes the region between the water table and the land surface within which water and air
coexist in the pore spaces. It is also referred to as the zone of aeration or the unsaturated zone.
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and Kirkham (1949) and van Bavel and Kirkham (1948). These methods are still being used and

improved to estimate the hydraulic conductivity of the saturated soil below the water table.

Essentially these are field adaptations of the variable-head permeameter. Although the experiment

itself involves a non-steady flow process, the interpretation logic neglects the role of hydraulic

capacitance. The time-dependant falling water level is treated as a function, among other factors,

of the hydraulic conductivity of the soil and a shape factor dependent on the flow geometry. Because

the flow geometry involved combinations of radial, hemispherical and vertical components of flow, .

a great deal of effort was spent by Kirkham and others to calculate shape factors for a variety of

field conditions. Thus, calculating the shape factors using available mathematical techniques

constituted an important part of developing these techniques.

As in the case of soil science, the variable-head permeameter was found to be adequately

inexpensive and rapid to satisfy the hydraulic characterization needs in the field of civil engineering.

Special efforts were made to systematize and standardize these methods. A widely used work in this

regard was that of Hvorslev (1951), published under the auspices of the U.S. Army Corps of

Engineers. In providing a set of shape factors for a number of field situations, Hvorslev drew upon

earlier work of Dachler (1936) and others.

A significant contribution of the 1950's was the work of N.S. Boulton, a civil engineer from

England. As was noted earlier, Theis (1935) illustrated the credibility of the transient groundwater

flow equation by applying it to data gathered from an unconfined aquifer. Nevertheless, as Theis

himself recognized, his method hinged on the assumption that water drained instantly from the zone

through which the water table declined. However, it was recognized by many that the drainage of

water, governed by the theory of capillary potential, was a time-dependent, non-instantaneous

process'. A need was felt by some researchers to mathematically account for this non-instantaneous

process. Boulton (1954) initiated investigation of the transient flow of water to a well in an

unconfined aquifer. Instead of venturing to rigorously solve the highly complex flow process above

the water table as embodied in Richards equation, Boulton (1954) simplified the effect of the

unsaturated zone by introducing the approximation of delayed yield in conjunction with the notion

5 This time-dependent drainage is marhematicany analogous to chemical disequilibrium processes such as
precipitation or dissolution. Therefore, it is reasonable to term the non-tnstantaneous drainage of water from the zone
through which the water table moves as kinetically-controlled drainage
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of specific yield. The resulting governing equation was solved for potentials within the saturated

domain, while yet approximately accounting for contribution from the unsaturated zone by means

of a time-dependent source term. With minor modifications and extensions, Boulton's model still

continues to be used by groundwater hydrologists as the basis for estimating parameters of an

unconfined aquifer.

Another important contribution of the 1950's was the work by Skempton (1954). A soil

mechanician, Skempton investigated the relations between external stress changes (including shear)

and the changes in pore fluid pressure in water saturated soils. Skempton proposed pore pressure

coefficients A and B, which are related in principle to the concept of tidal efficiency proposed earlier

by Jacob but accounts for multi-dimensional deformation and pertain to the effects of mean principal

stress (coefficient B) and the effects of shear stress (coefficient A). The foundations for estimating

the hydraulic parameters of an aquifer from passive response of wells to barometric tides, earth tides

and ocean tides are contained in the contributions of Jacob (1940) and Skempton (1954).

Soon after the publication of Theis' work, groundwater hydrologists developed several

approaches to interpret drawdown data as well as data on water level recovery after cessation of

pumping (Theis 1935). Although groundwater hydrologists were routinely using Theis' recovery

method for over a decade, it was not until the 1950s that the petroleum engineers developed methods

to analyze pressure build-up (or pressure recovery) data. Research in this direction was pioneered

by Homer (1951) and Miller et al., (1950). Incidentally, it appears that modern pressure transient

analysis in petroleum engineering commenced during the 1950s, after the second world war.

By now, the field of groundwater hydrology had become well enough established and a

definitive text book on groundwater hydrology was published by Todd (1959). This book devoted

considerable attention to groundwater hydraulics and presented a comprehensive literature on the

topic. Roger de Wiest brought to the western world some of the developments in the erstwhile

Society Union by translating the book, Theory of Groundwater Movement by Polu barinova-Kochina

( 1952).

The decade of the 1960s witnessed many and varied developments of significance to hydraulic

characterization. The monograph on Theory of Aquifer Tests by Ferris et al. (1962) provided a

comprehensive description of pumping tests and slug tests under a variety of aquifer conditions,

geometry, boundary conditions and flow rates. A group of groundwater hydrologists at the U.S.
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Geological Survey, led by Hilton Cooper, elegantly extended the Theis approach to solve many

well-defined initial value problems which have since enabled hydraulic characterization under test

conditions which are more general than those of Theis (1935). Among these contributions one

should take special notice of, the interpretation of data from slug tests (Cooper, et al. 1967),

analysis of pressure transient data from an anisotropic aquifer (Papadopulos 1965), transient flow

of water to a well of large diameter (Papadopulos and Cooper 1967), and response of a well to

seismic waves (Cooper et al. 1965). The work on seismic response showed how a weI! could, under

certain conditions, amplify a seismic signal. The theoretical developments related to anisotropy and

seismic response of wells were verified by Papadopulos and by Bredehoeft with the help of

electrical analog models involving the use of resistors, capacitors and harmonic oscillators.

Following this work, Bredehoeft (1967) analyzed the response of aquifers to earth tides, giving

consideration to multidimensional strains experienced by an aquifer and proposing a method for

estimating the storage coefficient (hydraulic capacitance) of an aquifer. This work continues to be

widely used to interpret passive response of aquifers to earth tides ..

The study of leaky aquifers, pioneered by Jacob a decade earlier was continued with vigor by

Hantush and Jacob through the 1960's. Because they were primarily concerned with groundwater

as a resource, Hantush and Jacob focused attention on analysis of drawdown data from the aquifer

itself and did not venture into obtaining solutions for changes in potential within the aquitards which

constituted the source of leakage. Hantush provided a comprehensive summary of developments

related to leaky aquifers as well as other aquifer configurations in the publication, Hydraulics oj
Wells, Hantush (1964).

The leaky aquifer problem attracted the attention of petroleum engineers from two different

perspectives. On the one hand, they were aware of leakage of oil into reservoir rocks from leaky

cap rocks. On the other hand, they were also interested in the role of leaky cap rocks in the context

of artificial storage of natural gas in deep aquifers. In the latter case, it was critical that the

"integrity" of the cap rock and its ability to keep the gas trapped in the aquifer be known. This

necessitated a knowledge of the pressure changes in the aquitard itself rather than just the aquifer.

Accordingly, Neuman and Witherspoon (1969) extended the leaky aquifer model of Jacob and

Hantush to hydraulically characterize the aquifer as well as the aquitard.

Following the discovery of land subsidence in the Santa Clara Valley (Rappleye 1933; Meinzer
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1937) Poland started a systematic study of land subsidence in different parts of California. Over the

next four decades Poland and coworkers of the U.S. Geological Survey collected a wealth of data

confirming Meinzer's (1937) conjecture about the importance of fine-grained sediments in

contributing to large subsidence magnitudes as well as the applicability of Terzaghi's one-

dimensional consolidation theory to large-scale geologic systems. Poland and Davis (1969)

documented these observations in a classic paper. Note that from a process point of view, land

subsidence is a manifestation of the hydraulic capacitance parameter.

During the 1960s the movement of oil in fractured reservoirs attracted the attention of petroleum

engineers for two different reasons; the depletion of naturally fractured reservoirs and the pressure

response of reservoirs stimulated by hydraulic fracturing. The analysis of flow in naturally fractured

reservoirs received significant impetus from the work of Barenblatt and others (Barenblatt et al.

1960) in the former Soviet Union who proposed a model for the dynamic, macroscopic interactions

between a pervasive high diffusivity continuum (fracture network) embedded in which are islands

of low-diffusivity continua (porous rock-matrix). The work of Barenblatt et al. (1960) was

extended formally to the study of petroleum reservoirs with idealized fracture networks by Warren

and Root (1963). The conceptual basis provided by Warren and Root is still widely used in the

fields of petroleum engineering and hydrogeology. The frequently referred to phrases: double-

porosity systems, dual-porosity systems and multiple-interacting continua, derive their existence

from the work of Barenblatt et al. (1960) and Warren and Root (1963).

By the 1960s stimulation of low-permeability reservoirs by hydraulic fracturing had become

commonplace in petroleum production engineering. Through an elegant analysis of the mechanics

of hydraulic fracturing in an elastic rock, Hubbert and Willis (1957) showed that massive hydraulic

fractures tend to manifest themselves as planar vertical fractures or horizontal fractures depending

on ambient tectonic stress conditions. It became immediately clear that such high permeability

planar fractures will profoundly perturb the radial flow field around the production well. Prats

(1961) was among the earliest workers to in vestigate the effects of discrete vertical fractures on the

steady flow of oil into a well. Soon the analysis was extended to transient flow conditions by Scott

(1963) and subsequently many others.

In the field of geophysics, the technique of hydraulic fracturing, originally developed for

petroleum reservoir stimulation, was perceived as a means of estimating in situ rock stresses through
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"min-frac" experiments. Drawing upon the theoretical foundations of Hubbert and Willis (1957),

Kiehle (1964), Haimson and Fairhurst (1969) and others pioneered work in this direction.

The 1960s saw many text books, monographs and articles published indicating the extensive

interest among earth scientists on the topic of subsurface hydraulic characterization. The text books

by Davis and de Wiest (1966) and de Wiest (1967) addressed issues of hydraulic characterization,

among other topics. Narasimhan (1969) provided an overview of contemporary methods available

for analyzing pumping test data. Walton (1970) and Kruseman and de Ridder (1970) described

various field techniques for groundwater resource evaluation by means of aquifer tests. In the field

of petroleum engineering, Matthews and Russell (1967) published their definitive monograph on

pressure buildup and flow test analysis. Witherspoon et al. (1967) described aquifer characterization

methods pertinent to underground storage of natural gas. In the field of civil engineering, Harr

(1962) and Cedergren (1967) published authoritative texts on groundwater, seepage and flownets.

An excellent practical guide for water-well drilling engineers, including details of aquifer tests was

published in 1966 by the Johnson Division of UOP Inc. of Minnesota, a firm known for the

manufacture of well-screens and other equipment. Another notable publication of the 1960s was

the book dealing with the physical principles of percolation and seepage by Bear et al. (1968)

sponsored by UNESCO under its Arid Zone Research Programme.

In the field of geophysics, the technique of hydraulic fracturing, originally developed for

reservoir stimulation, was perceived as a means of estimating in situ rock stresses through "mini-

frac" experiments. Drawing upon the theoretical foundation of Hubbert and Willis (1957), Kiehle

(1964), Haimson and Fairhurst (1969) and others pioneered work in this direction.

Perhaps the most significant research direction of the 60s was the development of numerical

models. The era of the digital computer had dawned and computer development was advancing

with incredible rapidity. The digital computer provided the possibility of solving transient fluid

flow problems in complex geological systems which are far beyond the reach of closed form

solutions. The finite element method (Clough 1960) which was initially designed for solving

structural engineering problems, was soon adapted to solve steady state and transient problems of

groundwater flow (Javandel and Witherspoon 1968). In the field of petroleum engineering, Fayers

and Sheldon (1963) illustrated the use of a digital computer to solve fluid flow problems in three

dimensions using the classical finite difference approximations. In the field of civil engineering
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Tyson and Weber (1964) presented an integral form of the finite difference method which could

efficiently handle groundwater systems with complex geometry. One of the important upshot of the

development of the numerical model was the effort to hydraulically characterize the field system

on the basis of observed water levels in numerous wells. Hydraulic characterization is achieved by

a process of trial and error adjustment of hydraulic parameters in a numerical model to best match

the field data. This approach to hydraulic characterization is popularly referred to as the inverse

method. Inverse methods, stemming from this approach, continue to engage the attention of

researchers today.

The 1970s witnessed a shift in research emphasis among earth scientists from issues based on

resource development to issues related to environmental degradation. Research on topics introduced

in the previous decades was continued but new issues pertaining to chemical contamination began

to be introduced. The delayed drainage concept of Boulton (in relation to unconfined aquifers) was

questioned by Neuman (1972), who invoked vertical anisotropy instead of delayed drainage to

account for the pressure transient behavior of unconfined aquifers. In keeping with emerging

interest in environmental issues, strong research interests continued in improving methods for

characterization of shallow groundwater systems and the vadose zone, in particular, slug tests,

permeameters and infiltrorneters, In the field of petroleum engineering, considerable interest

continued on the characterization of naturally fractured reservoirs. In order to better understand

hydraulic properties of the vadose zone, Weeks (1978) devised a field method for evaluating

pneumatic conductivity and diffusivity of the vadose zone based on transmission of barometric

pressure changes from the land surface to the water table.

Am ong the publications of the 1970s dealing with the general topic of field characterization

methods the following may be mentioned. Glover (1974) discussed a variety of analytical solutions

pertaining to transient groundwater hydraulics from the perspective of irrigation and drainage;

Lohman (1972) surveyed the topic of groundwater hydraulics; and text books by Bouwer (1978),

Bear (1979) and Freeze and Cherry (1979) appeared in the field of groundwater hydrology. The

U.S. Bureau of Reclamation (1977) published a manual on ground-water hydrology to aid

practically in the investigation, development and management of groundwater systems. In the field

of petroleum engineering, Earlougher (1977) reviewed advances in well test analysis and Ramey

(1976) provided fresh insights into the practical aspects of well test analysis. Strelsova (1978),
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combined ideas from Boulton, Barenblatt and others and analyzed their relevance to well tests ill
heterogeneous hydrogeological systems.

During the 1980s, groundwater Contamination 1ll1sing fl'Om leaky gIL,oline tanks from gas

stations and COntamination arising from the uncontrolled disposal of industrial hydrocarbons such

as lubricants, transfonner oils and cleaning fluids came into unexpectedly sharp focus. Also, IL'a

potentially serious health hazard, attention was givcn to the entry of radon gas into human dwellings

in regions of the United States underlain by granitic rocks. In late 1987 the Congress of the United.

States deCided that unsaturated Zone disposal of high-level radioactive Wastes at Yucca Mountain

in Nevada would be the preferred geologic dispOSalalternative and that detailed site characterization

studies should be carried out there before licensing. As a result, there has been a great impetus

among researchers to develop techniques for characterizing the hydraulic properties as well as the
pneumatic properties of the vadose zone.

Until the 1980s hydraulic characterization of soils by soil physicists and agricultural engineers

Was by and large limited to measuring the saturated hydraulic conductivity below the Water table

USingauger hole test" piewmeter tests and penneameler test, pioneered by Kirkham, Bouwer and

Others. The 1980s saw notable effort among Soil physicist, to estimate, in the Held, hYdraulic

characteristics of unsaturated soils. The theoretical basis for these efforts was largely provided by

the work of Philip (1969), WOOding (1968) and others in Australia. The Guelph Penneameter

(Reynolds and Elrick 1985) was a cOnstant-head penneameter designed for small unlined bore holes

a few mcters deep, designed to estimate saturated hydraulic conductivity as well as the matrix flux

potential. The latter is an integral of the unsaturated hydraulic conductivity, between the limit, of

ambient pressure head in the vicinity of the bore hole and zero pressure head. The 1980s also saw

the deveJoprnen t of Disc TenSion permeameters (Clothier and White 1981; Whi te and Perroux 1987;

Perroux and White 1988). Designed for mea,uring the vertical hydraulic conductivity of the soil

at the land surface, this instrument was especially designed to apply a Constant mOisture tension

boundary condition at the land surface to enable infiltration at a Water POtential less than

atmospheric. Based on theoretical analysis of in1i1tration from circular ponds, the disc

penneamelcrs inVOlved infiltration experiments carried out under prescribed moisture suctions

imposed at the disc at the land surface and measuring the infiltration rates. In essence, these are

cOnstant-head permeameters, except that a constant mOisture Suction is imposed. Intel]Jretation of
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data is incumbent on several idealizations; for example, it is often assumed that hydraulic

conductivity is exponentially related to moisture suction. In addition to saturated hydraulic

conductivity, the disc permeameters enabled the estimation of sorptivity. In systems involving one-

dimensional infiltration, sorptivity is related to the square root of matric flux potential mentioned

earlier. Although the physical meaning of sorptivity is not very clear, it has proved to be of practical

. utility as a quantifiable mathematical parameter.

The 1980s also saw active research designed to understand the role of water in influencing

natural earthquakes. To aid in the interpretation of these field experiments, researchers extended

Bredehoeft's (1967) work to interpret the response of aquifers to barometric tides, earth tides,

ambient changes in tectonic stresses and earthquakes.

Among publications of the 1980s concerned in general with characterization of groundwater

systems, mention must be made of the text books by de Marsily (1986) and Fetter (1980). In the

field of soil science, Klute (1982) edited a comprehensive two-volume work concerned with

methods of soil analysis. Part 1 of this series included several invited articles dealing with

infiltrometers, permeameters, auger-hole methods and other field techniques. Another useful

publication summarizing methodologies relating to permeameters and infiltrometers was the special

publication of the Soil Science Society of America edited by Topp et al. (1992). Books devoted

to the topic of well-test analysis were published by Strack (1989) and Dawson and Istok (1991) in

groundwater hydrology and Sabet (1991) in petroleum engineering.

The past twenty-five years, commencing from the early 1970s, have witnessed significant

changes in the motivation for hydraulic characterization as we~l as the approaches used for the

purpose. Interest in resource development has been accompanied by an increasing interest in

mitigating and preventing the contamination of natural resources. There has been a growing desire

to identify geological formations of very low hydraulic conductivity in which toxic wastes can be

safely disposed. As a consequence, topics such as leaky aquifers and unconfined aquifers have

gradually receded from the focus of attention of researchers. Interest has been steadily growing in

characterizing flow processes in the vadose zone, which mediates between the wastes deposited at

the land surface and the water table at depth. Methods are being developed to quantify the

movement of air, gases and vapor through the vadose in addition to moisture movement. The

dynamic coupling between gases in the vadose zone and atmospheric pressure changes is proving
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to be of considerable practical interest.

Major mUltimiUion dollar hydraulic charactelization ventures have been supported by the U.S.

Department of Energy (DOE), the U.S. Nuclear Regulatory Commission (NRC), the U.S.

Environmental Protection Agency (EPA) and others to hydraulically characterize heterogeneities

in simple aquifers, in fmctured rock systems and in unsaturated media. Current emphasis is On

characterizing the details of heterogeneity at different scales because such detailed infonnation is

necessary for quantifying the migration of contaminant plumes. As attempts arc made to phYSically

describe the heterogeneities in greater and greater detail, it is being realized that the traditional

methods based on the differential equation are inadequate. For example, attempts to characterize

fractured rock systems through interference tests and tracer tests have shown that all the scale of

Observation carried Out, these systems can hardly he treated as homogeneous media.

THE PRESENT

At the present time we have access to field instruments (e.g. pressure transducers, now meters)

of unprecedented precision. Automatic data loggers enable us to acquire data at frequenCies of less

than a second. Powerfuj desk-top compllters enable us to collect, stOl", retrieve and manipulate

enonnous amou nts of data. Yet we are COilfro nted with peculiar Iimitati 0ns of da ta in terpm tatiOn.

The paradigm of our data interpretation is the partial differential equation. Concepes of

homogeneity and continuity are prerequiSites for applying the differential equation to a given

system. Consequently, one has to set up One separate differential equation for each of the

components in a heterogeneous .system and couple them together at their interfaces. Thus we must

have an appropriate macroscopic scale in which a differential eqnation is phYSically meaningful and

the hydraUlic parameters have physical sign ificance. Yet a ttempts are freq uen IIy made to apply the

differential equation on a scale smaller than an appropriate macroscopic scale to estimate hYdraUlic

parameters. We are also challenged by another problem of scale. Each experiment provides us with

parameter estimates on its own .scale, varying from pcrhaps less than a meter in the case of disk

tension peoneameters of the shallow subsurface to perhaps hundreds of meters in the case of
interference test of deep aquifers.

Upon reflection it is clear that the hydraulic response of a transient Subsurface flow system is
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governed by two major attributes; geometry and material properties. To estimate hydraulic

properties, we must assume a priori knowledge of geometry. All our traditional methods of

hydraulic parameter estimation are based on this recognition. Thus, our ability of hydraulic

characterization is constrained by this need. Yet, to meet the needs of solving contaminant transport

problems, we actively seek information on the nature of heterogeneities within the formation being

tested. Unfortunately, we do not have adequate geometric details of these heterogeneities. As a

consequence, the task of inverting data from field hydraulic tests such as those involving

permeameters, slug tests and aquifer tests to say something about small-scale heterogeneities is

neither simple nor unique. Some researchers have resorted to using stochastic methods to overcome

this constraint. How effectively these methods are in this regard remains to be seen.

It appears that we are philosophically in a state of transition. We are finding our traditional

paradigm to be limited in its ability to provide us the types of answers we need. We have

unprecedented abilities to collect data. Nonetheless, we are in search of a new paradigm to enable

us to do justice to vast amounts of data gathered by way of interpretation. The new paradigm must

reconcile with the fact that although the laws of physics are applicable to fluid-flow systems of the

earth's subsurface, the parameters linking cause and effect can never be precisely quantified because

we do not have the ability (nor will we ever have the ability) to fully describe the geometry of the

system. Without a full description of the geometry, cause and effect cannot precisely be related to

each other.
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ABSTRACT

Analytic solutions have traditionally formed the basis for estimating hydraulic parameters from
field data pertaining to aquifers, soils and petroleum reservoirs. We make a departure from this
tradition by developing a methodology based purely on a numerical model. Crucial to this
development has been the recent availability of powerful spreadsheets which enable efficient
interfacing between the interpreter and the generic numerical model. Accordingly we have
integrated the Quatrof'rot spreadsheet with a numerical model, TRUST, to generate a tool of
interpretation (AQTRUST) for analyzing data from a variety of field tests including: the vadose
zone, confined and unconfined aquifers, fully or partially penetrating wells, slug tests, pumping
tests, variable flow rates, effects of well-bore storage and skin, and so on. In this report we present
a description of this model/spreadsheet integration and demonstrate the usefulness of this
methodology with practical examples. The credibility of the numerical model is also demonstrated
by comparison with existing analytic solutions. The hope is that this tool can be made available to
researchers in different disciplines to further their research through the availabilny of a reliable
methodology of hydraulic charactelization
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MOTIVATION

Field methods are essential for estimating hydraulic characteristics of aquifers. These

characteristics include hydraulic conductivity, K, hYdraulic capacitance (also referred to as

storativity), and porosity. n. Since the 1930's, following the work of Theis in groundwater

hydrology and Hurst, Muskat and others in petroleum enginecring, a vast amount of literature has

accumulated on methodologies to conduct transient field experiments and estimate hydraulic.

conductivity and hydraulic capacitance. In parallel, similar methods were also developed in fields

of soil science and civil engineering to estimate hydraulic conductivity in soils.

All these methods are based on the analogy between transient flow in porous media and transient

heat conduction in Solids. In particular, the partial differential equation (the parabolic equation Or

its special forrns, the Laplace or Poisson equations) form the basis of analyzi ng the field da ta to back

out the hydnlUlic parameters. The traditional practice, still widely followed, is to "solve" the partial

differential equation for a particulnr set of forcing conditions and to use the reSUlting analytic

SOlutions (also referred to as clmed-fonn solutions) to invert the field data-set and estimate the
parameters of interest.

Wi th reccn t devel opmen IS in Compu ting techn 010 gy, the data are now heinsinverted using

computers. Along these lines, it is a common practice to directly program the analytic solutions into

the computer and then to match field data against the programmed analytic solUtions to estimate the

parameters of interest. Although this approach has been helpful, it is constrained by the limitations

inheren t to the analytical solutions them sel ves, In parti cular, analyti cal soIutions often depend On

many simplifying assumptions in rcintion to system geometry, material properties and forcing

tuncnons. In Contrast, personal computers, offer powerful possibilities of data inversion without

depending on the analytical solution. This can be achieved through numerical models.

Although the advantage of numerical models has been known for Some time, it's practical use

in hydraulic characterization has been somewhat limited, because it is often cumbersome to prepare

the input files for specific field situations to be fed into the computer program. Over the last few

years, with the development of spreadsheets, the interface with the numerical model has become

more efficient. Spreadsheet' of increasing sophistication allow for an ease of handling large

amounts of data from field tests. Graphing capabilities aid in the interpretation and representation
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of the field data and to compare estimated hydraulic parameters and numerical model results.

The motivation of this research is to develop a comprehensive tool for interpreting aquifer test

data with fewer simplifying assumptions, which is easy to use by Earth Scientists and Engineers.

We are developing a menu-driven tool that can be customized to account for specific attributes of

field test configurations and well installations. We are combining an already existing subsurface

fluid flow model (water, oil, gas) written in Fortran computer code with QuatroPro™, a

commercially available spreadsheet.

LOGICAL BASIS

Traditionally in the fields of hydrogeology, petroleum engineering, soil science and civil

engineering, the statement of the physics of subsurface fluid flow has been in terms of a partial

differential equation, subject to a set of initial conditions, boundary conditions, sources, and sinks.

Simplifying assumptions are necessary to render the partial differential equation amenable to

obtaining analytic solutions. These assumptions include simple geometry, time-invariant material

properties, constant flow rate, non-periodic boundary conditions and so on.

We depart from this tradition by viewing the physical problem of transient fluid flow as one of

mass conservation over discrete elemental volumes, subject to mass transfer between adjoining

volume elements through constraints of the equation of motion (Darcy's Law). The resulting

integral equations of individual elements linked to each other are conveniently solved in the high-

speed digital computer. This is inherently a forward problem. To achieve the inverse solution, we

use a trial and error calibration process, in which one first uses an estimated set of hydraulic

parameters (hydraulic conductivity and hydraulic capacitance), obtains the numerical solution, and

then compares the numerical solution with the observed field data. If the comparison is not

acceptable, the estimates for the parameters are revised and the process is repeated until the refined,

estimated parameter leads to a solution that closely agrees with the field data.
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THEORETICAL BASIS

We consider transient or steady-state, isothermal flow of fluids in geologic materials of the

earth's subsurface. The fluids of interest could be liquid or gas. The discussion presented below

is divisible into three parts: flow of liquids, flow of gases and the transport of a single dissolved

chemical species.

In presenting a unified description of the governing equations, one has to contend with the

different conventions used by researchers in different disciplines. For example, petroleum engineers

use fluid pressure, p, as the dependent variable while groundwater hydrologists, soil physicists and

civil engineers prefer to use potentiometric head as the dependent variable. For purposes of

elucidation and comparison we will present the forms used in more than one convention.

Flow of Liquids

The partial differential equation governing the transient flow of a liquid stems from the general

statement,

- div . q = C dCP
r Fit (1)

where q is Darcy velocity given by,

q = - K 'i7¢ , (2)

in which K is hydraulic conductivity, Cis specific hydraulic capacity (analogous to specific hear

capacity) and ¢ is fluid potential. In water saturated geologic materials (2) takes the familiar form,

'i7 . K VA-. = S a¢
'+' s at ' (3)

where ¢ = z + tV" is the potentiometric head in which z is elevation and tV" is pressure head, K is

hydraulic conductivity and S, is specific storage. Specific storage is defined as the change in volume

of water per unit bulk volume of the material per unit change in potentiometric head. Physically,
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s, = Pw g [a + n PJ ' (4)

where a is the compressibility of the porous matrix defined as,

(5)

where LiVw is change in volume of water, p is density of water, n is porosity", and P is

compressibility of water. We recognize that water is a slightly compressible fluid and Pw is a
constant.

In the field of petroleum engineering, (3) is written with pressure as the dependent variable as,

k ap'V • - (p g 'Vz + 'Vp) = nc -
~ w t at (6)

where k is absolute permeability, ~ is the dynamic coefficient of viscosity, p is pressure, and c, is
total compressibility, defined as,

ct
cf = n (- + Po) .

n (7)

Note that the left hand sides of (3) and (5) include the effects of gravity in the form of the elevation

term z.

It is not uncommon to see (5) frequently written as,

k ap'V'- 'Vp = n C -
~ I at (8)

Note that in (8) we have dropped the gravity term from the left hand side. Equation 7 is meaningful

only under certain special conditions. For example, when flow is purely horizontal, (7) is valid.

Equation (7) is inappropriate for systems in which vertical components of flow are known to exist.

Because most of the field methods of hydraulic characterization involves wells, boreholes or

piezometers, it is convenient to express (3) in cylindrical coordinates as,
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s a¢
s at (9)

If one restricts attention to purely horizontal flow, (9) reduces to,

= s a<f>
s at (10)

For purely horizontal flow, (9) takes on an equivalent form,

apn c1-. at (11)

Equations (3), (5), (9), (10) and (11) are often referred to as parabolic equations. When one restricts

attention to a steady state flow system, the time derivatives in the above equations vanish and they

reduce to the Laplace equation. For example, in cylindrical coordinates, the Laplace equation has

the form,

1 a.+. a:t.+.
+ __ '+' +_'+'] =0.

r ar az 2 (12)

A steady state flow system with sources or sinks at a finite number of points (e.g. production wells

and injection wells in an aquifer) is described by the Poisson equation. In Cartesian coordinates

pertaining to two-dimensional horizontal aquifers, the Poisson equation has the form,

v . K V<f> = Q(x,y) .
(13)

It is a common convention to assume that the subsurface flow system is initially under

hydrostatic conditions. When this assumption is made, one can conveniently neglect effects of

gravity and write the parabolic equation in terms of drawdown of potentiometric head. Thus, for
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example,

= s as
s at ' (14)

where s(r.z.t) is the drawdown defined as,

s(r,z,t) = ¢0 - ¢(r,z,t) , (15)

in which <Po is the initial potentiometric head representing hydrostatic conditions.

These equations need to be augmented by appropriate boundary conditions. Under conditions

of purely saturated flow, the relevant boundary conditions are of two kinds: prescribed potential

(Dirichlet condition) and prescribed flux (Neumann condition). An impermeable boundary is a

Neumann boundary with zero nux. The well is also generally treated as a prescribed flux boundary.

Note that in the equations described above, the parameters k, K, and S, are all assumed to remain

constant in time in order that the equations are amenable to being solved. Under this condition the

equations are said to be linear.

It is worth recognizing here that a differential equation represents conservation of mass at a

location within a single homogeneous material. If the now domain of interest comprises more than

one material (that is, if it is a heterogeneous system) one differential equation must be set up for

each material component and their solutions made to agree at the appropriate material interfaces.

To obtain mathematical solutions to the aforesaid partial differential equations and to interpret

the significance of the solutions in a systematic way, the use of dimensionless groups is extremely

useful. The rationale for defining these groups stems from the Pi Theorem of Buckingham (1914).

Two dimensionless groups which are fundamental to many interests in many systems relating to

hydraulic characterization are,

dimensionless time, tn

and dimensionless pressure, p[).

Although the equation governing transient fluid now in geologic media is mathematically

similar to Fourier's transient heat conduction equation, the physical processes of fluid flow and heat

conduction are vastly different in nature. Heat conduction has no attribute analogous to external
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stresses. In heat conduction, temperature (analogous to pressure) is a function only of heat

(analogous to quantity of water); in transient fluid flow in porous media, however, pressure is a

function of quantity of water as well as of external stresses acting on the material. Thus, in such a

system, fluid pressure is a function of two state variables, quantity of water, M, and external

stresses, o. Therefore, the total differential (or simply, the total change) in pressure has two
components,

(16)

On the right hand side of (16), the first term represents change in pressure caused by change in

quantity of water with the external stresses remaining unchanged. Indeed, the parabolic equation

of transient groundwater flow involving Darcy's Law stems from this partial differential. The

second term on the right hand side of (16) relates to change in pressure caused by changes in fluid

pressure induced by changes in barometric pressure, effects of earth tides and the like. In order to

describe the change in pressure caused by all effects (that is, groundwater movement governed by

Darcy's Law as well as effects of external stress change) we need to expand (10) and (11) to read,

K [a
2
¢ +l a¢] + TE (ao)

=
a¢s a 2 r ar (J P,Ji at Mw ats r

and, k [a
2
p +l ap]a acr ap+ TE (ar)MW =I1nc, a,. 2 ,. ar at

(17)

(18)

where TE is tidal efficiency. Depending on the nature of the external stress changes, one could use

Skempton's coefficients in place of TEin (17) and (18). Equations (17) and (18) provide a basis for

interpreting passive response of aquifers to barometric changes, effects of earth tides and related
effects.

Unsaturated Flow

The linear partial differential equations given above relate to the flow of oil or water under

conditions of full saturation of the respective fluid. When the flow system has more than one fluid

present in the pores, the system is said to be unsaturated. Capillary pressure at fluid-fluid interfaces
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playa major role in the physical behavior of such systems and the governing differential equation

becomes non-linear. In the field of soil physics, one is interested in systems with water and air as

the permeating fluids. The non-linear differential equation describing transient flow in such systems
is Richard's equation,

v . K(tIr) V(z+tJI) '" C (tIr) atJI
h at (19)

where K(tIr) denotes the dependence of hydraulic conductivity on tJI, and ChCtJI) denotes the

dependence of hydraulic capacitance on tIr· Also, tV in (19) denotes the gage pressure head so that

tJI>O in the domain with water and tIr<O in the unsaturated domain. Implicit in (19) is the assumption

that air pressure in the unsaturated domain remains constant at 0 and that C 19) relates only to the
flow of water.

The hydraulic capacitance term on the right-hand side of (19) includes three components,

namely, compressibility of porous medium, compressibility of water and rate of change of saturation

with 0/. The hydraulic capacitance is a strong function of tJI. Moreover, in order to account for

matrix compressibility under unsaturated conditions, one has to consider the complex relationships

between pressure head and stresses (Bishop, 1955; Narasimhan and Witherspoon, 1977).

Equation (19) is generally extremely difficult to solve. Many of the solutions available relate

to one-dimensional flow domains with K assumed to be an exponential function of 0/. In the

capacitance term, it is customary to neglect matrix compressibility and water compressibility and

restrict consideration to the rate of change of saturation with tJI.

Gravity and capillary pressure effects combine to give rise to a boundary condition known as

the seepage face which is peculiar to unsaturated, gravity-drainage systems. On the seepage face

tIr=O (a constant potential boundary), water can only get out of the seepage face when the gradient

of potential is directed outward. The seepage face acts as an impermeable boundary when the

gradient of potential is directed inward, towards the now domain.
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NUMERICAL MODEL

The numerical model used as the tool of interpretation in this study is TRUST (Narasimhan et

al., 1978) which uses the Integral Finite Difference Method (Narasimhan and Witherspoon, 1976).

In this algorithm, the flow domain is discretized into elemental volumes of arbitrary shape and mass

conservation is implemented through a set of interlinked algebraic equations. The hydraulic

capacitance of individual volume elements is a function of its ability to deform, its ability to

desaturate and the ability of water to expand in response to changes in fluid pressure. The transfer

of water between adjoining elemental volumes depends on the hydraulic resistance between the

volume elements. In order to compute the hydraulic resistance one has to have knowledge of the

local flow geometry in addition to the hydraulic properties of the materials contained in the

elemental volumes. Although the calculation of hydraulic resistance is a difficult task in the case

of heterogeneous media in which flow geometry may change arbitrarily with time, the task becomes

greatly simplified in those systems in which the flow geometry is a priori known. In the present

work, we restrict attention to flow systems in which either radial flow (with or without flow in the

vertical direction) can be assumed to be a reasonable idealization of the field conditions.

Consequently, in calculating hydraulic resistances and mass transfer between elements, flow

geometry is assumed known in the manner suggested by Narasim han (1985). The applicability and

the usefulness of the TRUST model has been illustrated through previous publications (Narasimhan

and Witherspoon, 1978; Narasimhan, 1982).

In general, the algorithm handles spatial variations 111 material properties (heterogeneity).

anisotropy. dependence of material properties on fluid pressure (saturated-unsaturated flow, pressure

sensitive material properties), time dependent boundary conditions and arbitrary initial conditions.

Because of the generality of this model in regard to system geometry, material properties, forcing

functions and initial conditions, it is in principle, a powerful tool for analyzing data from field

hydraulic tests involving complex geometry and material attributes. However, traditionally a

practical limitation has been that providing the necessary information input to the algorithm by the

interpreter has been a cumbersome task. Furthermore, the processing of the model output by

comparison with observed data to back out the hydraulic parameters by way of iterative adjustment

has also been a non-trivial task. Fortunately, the traditional limitations have become amenable to
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a great deal of simplification through the availability of commercially available spreadsheets.

Essentially, then, we can conveniently use the spreadsheet (a) as a preprocessor for generating the

input to the numerical model, and, (b) use the graphics in the spreadsheet as a means of comparing

the output generated by the numerical model with the observed data.

In order to understand how the spreadsheet may be used as a preprocessor, it is useful to briefly

describe the input data organization of the TRUST algorithm. In the algorithm, input information

is organized into the following categories: problem control parameters (Block 1), material properties

(Block 2), properties of the fluid (Block 3), volumetric properties of the elemental volumes (Block

4), properties of inter-volume flow connections (Block 5), boundary conditions (Block 6 and Block

7), time-dependent sources and sinks (Block 8) and initial conditions (Block 9). In AQTRUST,

these blocks of information are handled through a set of interlinked "pages" of the spreadsheet,

along with an input "page" to describe the anatomy of the field test. Perhaps the most cumbersome

part of this description is the development of the information relevant to Block 4 and Block 5, where

the geometry of the problem is systematically described. To minimize this difficulty we make use

of the axisymmetric flow assumption. This assumption greatly simplifies the generation of the

geometric information from the minimal information provided in the "input" page by way of well

radius, screen length, aquifer thickness and so on. In addition, the axisymmetric assumption also

enables us to design the computational grid in such a fashion that nodal points are generated to

correspond exactly to the locations of observation wells or piezometers from which the data have

been collected. This enables, int he interpretation process, the simultaneous comparison of

calculated and observed data in backing out the hydraulic parameters. This process avoids the need

for interpolation between solution points. In this process, the logic presented in Narasimhan (1985)

is used.

THE MODEL~SPREADSHEET INTERFACE

The input page is used to describe the various attributes of the field test conditions. An example

is shown in Figure L As the attributes are entered they are automatically translated via appropriate

links into information compatible with the TRUST Fortran statements. In addition, the observed

data from the various observation wells or piezometers are also entered. In addition to the test
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attributes, the interpreter also enters a set of estimates for the hydraulic parameters that are to backed

out (e.g. hydraulic conductivity, specific storage). In the next step, a "macro" is implemented to

convert the spreadsheet pages into a set of input files for the numerical model to read.

Following this the numerical model is executed. For convenience, the output information is

written into separate files. One of these files contains the time history of change in fluid potential

(or hydraulic head or drawdown) at locations corresponding to the locations of the one or more

observation wells. This file is then imported into the spreadsheet and formatted appropriately with

the help of macros and graphically portrayed along with the observed data. If the "match" between

the observed data and the computed values is acceptable, the estimated hydraulic parameters used

in the simulation is taken to be the desired estimates. If, not, the estimates used in the input page

are suitably revised and the whole process repeated once again.

Application of the Tool

At the present stage of development, we have implemented the methodology described above

to generate the numerical solutions for the types of field situations given in Table 1. That is, we

describe the field set up in the input page along with estimates of relevant hydraulic parameters of

interest. Based on the information of the input page, the numerical solution is obtained and the

results are ready to be compared with field data or with analytic solutions. We have been successful

in obtaining excellent agreement with the analytical solutions, so much so, we believe that the

numerical model and the proposed methodology are reasonable and sound. We will soon be testing

the method against field data.

Two Illustrative Examples

Finite Radius Well. with Finite Skill and Constant Flow Rate

The first illustration pertains to steady pumpage of water from a well with a finite casing radius

of 0.1 m, piercing a confined aquifer of thickness 10m (screen length). The well screen resides in

a bore-hole of radius 0.125 m, the annulus acting either as a gravel-pack or as a skin. The scenario

consists of a pumping test conducted for 11 days with a constant flow rate of 0.0 1 m3is. The initial,

static water level is 100 m above datum, and the aquifer is fully screened. The relevant input data

along with other field properties were entered into the input page shown in figure 2.
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We use this illustration to evaluate the accuracy of the numerical solution as compared to an

analytical solution presented by Agarwal et al. (1970). Accordingly, we chose Kaquifer, Kskin' and

Ss,aquifer in such a fashion that the dimensionless well-bore capacitance, CD was 100. We generated

the solution for this particular case and compared the results with the analytic solution

corresponding to Cn=lOO of Table 3 of Agarwal et at. (1970).

As can be seen from the graph in figure 3, the comparison is quite good. If, instead of the

analytical solution we had field data, then we would have iteratively adjusted ,the estimated

hydraulic parameters of the input page until the corresponding numerical solution matched with the

field data in an acceptable manner,

Partial Penetration Pumping Test with Anisotropy (Screened Mid-Aquifer)

In the second illustration we present the case of a partially penetrating well with a finite well-

bore radius and anisotropy. For this case we do not present an analytical solution. This case simply

shows that the methodology has the ability to handle complex flow geometries, This scenario

consists of a pumping test conducted for II days in a ten meter thick confined aquifer which is

partially screened mid-way over a five meter interval. There are three observation wells located at

2, 10, and 20 meters from the pumped well, and the vertical hydraulic conductivity is one tenth the

horizontal hydraulic conductivity. The input parameters used are shown in figure 4,

The varying distances of observation wells from the pumping well indicated the influence of

anisotropy on the resultant hydraulic head with time, Using the same parameters, the isotropic case

(shown as symbols in figure 5) was also solved numerically and compared with the anisotropic case.

The graph (figure 5) of the numerical results for the pumping test demonstrates the stronger effect

of anisotropy (shown as solid lines) closer to the pumping well. This is to be expected because in

an aquifer that is partially penetrated by a well, three dimensional flow patterns exist close to the

pumping well, whereas beyond a distance equal to about 1.5 to 2.0 times the aquifer thickness

(Todd, 1980), the vertical flow resulting from partial penetration no longer influences the flow

paths.

If this had represented an actual pu mping test, the field data from each of the wells would have

been compared to the values obtained from the numerical solution. If the match between the

observed data and the computed values was acceptable, the estimated hydraulic parameters used in
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the simulation would be taken as the desired estimates. If not, the interpreter would revise the

values on the input page and repeat the process until suitable matches were made.

Current Status

We are in the process of developing a set of macros to efficiently compare the output

information from the numerical model with field data to facilitate the iterative process. As already

indicated, at present we have addressed the cases included in Table 1. Our goal is to extend this

capability to systems involving saturated-unsaturated flow, fluids with prescribed properties (water,

oil, air), double porosity systems, leaky aquifer systems, multi-aquifer wells and so on. This

numerical-model/spreadsheet interface will be used to analyze field test data and become part of a

M. S. Thesis.
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ANATOMY OF THE FIELD METHOD CHARACTERIZATION
all measure ments are in me ters, kilograms. seconds

IDescriptive Title of Field Testrm.s.

~

m
m
m
mls
11m
mls

caiculateo

m

m

e.g. 1.25
e.g. 50
e.g. = 1050

FORCING FUNCTIONS
NATURE OF FLOW RATE
Constant Flow Rate, Q (- il pumping, + il injecl"ton) §mA3/S
If Variable: -I lor variable !low rate, + 1 lor variable potenlia. I
for Guelph: Height 01 water in borehole, H m

Distance trorn dalum 10 waler in borehole, phib m
Constant pressure, psi m

Figure 1. Input page for AQTRUST, a numerical-model/spreadsheet integration,

CONTROL PARAMETERS
Test Duration

Pumping Time
Recovery Tune
Static Level

NATURE OF MATERIALS
Initial Water Level
Aquifer Malerial Number

[t-sand: 2-well: 3-sill: 4--c1ay;
&-gravel; s-rcarn; 7·shale;
a-sandstone: s-tracture]

Natura 01 Well (t-water Jevel; 2·packed off]
R(at), firsl observation well location
R{e2l, S8COndobservation well location
R(e31, third Observation well location
K. estimate
Ss, estimate
Kskin estimale

NATURE OF FLUID
Nature 01 Fluid

[t-water, 2-oil, 3·gas]

NATURE OF AQUIFER (or vadose zone)
Aquiler Thickness, H
Depth from Surface to Water Table. Hv, (lor vadose zone)
R(sysl, extent 01 aquifer or vadose lone
Confined I Unconlined
Anisotropy: if yes, ·1: il 00, blank
Horizontal Factor, Fh
# 01 Vertical Nodes, Fv
Number of Nodes

OINT ((OLOG[R(sys)IR(w)}} f[I/iLOG (Fh))) • Fv

SLUG
Slug Magnitude
lnitial Head increase in well @ slug lest

i,yscrion is PO$ltivQ and wifhdrawl i~m1ga~'v8

NATURE OF BORE·HOLE
Radius 01 Auger-Hole. Ra
Depth 01 Auger·Hole, Ha, (a=auger·hole)

NATURE OF WELL
SCREEN
Well Screen Radius, Rw = Rs
Lenglh a! screened interval, Hs
Distance lrom top of aqui!er 10 top 01 screen, Hd

CASING
Casing Radius, where H20 fluctuates, Re
Length 01 casing, Hc,c
Ellective Length 01 casing, He ~ Hc.eit

((Rw'2 ' Hs) + (Fk>'2 ' He)} f IRw":!)

f--I~

f-----1m
f-,---,..--:-!m,-",,==",,-,m
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Table 1. AQTRUST Scenario Titles.

Geometry:
R: radial
C: cylindrical

Forcing Function:
P: pumping
S: slug
I: infiltrometer

F A Of T

Aquifer Type:
C: confined
U: unconfined

V: vadose zone
G F Seometry orcmz unction .qUI eriype cenarioNumber

Radial Flow Geometry

RPC 1 Line Source with Constant Flow Rate (Theis Solution)

R_P_C_2 Finite Rw, No Skin, and Constant Flow Rate (Agarwal- Ramey
Analytical Solution)

R_P_C_3 Finite Rw, Finite Skin, and Constant Flow Rate (Agarwal-Ramey
Analytical Solution)

R P C 4 Finite Rw, No Skin, and Variable Flow Rate

R P C 5 Finite Rw, No Skin, and Constant Drawdown

R P C 6 Finite Rw, No Skin, Constant Flow Rate, and Shut In

R_S_C -1 Slug Test with No Skin (Cooper Analytical Solution)

R_S_C_2 Slug Test with Skin

R_S_C_3 Pressure Pulse Slug Test

Cylindrical Geometry

C_P_C_ IT Finite Rw, Partial Penetration with Io.p of Aquifer Screened

CPC 1M Finite Rw, Partial Penetration with Middle of Aquifer Screened

CPC IB Finite Rw, Partial Penetration with Bottom of Aquifer Screened

C_S_C_IT Partial Penetration Slug Test with Top of Aquifer Screened

CPC I Full Penetration Pumping Test with Anisotropy

C_P_C_2T Partial Penetration Pumping Test with Anisotropy with Thp of Aquifer
Screened

C_S_C_l Slug Test with Full Penetration and Anisotropy

C_S_C_2T Slug Test with Partial Penetration at Thp of Aquifer and Anisotropy

C I V 1 Guelph Perrneameter with Hydrostatic Initial Conditions

C I V 2 Guelph Permearnetcr with Constant Psi Initial Conditions
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ANATOMY OF THE FIELD METHOD CHARACTERIZATION
all measurements are in meters, kilograms, seconds

TITLE:

loolm
'-- __ -:..1 . sand

1
ria
ria
ria

I,OE·04
S.OE-OS
1,OE·04

10,0

1000
confined

1.25
20

820

a·lm
10 m
Om

~

.lm
100 m
110 m

m
m
m
mls
11m
mls

CONTROL PARAMETERS
Test Duration

Pumping Ti me
Hecovery Time
Static level

NATURE OF MATERIALS
Initial Water Level
Aquifer Material Number

[t-sarxl; 2-weU; 3-silt; 4-clay;
5-gravel; 6-loarn; 7-shale;
8-sandstone; g-fracture]

Nature of Well [t-water level; 2-packed oN]
R(el), first observation weillocalion
R(e2), second observation well location
R(e3), third observation well location
K, estimate
Ss, estimale
Kskin estimate

NATURE OF FLUID
Nature of Fluid

It-water, 2-oil, 3-gasJ

NATURE OF AQUIFER (or vadose zona)
Aqui fer Thickness, H
Depth from Surface to Water Table, Hv, (lor vadose zone)
R(sys). extent 01 aquiler or vadose zone
Can lined I Unconfined
Anisotropy: 11yes, -1: if no, blank
Horizontal Factor, Fh
# of Vertical Nodes, Fv
Number 01 Nodes

OINT (IOLOG(R(sys)IR(w)]] I(OLoo II•• ",,)})

FORCING FUNCTIONS
NATURE OF FLOW RATE
Constant Flow Rate, Q (- if pumping, + il injection)
tf Variable: -, for variable !low rate, .•.1 lor variable potential
for Guelph: Height of water in borehole, H

Distance from datum to water in borehole, phib
Constant pressure, psi

SLUG
Slug Magnitude
Initial Head increase in well @ slu g test

l/lfJciion is positiv8 and ••••irhl/(8wJ;s n6g11liv6

NATURE OF BORE-HOLE
Radius of Auqer-Hole, Ra
Depth of Auger-Hole, Ha, (a=auger·hole)

NATURE OF WELL
SCREEN
Well Screen Radius, Rw", Rs
Length 01 screened interval, Hs
Distance from top of aquifer to top of screen, Hd

CASING
Casing Radius, where H20 lIuctuates, Rc
Length 01 casing, Hc.c
Effective Length 01 casing, He = He,elf

[(R""'2 ' Hs) + 1RcA< ' He!! I (Rw":!)

m
m
m

ria m
ria m
ria

Figure 2. Input page for first illustration: Finite radius well with finite skin and constant flow
rate.

52



AQTRUST Numerical Solution Compared
with Agarwal's Analytical Solution

100

~ -, -" -, L-", ~ ./~ 10 .- ,o V(I) I"-
Ol.Q
, :/,
~
(l)

a; 1

Vg
c ;/~
0
""0

~ 0.10

0.01

1.0E-01 1.0E+OO 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06
Time (sec) --log scale1-Numerical Solution X Agarwal Solution

- ..
AOTI~UST Solution Al!.lu·wal et al. Solution

Time (s) dwdwn/m) Time (5) dwdwnun) Time (.~) dwdwn(m) Time {s) dwdwuun) Time (5) Dwdwntm)
lE-12 0.000 18.77 3.840 79.17 7,433 1409.6 10.591 0.5 0.155

0.63088 0.195 19,487 3.935 82.86 7.520 1556.2 10.674 1 0.305
1.2814 0.388 20.978 4.125 86.822 7.607 1898.7 10.838 2.5 0.730
1.6162 0,484 21.754 4.219 95.689 7.779 2098.3 10.920 5 1.366
2.3056 0.676 23.374 4.408 100.67 7.865 2319.5 11.002 10 2.435
2.6604 0.773 24.219 4.503 106.07 7.950 2836.8 11.167 25 4.589
3.0221 0.869 25.089 4.597 111.94 8.035 3472.4 11.331 50 6,41S
3.7662 1.061 25.986 4.691 125.33 8.203 3842.9 11,413 100 7.S54
4.149 1.158 27.865 4.879 132.98 8.287 5213.9 11.660 250 9.034
4.9367 1.350 28.849 4.973 141.38 8.370 6394. I 11.824 500 9.699
5.342 1.447 29.866 5.067 160.8 I 8.536 7082.1 11.906 1000 10.303
5.7551 1.543 30.918 5.160 184.47 8.701 8690.5 12.070 2500 11.064
6.1762 1.639 33.131 5.347 198.21 8.784 9628.1 12.152 5000 11.626
7.0436 1.831 34.298 5.440 213.43 8.866 10668 12.235 10000 12.1837.4902 1.928 35.508 5.533 248.97 9.030 13098 12.399 25000 12.916
7.9459 2.024 38.069 5.718 292.66 9.194 14515 12.481 50000 13.469
8,4 108 2.120 40.837 5.903 318.13 9.277 17827 12.645 100000 14.021
9.3694 2.312 42.309 5.995 377.67 9.441 19759 12.727
9.8638 2.408 43.844 6.087 412.37 9.523 21900 12.809
10.369 2.504 47.123 6.270 450.84 9.605 29824 13.056
11.411 2.695 50.717 6,452 540.74 9.770 33059 13.138
12.5 2.887 52.648 6.543 593.11 9.852 36647 13.220

13.063 2.982 56.816 6.723 715.5 10.016 40625 13.302
13.639 3.078 59.071 6.813 786.81 10.098 49925 13.467
14.83 3.269 61.452 6.903 865.84 10.181 55347 13.549
16.08 3,460 66.645 7.081 953.43 10.263 75414 13.795
16.728 3.555 69.483 7.170 1158.1 10.427 92693 13.959
18.072 3.745 75.726 7.346 1277.4 10.509 100000 14.020

Figure 3. Comparison of a numerical solution (solid line) and Agarwal's analytical solution
(symbols) for a finite radius well with finite skin and constant flow rate.
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ANATOMY OF THE FIELD METHOD CHARACTERIZATION
all measurements are in meters, kilograms, seconds

TITLE:

Rw 0, 1m,S m screen midway in 10m aquifer; Fv=40; Kv"O,I'Kh
Obsv Well nodes located at baltom 01 snuiler baltom of well closed
Pertiallv PSlletralinn Well whh Anisolronv iscreened mid-aouffer

CONTROL PARAMETERS
Test Duration

Pumping Time
Recovery Time
Static Level

NATURE OF MATERIALS
Initial Water Level
Aquiler Material Number

[t-saod: 2-well; a-sllt: 4-clay;
S.gravel; 6-loam; 7-shale;
B-sandstone; 9-fractureJ

Nature of Well [t-water level; 2-packed offJ
R(el), first Observation weillocalion
R(e2). second observation well location
R(e3). third observation weillocalion
K. estimate
ss, estimate
Kskin estimate

NATURE OF FLUID
Nature of Fluid

[t-water, 2·oil. 3·gasl

NATURE OF AQUIFER
Aquifer Thickness. H
Aquifer EX1ent. R(sys)
Conlined I Unconfined
Anisotropy: if yes. ·1; if no. blank

KvlKh
Horizontal Factor. Fh
# 01 Vertical Nodes. Fv
Number of Nodes

CINT ({CWG[R(sys)nl("')1l /[CWO (Fh)J) •Fv

lE+06 S
I rVals

1061m

l- __ -'2=-im
10 m
20 m

I,OE·OS mls
1.0E·04 11m
I,OE·05 mls

10,0 m
1000 m

contined
·1

1,25

1640

0,1

40

FORCING FUNCTIONS
NATURE OF FLOW RATE
Constant Flow Rale, Q (. if pumping, + if injection) ·0.001 m~3/s
II Variable: -I for variable lIow rate. +1 for variable potentiall-_---'nI"-2.a
lor Guelph: Height of water in borehole. H nla m

Distance from datum to water in borehole, phib nla m
Constant pressure, psi rva

SLUG
Slug Magnitude
Initial Head increase in well @ slug test

i*c.ljcn is posiriv(I and wilhdrsw/is ~gafiv",

NATURE OF BORE·HOLE
Radius 01 Auger-Hole, Ra
Depth 01 Auger·Hote. Ha, (a=auger·hole)

NATURE OF WELL
SCREEN
Well Screen Radius, Rw = Rs
Length of screened interval, Hs
Distance Irom top of aquiler to top of screen, Hd

CASING
Casing Radius. where H20 fluctuates. Rc
Length of casing, Hc,c
Effective Length a I casing, Hc = He.eli

FEATURES
1 - water level lIuctuates
2 - sealed well [Ss{well) = rho'g'beta)

and [length 01 packed olf casing)

B,1m
5 m

2,5 m

B"m
100 m
105 m

Figure 4, Input page for second illustration: Partially penetrating well with anisotropy.
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100

Partially Penetration with Anisotropy
Solid Lines: Kv=O.1 Kh; Symbols: Kv=Kh

pumpedwoll

obsvWol/ tI 2m

obsvW811 tI 10m

obsvWel! tI 20m

o

pumpedweff

x

obsvWell c» 2m

obsvWel1 (110m

o
80

~~
~~PQQQ P Q 0 b (")

-r----.:: - - -e- - >-.! - -y - - V - - Q __ .0 __CD
~ F &- I?>- e.- b- -6

~ -- - - _ _ _ - 1-. b- - fr- - -fr- _
,,"vo -- ----l-

AX >< X :'- X X X X X X ;

~
l'h".
9L.ILQ:: t:::tJOO bo n h ,-,<, LJ U 0 0 0 0 [PI----t---

obsvWolI c» 20m

95

------~
OJa:;
E'--'
1j
t<l

90OJ..c:
,~:;
~
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