
UC Berkeley
Research Reports

Title
Hybrid Data Implementation: Final Report for Task Number 3643

Permalink
https://escholarship.org/uc/item/32b6s0fk

Authors
Khan, Sakib Mahmud, PhD
Fournier, Nicholas, PhD
Mauch, Michael, PhD
et al.

Publication Date
2020-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32b6s0fk
https://escholarship.org/uc/item/32b6s0fk#author
https://escholarship.org
http://www.cdlib.org/


Hybrid Data Implementation           Final Report 

 
PARTNERS FOR ADVANCED TRANSPORTATION TECHNOLOGY 

INSTITUTE OF TRANSPORTATION STUDIES 
UNIVERSITY OF CALIFORNIA, BERKELEY 

HYBRID DATA IMPLEMENTATION 
FINAL REPORT FOR TASK NUMBER 3643 

 

Prepared by: 

Sakib Mahmud Khan, Ph.D., Post-Doctoral Scholar 
Nicholas Fournier, Ph.D., Post-Doctoral Scholar 
Michael Mauch, Ph.D., Research Engineer  
Anthony D Patire, Ph.D., Research and Development Engineer 
Alex Skabardonis, Ph.D., Professor In-Residence 
 

 
 
 

 

PATH Research Report 

 

 
 

 

 



Hybrid Data Implementation  Final Report 

ii 

 

 

 

 

 

 

The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies 
of the State of California. This report does not constitute a standard, specification, or regulation. 

 

 

 

Partners for Advanced Transportation Technology works with researchers, practitioners, and industry to 
implement transportation research and innovation, including products and services that improve the 
efficiency, safety, and security of the transportation system. 
 

Partners for Advanced Transportation Technology 
University of California, Berkeley 

409a McLaughlin Hall, Berkeley, CA 94720-1720 
Phone: (510) 642-5478   Fax: (510) 642-0910   http://www.path.berkeley.edu 

 

 

 

 

 

 

 

 

UCB-ITS-PRR-2020-02        February 2021 
  



Hybrid Data Implementation  Final Report 

iii 

 

TABLE OF CONTENTS 

PARTNERS FOR ADVANCED TRANSPORTATION TECHNOLOGY ................................................... i 

List of Figures ..................................................................................................................................... v 

List of Tables ..................................................................................................................................... vii 

List of Abbreviations and Acronyms ................................................................................................ viii 

List of Nomenclature ......................................................................................................................... ix 

Chapter 1 Introduction ............................................................................................................... 1 

 Introduction ........................................................................................................................... 2 

1.1. Purpose ................................................................................................................ 2 
1.2. Scope .................................................................................................................... 2 
1.3. Background .......................................................................................................... 3 
1.4. Summary Findings ................................................................................................ 4 
1.5. Structure of Report .............................................................................................. 6 

Chapter 2 Data Landscape .......................................................................................................... 7 

 Overview ................................................................................................................................ 8 

1.1. Summary Findings ................................................................................................ 8 

 Existing Caltrans Data Pipeline ............................................................................................... 9 

2.1. Overview .............................................................................................................. 9 
2.2. Real-Time Applications ......................................................................................... 9 
2.3. Historical Applications ........................................................................................ 10 
2.4. Mobility Performance Report ............................................................................ 10 
2.5. PeMS .................................................................................................................. 12 

 Survey of Third-Party Data ................................................................................................... 18 

3.1. Taxonomy of Data Collection Methods .............................................................. 18 
3.2. Review of Key Vendors ....................................................................................... 20 
3.3. Comparison of Products ..................................................................................... 23 

Chapter 3 Estimating Vehicle Hours of Delay ............................................................................ 25 

 Overview .............................................................................................................................. 26 

1.1. Approach ............................................................................................................ 26 
1.2. Summary Findings .............................................................................................. 28 

 Literature Review ................................................................................................................. 29 

2.1. Data Conflation .................................................................................................. 29 
2.2. Data Fusion ......................................................................................................... 30 

 Methods ............................................................................................................................... 32 

3.1. PeMS Method .................................................................................................... 32 
3.2. Hybrid Method ................................................................................................... 35 



Hybrid Data Implementation  Final Report 

iv 

 

3.3. Experimental Setup ............................................................................................ 43 

 Results .................................................................................................................................. 49 

4.1. Research Consideration ..................................................................................... 49 
4.2. ML-Based Missing VDS Data Imputation............................................................ 49 
4.3. PeMS Speed Calculation ..................................................................................... 50 
4.4. Freeway Mainline Performance Measures ........................................................ 52 
4.5. Freeway-Freeway Connector Performance Measures ...................................... 55 
4.6. Conclusions ........................................................................................................ 58 

Chapter 4 Incorporating Third Party Data ................................................................................. 59 

 Overview .............................................................................................................................. 60 

1.1. Approach ............................................................................................................ 60 
1.2. Summary Findings .............................................................................................. 62 

 Efficient Deployment of Point-Based Detectors .................................................................. 63 

2.1. Key Value of Point-Based Detectors .................................................................. 63 
2.2. Key Challenges of Point-Based Detectors .......................................................... 63 
2.3. Framework for Efficient Deployment ................................................................. 64 
2.4. Analysis and Discussion ...................................................................................... 65 

 Opportunities for Improved Coverage ................................................................................. 68 

3.1. Extension of Coverage to Freeways with Limited Instrumentation ................... 68 
3.2. Analysis and Discussion ...................................................................................... 71 

Chapter 5 Strategy to Incorporate Third-Party Data ................................................................. 73 

 Overview .............................................................................................................................. 74 

1.1. Data Comparison ................................................................................................ 74 

 Proposed Hybrid Data Framework ....................................................................................... 76 

2.1. Proposed Organizational Approach with FATV Concept .................................... 77 
2.2. Proposed Strategy for VHD in PeMS .................................................................. 78 
2.3. Recommendations ............................................................................................. 79 

 Third Party Data Roadmap Strategy ..................................................................................... 81 

Bibliography ...................................................................................................................................... 84 

Appendix A – VHD Calculation Error at Individual VDS Locations ........................................................ 86 

  



Hybrid Data Implementation  Final Report 

v 

 

LIST OF FIGURES 

Figure 1-1 Roadway Nomenclature Diagram ................................................................................................................ ix 

Figure 2-1: Junction between I-210 and I-605 illustrating physical locations of VDS sensors. Place-mark colors blue, 
red, yellow, green, and purple indicate VDS types mainline, HOV, off-ramp, on-ramp, and fwy-fwy connector, 
respectively. .................................................................................................................................................................  13 

Figure 2-2: Strip-map of I-210. WB direction is on top and EB direction is on the bottom. Numbers in the center 
indicate Abs PM. VDS are shown as blue, pink, green, or grey markings. ................................................................... 14 

Figure 2-3: Physical locations of VDS from Table 2-2. Of these six VDS, only VDS 775795 and 773204, outlined in blue, 
appear in the mouse-over function on the online version of the strip-map. .............................................................. 15 

Figure 2-4: Strip-map of I-605. NB direction is on top and SB direction is on the bottom. Numbers in the center 
indicate Abs PM. VDS are shown as pink, green, or grey markings. ............................................................................ 15 

Figure 2-5: Physical locations of VDS from Table 2-3. Of these six VDS, only VDS 774262, 774261, and 774258, 
outlined in blue, appear in the mouse-over function on the online version of the strip-map. ................................... 16 

Figure 2-6: A comparison of traffic data collection methods (Bayen, Sharafsaleh and Patire, 2013) ......................... 18 

Figure 3-1 Steps for performance measurement estimation ...................................................................................... 26 

Figure 3-2 Data conflation and fusion ......................................................................................................................... 27 

Figure 3-3 Research approach ..................................................................................................................................... 28 

Figure 3-4 Performance measure estimation framework ........................................................................................... 32 

Figure 3-5 Schematic of multiple loops forming single VDS ........................................................................................ 33 

Figure 3-6 Freeway segment representing coverage of VDS ....................................................................................... 34 

Figure 3-7 Hybrid method to estimate performance measures .................................................................................. 35 

Figure 3-8 schematic of imputation model development ........................................................................................... 36 

Figure 3-9 ML-based training and test ......................................................................................................................... 37 

Figure 3-10  CNN-based imputation model ................................................................................................................. 38 

Figure 3-11 CapsNet-based imputation model ............................................................................................................ 39 

Figure 3-12 Freeway with cells .................................................................................................................................... 39 

Figure 3-13 C-GASM for conflating with surrounding VDS .......................................................................................... 41 

Figure 3-14 C-GASM method ....................................................................................................................................... 42 

Figure 3-15 Travel time conflation .............................................................................................................................. 43 

Figure 3-16 I-210 simulation model ............................................................................................................................. 44 

Figure 3-17 Probe vehicle travel time data generation ............................................................................................... 45 

Figure 3-18 Imputation study area .............................................................................................................................. 46 

Figure 3-19 I 210 - I 605 connectors ............................................................................................................................ 48 

Figure 3-20 Effect of datasets on training ................................................................................................................... 49 

Figure 3-21 Calculated speed error for lane 1 in freeway mainline ............................................................................ 51 

Figure 3-22 Sample available data from VDS along I-210 westbound ......................................................................... 52 



Hybrid Data Implementation  Final Report 

vi 

 

Figure 3-23 Peak period comparisons for freeway mainline ....................................................................................... 54 

Figure 3-24 Other period comparisons for freeway mainline ..................................................................................... 54 

Figure 3-25 Peak period comparisons for freeway-freeway connectors ..................................................................... 56 

Figure 3-26 Freeway-freeway connector congestion during afternoon peak ............................................................. 56 

Figure 3-27  Other period comparisons for freeway-freeway connectors .................................................................. 57 

Figure 4-1 Point detector placement experiment ....................................................................................................... 61 

Figure 4-2 Sample hourly count distribution ............................................................................................................... 61 

Figure 4-3 FATVs along I-210 ....................................................................................................................................... 64 

Figure 4-4 Framework for evaluating the efficient deployment of point-based sensors ............................................ 65 

Figure 4-5 Abs percentage error for traditional and hybrid methods ......................................................................... 66 

Figure 4-6 Abs percentage error distribution for FATV removals ................................................................................ 66 

Figure 4-7 Generic hourly flow distribution ................................................................................................................ 69 

Figure 4-8 Measured flow profiles from I-210 up and downstream VDS .................................................................... 70 

Figure 4-9 Measured flow profiles from I-210 up and downstream VDS (continued) ................................................ 71 

Figure 4-10 Abs percentage error with a flow profile ................................................................................................. 72 

Figure 4-11 Abs percentage error distribution using different data sources .............................................................. 72 

Figure 5-1 Steps for performance measurement estimation ...................................................................................... 76 

Figure 5-2 FATV example demonstration .................................................................................................................... 78 

  



Hybrid Data Implementation  Final Report 

vii 

 

LIST OF TABLES 

Table 2-1: Caltrans Facilities in Connected Corridors I-210 Model ............................................................................. 11 

Table 2-2: Listing of VDS associated with MS ID 2407 ................................................................................................. 14 

Table 2-3: Listing of VDS associated with MS ID 4430 ................................................................................................. 16 

Table 3-1 CNN-based imputation model ..................................................................................................................... 46 

Table 3-2 CapsNet-based imputation model ............................................................................................................... 47 

Table 3-3 Imputation model performance .................................................................................................................. 50 

Table 3-4 PeMS speed estimation result ..................................................................................................................... 51 

Table 3-5 Error of flow conflation at morning peak .................................................................................................... 53 

Table 3-6 Performance measures for freeway mainline ............................................................................................. 53 

Table 3-7 Performance measures for freeway-freeway connector ............................................................................. 55 

Table 4-1 AADT values considered for Case 1 ............................................................................................................. 69 

Table 4-2 VDS ID for Case 2 ......................................................................................................................................... 69 

Table 5-1: Recommended Delay Calculation Method for Each Facility ....................................................................... 80 

  



Hybrid Data Implementation  Final Report 

viii 

 

LIST OF ABBREVIATIONS AND ACRONYMS 

AADT   Annual Average Daily Traffic 

ATMS   Advanced Traffic Management System 

C-GASM   Confined Generalized Adaptive Smoothing Method 

Capsnet   Capsule Neural Network 

CNN    Convolutional Neural Network 

FATV   Fully Accounted Traffic Volume 

GASM    Generalized Adaptive Smoothing Method 

GPS    Global Positioning System 

HOV   High Occupancy Vehicle 

HOT   High Occupancy Toll 

ICM   Integrated Corridor Management 

MPR    Mobility Performance Report 

OEM   Original Equipment Manufacturer 

PeMS    Performance Measurement System 

RNN    Recurrent Neural Network 

SGT    Simulated Ground Truth 

TMC   Traffic Management Center 

VDS    Vehicle Detector Station 

VHD    Vehicle Hours of Delay 

VHT    Vehicle Hours Traveled 

VMT    Vehicle Miles Traveled 

 



Hybrid Data Implementation  Final Report 

ix 

 

LIST OF NOMENCLATURE 

Cell:  The term cell is used to denote the smallest domain of analysis in the algorithms presented here. A 
cell is a small length of freeway used to perform a fine level of analysis to narrow down areas of 
congestion. (Figure 1-1) 

 

Data Conflation:  Conflation is generally the projection of data from certain points on one map to other 
desired points (corresponding points) on a different map. 

 

Data Fusion:  The term fusion indicates the final integration of flow (from a traditional source) and travel 
time data (from a third-party). 

 

Link:  A link refers to a length of freeway for which travel time data is available from a third-party vendor. 
(Figure 1-1) 

 

Section:  The term section refers to a length of roadway in the micro-simulation model. (Figure 1-1) 

 

Segment:  For each VDS, a freeway segment refers to the length of freeway from the upstream VDS 
midpoint to downstream VDS midpoint. (Figure 1-1) 

 

 
Figure 1-1 Roadway Nomenclature Diagram 
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Chapter 1  

Introduction 
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 INTRODUCTION 

This report is the final deliverable for Task Number 3643, Hybrid Data Implementation. This project 
explores methods to estimate key performance measures in multiple ways using a flexible mix of data, 
including both traditional sensor data as well as third-party, probe-based mobile data. 

Every California Department of Transportation (Caltrans) district generates a quarterly report, called a 
Mobility Performance Report (MPR)—a report that summarizes key performance measures such as 
Vehicle Miles Traveled (VMT), Vehicle Hours Traveled (VHT), and Vehicle Hours of Delay (VHD) (Caltrans, 
2020b). To compute VHD and VMT, data from Vehicle Detector Stations (VDS) are used. The VDS include 
40,000 individual detection zones (Caltrans, 2020a), and maintaining such vast infrastructure requires 
extensive operational and maintenance support. The availability of third-party, vendor-provided data can 
augment data from VDS to estimate performance measures, as the required data (such as speed or travel 
time) can be obtained from third-party vendors. 

This report proposes a methodology for using third-party data, investigates advantages and opportunities 
that come with this data, and provides a roadmap to move forward. 
 

1.1. PURPOSE 

The primary purpose of this project is to determine whether and how Caltrans may benefit by 
incorporating third-party vendor data into its established system for performance measurement. Key 
goals include the following: 

• Reduce costs and increase coverage of traffic monitoring 
• Provide a methodology for calculating vehicle hours of delay (VHD) 
• Enable smarter deployment of point-based sensors, such as loops 
• Provide a roadmap strategy for using third-party data. 

 

1.2. SCOPE 

This project considers VMT and VHT estimation but focuses on VHD as the main performance metric of 
interest. A survey of data offerings by third-party vendors is performed and used to define the 
characteristics of third-party data. 

Algorithms are designed to estimate VHD using a flexible mix of data, including third-party data, point-
based sensor data (such as loops), and annual average daily traffic (AADT). The performance of the 
algorithms is evaluated against a simulated ground truth (SGT) leveraging the Connected Corridors 
microsimulation model of the I-210 Integrated Corridor Management (ICM) Corridor. 

A key challenge is to project (or to conflate) data from multiple sources onto the same domain of analysis 
to compute performance metrics with high fidelity. Based on the analysis, recommendations are made 
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for improving the meta-data (or configuration data) of Caltrans Performance Measurement System 
(PeMS). 

A framework is presented to determine: (1) improvements possible when fusing third party data to 
determine delay; and, (2) the error introduced into VHD estimates as point-based sensor data is removed. 
This framework is then used to evaluate the performance of the algorithms for a range of operating 
conditions. 

Based on the analysis, a strategic roadmap is proposed for incorporating third-party data into PeMS. 

 

1.3. BACKGROUND 

Caltrans relies on over 40,000 individual vehicle detection zones to provide information on vehicle data 
such as flow, occupancy, and speed. This information is in turn used for various system operations and 
management activities. Gigabytes of data every day is collected and used to provide support for traffic 
management, real-time traveler information, and system performance monitoring. These functions are 
vital in supporting Caltrans mission, vision, and goals – Goal 1: Safety and Health, Goal 2: Stewardship and 
Efficiency, Goal 3: Sustainability, Livability and Economy, and Goal 4: System Performance.  

Operating this vast detection system requires extensive resources in the form of engineering and 
maintenance support along with millions in capital funds to keep them running.  Recently, Caltrans 
programmed over $150 million in State Highway Operation and Protection Program (SHOPP) funds to 
address failed or failing detection stations across the state. 

With the increased availability of third-party probe-based data to provide some of the same data currently 
obtained through existing detection systems, there should be a renewed effort to look at how those data 
sources may be able to supplant or augment existing data collection methods. Most third-party data 
providers can now provide detailed travel time or speed data on any route. In addition, data samples will 
continue to grow as more cellular devices are used. 

To properly integrate these data into the existing reporting platform and into deliverables such as the 
MPR, research will need to be done to determine how to incorporate the third-party data to provide both 
real-time and historical performance metrics. This will require evaluating and modifying algorithms 
currently used in the Caltrans PeMS. 

As previously discussed, third-party vendor-provided data can be used by the districts to report 
performance measures (Bayen, Sharafsaleh and Patire, 2013; Chen and Mei, 2019). For a certain link, the 
third-party vendors report date, timestamp, link identifier, link length, speed, and travel time (Chen and 
Mei, 2019). The travel time data is useful for estimating VHD. The feasibility of using third-party travel 
time data is studied here to evaluate whether it provides any benefit compared to the traditional method 
where third-party data is unavailable.  

Detailed guidelines are needed to outline and describe the data requirements from third-party vendors. 
These guidelines can help Caltrans develop a roadmap strategy for comparing third-party data vendors 
and making the appropriate selection. Once the data is procured, data quality monitoring is needed to 
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periodically check the usability of the data. Finally, the framework of VHD estimation needs to be 
incorporated in PeMS so the districts can use the VHD performance measure whenever needed. 

 

1.4. SUMMARY FINDINGS 

All third-party, commercial vendors studied in this project depend on smartphone applications, in-vehicle 
Original Equipment Manufacturer (OEM) navigational devices, and data from connected vehicles. Traffic 
speed and travel time data (based on a sample of equipped vehicles) are among the first of the roadway 
traffic data to become commercially available. In general lane-by-lane, disaggregated speeds are not 
available. Speeds on High Occupancy Vehicle (HOV) facilities are not reported separately from speeds on 
mainline freeway lanes. However, as technologies and the use of big data in the transportation industries 
evolve, new products and services continue to be introduced.  

The existing MPR neglects data from on-ramps, off-ramps, and freeway connectors. In other words, 
performance measures are not calculated on these facilities. As shown in Section 2.4.1, on urban 
expressways this corresponds to 15%-20% of Caltrans lane-miles. 

Any change to the existing methodology for measuring speeds, flows, or travel times will change the 
estimates for all measures in the MPR. In other words, the integration of third-party data may have a 
profound effect on all downstream measures that use this data, such as VMT, VHT, bottlenecks, lost 
productivity, etc. 

A key challenge is to project (or to conflate) data from multiple sources, including multiple vendors and 
PeMS, onto the same domain of analysis to compute performance metrics with high fidelity. PeMS 
typically provides point-based measurements, such as flows or spot-speeds. Third party data is typically 
furnished as average speeds or travel times measured over a road link. The coordinate systems used by 
PeMS and by multiple providers will not, in general, align conveniently. 

Using PeMS effectively requires additional meta-data for each VDS, especially at freeway-freeway (fwy-
fwy) junctions to specify their locations more precisely. An approach is proposed to organize VDS into 
groups called Fully Accounted Traffic Volumes (FATV) to support automated validation of sensor data, and 
to geo-spatially organize sensors for fusion with third-party data. 

There are four main methods that were compared for estimating VHD: 

• Traditional data and calculation 
o Uses point-sensor data only 
o Calculates delay over long freeway segments 

• 3rd party + traditional calculation 
o Only possible when spatial reference systems match 
o Uses point-sensor data for flows and third-party data for travel times 
o Calculates delay over one connector, or a long freeway segment 

• Hybrid calculation 
o Required when spatial reference systems do not match 
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o Uses point-sensor data for flows and third-party data for travel times 
o Divides long freeway segments into cells for greater accuracy 
o Applies traffic theory to accommodate distance between point-sensors 

• Adjustments for limited instrumentation 
o Uses rough estimates for flows and third-party data for travel times 

Based on the analysis in this report, the recommended VHD estimation method depends on the 
infrastructure type and the data available. For freeway mainlines, the best performance was achieved 
with the hybrid calculation. For HOV lanes, traditional means must be used until third-party data become 
available that reliably distinguish them from the mainline lanes. For connectors, good performance was 
obtained using third-party data combined with the traditional calculation. For ramps and arterials, further 
work is required. 

The two main error sources in the traditional data and calculation method are: (1) usage of the g-factor 
approximation to estimate speeds; and, (2) usage of a point measurement to approximate the 
measurement across an expanse of road. Single loops, as predominantly deployed, do not actually 
measure speeds. Even if the point speed is measured with other sensors (e.g., dual loops), the point speed 
does not reflect the overall operational condition for a freeway segment. For this reason, direct 
measurement of travel-times possible with third-party data is advantageous. 

Based on the analysis conducted in this research, it is found that a hybrid approach provides the best 
estimates of performance measures. The analysis is conducted for both freeway-mainline and freeway-
freeway connectors, and for five different times of day during weekday hours. For almost all the scenarios, 
the inclusion of travel time data reduces the estimation errors. These benefits hold when the number of 
fixed detectors is reduced: 

• The hybrid method improved VHD estimates when FATV sensor groups were systematically 
removed (3.4% error with hybrid and 12.7% error with traditional data) 

• Third-party data can estimate VHD using AADT on roadways with limited instrumentation, but 
the error is high (on average 41.3% error when using generic flow profiles, and 19.4% error with 
measured flow profiles). 

In the past, a perceived risk of using hybrid data for traffic management systems was its dependence on 
external vendors. However, the new risk is that mobile devices are so prolific that drivers are now being 
influenced by the apps, and traffic management systems lack direct access to this influential, and useful, 
information. 

In an increasingly interconnected world, the future of transportation management will require better and 
more complete data that can only be obtained through greater connectivity to the data feeds of private 
vendors as well as increased cooperation and collaboration with local stakeholders. The first step in this 
direction is to adopt computing tools and infrastructure that have already been tried and implemented at 
scale in the private sector. Of course, data quality would need to be monitored on a continuous basis, and 
attention should be paid to costs when selecting a portfolio of data sources. The deployment of a traffic 
management system that uses hybrid traffic data will provide the opportunity to safely alter Caltrans’ 
strategy for the usage of traditional detectors. 
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1.5. STRUCTURE OF REPORT 

This project was divided into seven project work tasks: 

• Task #1: Project management 
• Task #2: Background survey 
• Task #3: Vehicle Hours of Delay 
• Task #4: Point-based deployment strategy 
• Task #5: Opportunities for improved coverage 
• Task #6: Strategy for incorporation of third-party data 
• Task #7: Final Report and Workshop 

Task #1 involves project management but no research findings. As such it is not discussed further in this 
final report. 

Task #2 is to provide an overview of the data landscape pertaining to existing data sources in Caltrans’ 
data pipeline, including PeMS (Performance Management System), and third-party, probe-based mobile 
data, including real-time and historical data needs. The existing data pipeline is discussed in Chapter 2 
Section 2. A list of key third-party data vendors and their products are presented in Chapter 2 Section 3, 
along with a summary of the sources of raw data upon which they depend. In this data review, critical 
challenges to data fusion and data integrity in the structure of PeMS configuration meta-data are 
identified and discussed. 

The core technical and algorithmic work was conducted in Task #3 and described in Chapter 3. Existing 
methods for estimating performance measures are described. A review of conflation and data fusion 
approaches is provided in Chapter 3 Section 2. A framework is described to fuse data from both third-
party vendors and Caltrans VDS, the overall method is referred to as the “hybrid method”. This framework 
includes (1) a deep learning-based method to impute missing data in the VDS where data are unavailable, 
(2) an algorithm to conflate the data from both third-party vendors and VDS along the same freeway, and 
(3) a method to fuse the two data sources to estimate VMT, VHT, and VHD. 

Tasks #4 and #5 involve application of the methods in Task #3 to reveal impacts to the accuracy of 
performance measures when point-based sensors are removed or replaced by approximate flow data. All 
of this is presented in Chapter 4. 

Task #6 is to formulate a strategy to incorporate third-party data and it is described in Chapter 5. This 
includes an overall discussion on the advantages and disadvantages of data sources and a proposed 
organizational concept, called FATV, to augment existing PeMS configuration meta-data.  

Finally, this draft final report is the deliverable for Task #7. It is a compilation of the technical memoranda 
which were reviewed and approved by the Technical Advisory Group for this project. Upon review and 
approval by Caltrans this Task #7 deliverable will form the basis for discussion in the final workshop. 
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Chapter 2  

Data Landscape 
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 OVERVIEW 

This chapter provides a background survey for this project, describing the existing Caltrans data pipeline 
in PeMS, and providing a market review of key third-party data vendors. PeMS typically provides point-
based measurements, such as flows or spot-speeds. Third party data is typically furnished as average 
speeds or travel times measured over a segment of a road. The coordinate systems used by PeMS and by 
multiple providers will not, in general, align conveniently. Methods are needed to conflate or to project 
the data onto other coordinate systems for visualization, or for metric calculations. 

1.1. SUMMARY FINDINGS 

One of the goals of this project is to suggest how performance measurement can be more comprehensive 
and to provide broader coverage of Caltrans facilities. During the review of the existing methodology, it 
was revealed that the existing MPR neglects data from on-ramps, off-ramps, and freeway connectors. In 
other words, performance measures are not calculated on these facilities. On urban expressways this 
corresponds to 15%-20% of Caltrans lane-miles, as described in Section 2.4.1 of this chapter.  

Since many of these freeway connectors and ramps are already instrumented with PeMS VDS, they appear 
to be easy targets for improving coverage, and achieving these goals of more comprehensive and 
representative performance measures at a minimal cost. However, delay calculations are typically 
performed against a speed threshold, and it is unclear what speed threshold might be most appropriate 
for ramps. On the other hand, ramps are a part of the infrastructure and VMT and VHT are easily 
interpreted on these facilities. 

Any change to the existing methodology for measuring speeds, flows, or travel times will change the 
estimates for all measures in the MPR. In other words, the integration of third-party data may have a 
profound effect on all downstream measures that use this data, such as VMT, VHT, bottlenecks, lost 
productivity, etc. More details on MPR calculation methodology are explained in Section 2.4.2 in this 
chapter. 

Third-party data is typically associated with a map consisting of links and nodes. PeMS data is associated 
with a linear reference system (not a map). The linear reference system (also known as LRS) has limited 
expressivity and may create future challenges for data conflation. More detail in Section 2.5.3 

All third-party, commercial vendors studied in this project depend on smartphone applications, in-vehicle 
OEM navigational devices, and data from connected vehicles.  Traffic speed and travel time data are 
among the first of the roadway traffic data to become commercially available. As technologies and the 
use of big data in the transportation industries evolve, new products and services continue to be 
introduced. The main vendors and a snapshot of their current offerings are described in Sections 3.2 and 
3.3 of this chapter.  
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 EXISTING CALTRANS DATA PIPELINE 

This section describes the existing sensing and data pipeline used by Caltrans. The focus is on the data 
pathways that eventually result in the metrics reported in the MPR. Descriptions are simplified to focus 
on key details relevant to this project. 

It is crucial to note that there are two distinct types of data that must be considered: 

• Field measurements (data about traffic) 
• Meta-data (data about the data) 

The field measurements are the flows, speeds, and travel times needed to understand something about 
traffic conditions. However, the meta-data (sometimes called configuration data) are what is needed to 
understand how to use the field measurements. The meta-data contains information about where the 
sensor is located, what side of the freeway it is on, how many lanes there are on the facility, etc. If the 
meta-data are wrong, then any metrics based on that data are also wrong. Therefore, it is crucial that the 
meta-data are correct. 

If it is intended to fuse traffic data from multiple sources, then the meta-data become even more 
important. The contents of the meta-data will determine how to project the traffic data onto a common 
domain of analysis. The meta-data in the Caltrans data pipeline and its linear reference system has limited 
expressivity, and these limitations are explored further in this report. 

2.1. OVERVIEW 

Each Caltrans district operates and maintains its own sensing infrastructure. Field elements such as loops 
and radar connect to a local communications hub. From each hub, data is sent to an Advanced Traffic 
Management System (ATMS) or central system located in a Transportation Management Center (TMC). 
In addition, field data are also sent to servers that provide it to PeMS where it is archived and analyzed. 
Within PeMS, there is an interface from which to generate reports such as the MPR. The MPR is a quarterly 
report prepared by each Caltrans district that summarizes key performance measures such as VMT 
(vehicle miles traveled), VHT (vehicle hours traveled), and delay. 

2.2. REAL-TIME APPLICATIONS 

Fixed sensors embedded in the infrastructure are currently required for traffic operations and control. 
Typical examples include actuation for traffic signals located at the intersection of freeway ramps and 
arterial streets, ramp metering control at freeway on-ramps, and real-time pricing for High Occupancy Toll 
(HOT) lanes. 

Emerging real-time applications include ICM projects such as the I-210 Connected Corridors Project. The 
objective of this pilot project is to: 

…reduce congestion and improve mobility in a section of the I-210 corridor in the San Gabriel 
Valley of Los Angeles County. This objective will be achieved by coordinating the principal 
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elements in the corridor—the I-210 freeway, key surrounding arterials, supporting local transit 
services, and other relevant transportation systems—and managing them as an integrated and 
cohesive whole. To attain these operational improvements, the project team will design, 
develop, implement, and evaluate a pilot Integrated Corridor Management (ICM) system that 
will help transportation system managers in their decision-making tasks and enable operators, 
control systems, vehicles, and travelers to work together in a productive and coordinated way.  
(Connected Corridors, 2020) 

At the heart of this ICM is a decision support system that will propose response plans to mitigate traffic 
congestion resulting from incidents. Response plans may involve reroute guidance, adjustments to ramp 
meters, and changes to arterial signal control plans to compensate for lost capacity elsewhere in the 
network. 

One requirement for a successful ICM is to collect the data necessary to determine the benefits of the 
project. Another requirement is having enough situational awareness to know whether a proposed 
response plan has a good chance of improving traffic. In practice, this means real-time monitoring of 
traffic conditions (such as flows, densities, and speeds) on mainline, HOV, ramp, and arterial facilities. 

2.3. HISTORICAL APPLICATIONS 

For the purpose of this report, there are two noteworthy historical applications for PeMS and PeMS-like 
sensing data: 

• Performance measures 
• Model building 

There are several performance measures and reports generated for Caltrans business purposes, examples 
include Traffic Census, Monthly Vehicle Miles of Travel, Traffic Volume, and Mobility Performance 
Reporting. These reports provide key metrics to inform Caltrans decision-making. In addition, ICM projects 
benefit from some level of modeling. Modeling may be used to facilitate communication with 
stakeholders, to test out proposed control interventions, or to estimate project benefits. 

Model building requires calibration, and calibration requires high quality, self-consistent data. Therefore, 
PeMS data is a crucial resource for modeling. 

 

2.4. MOBILITY PERFORMANCE REPORT 

The MPR basically aggregates data from PeMS and provides it in the form of a report. The key pieces of 
information that go into the report are measurements from mainline and HOV vehicle detector stations.  

Data from other VDS types, such as on-ramps, off-ramps, and freeway connectors are not used. For rural 
areas, this presents no issue. However, for urban freeways with closely spaced ramps, the MPR leaves out 
a significant fraction of vehicle miles and vehicle hours on Caltrans right-of-way. 
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2.4.1. MPR ACCOUNTING OF TRAVEL 

A careful accounting of freeway surface area was made possible by leveraging the Connected Corridors I-
210 Aimsun model. This model contains detailed geometric information for both freeways and arterial 
roads contained in the model. Results of the accounting are displayed in Table 2-1. 

 
Table 2-1: Caltrans Facilities in Connected Corridors I-210 Model 

 
Linear Miles Lane Miles Linear Fraction Lane-mile 

Fraction 

Freeway 48.97 221.75 0.44 0.72 

Off-ramp 11.56 17.99 0.10 0.06 

On-ramp 12.94 22.77 0.12 0.07 

Connector 7.29 13.15 0.07 0.04 

HOV 31.04 31.18 0.28 0.10 

In terms of linear lane-miles, freeway and HOV facilities make up only 72% of the Caltrans right-of-way in 
the Pasadena area. The other 28% is made up of ramps and freeway connectors. Even when adjusting for 
the number of lanes, ramps and connectors still make up 17.6% of Caltrans roads in this area. 

The roadway geometry in the Pasadena area is like that in other urban areas. Therefore, the existing 
methodology neglects approximately 15-20% of the lane-miles in urban areas throughout the state of 
California. In other words, a significant fraction of VHT and VMT on Caltrans ROW is not accounted for. 
For mostly rural districts, the error is probably small. However, in districts with large urban areas the error 
could be substantial. 

 

2.4.2. MOBILITY PERFORMANCE REPORT CALCULATIONS 

In terms of configuration meta-data, each VDS is responsible for representing a specified length, of 
freeway. In terms of traffic data, the two key measurements are five-minute counts and speeds. These 
three values (length, count, and speed) are used to generate all of the measures in the MPR (Caltrans, 
2012). 

VMT is represented in the units of [vehicle∙miles] and can be calculated over an arbitrary time interval. 
Delay is represented in units of [vehicle∙hours] and is calculated against a threshold speed. Mathematical 
expressions are provided in Section 3.1.2 of Chapter 3, Estimating Vehicle Hours of Delay. 

Delay is a key metric that is then used to calculate the cost of congestion, lost time, and wasted fuel. The 
lost lane miles depend on measuring the count of vehicles at a cross-section of a freeway. Bottleneck 
locations are detected algorithmically with a speed threshold and a VHD threshold. 
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Therefore, any change to the existing methodology for measuring speeds or flows will change the resulting 
estimates for all measures in the MPR. 

A key point to make is that if the goal is to save money by reducing the number of point-detectors and 
supplementing where possible with third-party data, it is necessary to add information to the inventory 
of assets. As explained in the next section, the crucial information that will be needed is a network map 
of Caltrans sensing facilities, and appropriately updated configuration meta-data. 

2.5. PEMS 

PeMS (Performance Measurement System) is an archive of California freeway data maintained by Caltrans 
headquarters. While each individual district has its own systems and sensors, each sensor provides real-
time data to centralized servers that eventually end up in PeMS. 

2.5.1. LINEAR REFERENCE SYSTEM 

Caltrans has a well-established linear reference system for the purpose of describing locations on the 
freeway. This system makes use of so-called CA PM (California Postmiles) and Abs PM (Absolute 
Postmiles). The CA PM are best conceptualized as labels (not monotonic post miles) with letters and 
numbers to indicate a place name. The Abs PM are monotonically increasing post miles that span the 
length of the freeway. 

2.5.2. SENSOR ORGANIZATION META-DATA 

The logical organization of PeMS data (and meta-data) follows directly from the physical organization of 
the field equipment. Control boxes containing power and communications equipment are installed along 
the freeway and are assigned to linear postmile locations. These locations are also mapped to a pair of 
latitude and longitude points snapped to the right-of-way centerline (typically in the median between two 
directions of the freeway). 

The control box may support any number of PeMS sensors. Sensors are predominantly loop detectors, 
but other sensor types such as radar are also used to collect data. Loops, for example. might be placed on 
mainline lanes, HOV lanes, off-ramps, on-ramps, etc. However, they will inherit their position (postmile, 
latitude, and longitude) from their control box. In other words, the true, real-life, physical geo-location 
(latitude and longitude) of the sensor is not the same as its reported position (latitude and longitude) 
provided in the PeMS meta-data. This is a crucial point, and it is also a limitation in the expressivity of the 
meta-data. 

The meta-data takes the form of a spreadsheet with the following columns: Fwy, District, County, City, CA 
PM, Abs PM, Length, ID, Name, Lanes, Type, Sensor Type, HOV, MS ID, and IRM. The typical usage for the 
"Fwy" column is to indicate the physical freeway where the sensor is located. The "Name" column is used 
to indicate the closest parallel street or feature. The "Type" column is used to indicate the relationship of 
the sensor to the physical freeway in the "Fwy" column. This convention is adequate for typical rural 
freeways with few major fwy-fwy interchanges. However, this convention fails at major fwy-fwy 
interchanges common to urban freeways. 
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As described below, the data fields are used differently at interchanges. A “correct” entry for a data field 
may not exist given system limitations. As a result of inconsistent usage patterns, it is: 

1. Difficult to check data consistency and data quality;  
2. Difficult to use the data for modeling in ICM applications; and,  
3. Difficult to use the data when incorporating third-party data. 

2.5.3. CHALLENGES AT FREEWAY INTERCHANGES 

The linear reference system is reasonable for long, rural freeways with simple geometries. However, it 
becomes difficult in situations involving complicated freeway junctions. Figure 2-1 shows the location of 
VDS sensors at the I-210 & I-605 junction in Los Angeles County. Notice that one blue place-mark coded 
as a mainline sensor is located on the fwy-fwy connection between I-605 NB and I-210 WB. 

 
 
Figure 2-1: Junction between I-210 and I-605 illustrating physical locations of VDS sensors. Place-mark 
colors blue, red, yellow, green, and purple indicate VDS types mainline, HOV, off-ramp, on-ramp, and 
fwy-fwy connector, respectively. 
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PeMS provides a schematic diagram called a strip-map to serve as a visual aid to locate VDS. Figure 2-2 
shows the strip-map for I-210 in the vicinity of the junction at I-605. Notice that the WB direction on the 
top of the strip-map appears to constrict to two lanes, whereas the satellite view in  

Figure 2-1 shows four lanes plus one HOV lane all the way through. 

 
Figure 2-2: Strip-map of I-210. WB direction is on top and EB direction is on the bottom. Numbers in 
the center indicate Abs PM. VDS are shown as blue, pink, green, or grey markings. 

PeMS configuration meta-data in this area of I-210 are displayed in Table 2-2.  The list of all VDS associated 
with controller MS ID 2407 located at Abs PM 36.89 on westbound I-210 is included. Inspection of the 
“Name” column in Table 2-2, and cross-referencing with Figure 2-3, reveals that most of these VDS have 
nothing to do with pavement located on westbound I-210. Two possible exceptions might be VDS 773206 
and 775795. The former measures SB 605 flows of which some may have originated from WB 210. The 
latter measures flow on the connector between NB 605 and WB 210. The categorization of VDS 775795 
may be responsible for the strip-map representation showing the I-210 WB freeway having only two 
through lanes. 

Table 2-2: Listing of VDS associated with MS ID 2407 

Fwy County CA PM Abs PM ID Name Lanes Type MS ID 

I210-W Los Angeles R36.6 36.89 773204 NB 605 TO MT. OLIVE 1 Fwy-Fwy 2407 

I210-W Los Angeles R36.6 36.89 773205 EB 210 TO MT. OLIVE 1 Fwy-Fwy 2407 

I210-W Los Angeles R36.6 36.89 773206 SB 605 FROM WB 210 2 Fwy-Fwy 2407 

I210-W Los Angeles R36.6 36.89 773207 NB 605 TO EB 210 2 Fwy-Fwy 2407 

I210-W Los Angeles R36.6 36.89 775795 NB 605 TO WB 210 2 Mainline 2407 

I210-W Los Angeles R36.61 36.90 775796 EB 210 TO SB 605 2 Fwy-Fwy 2407 

The actual physical locations of the VDS in Table 2-2, above, are shown in Figure 2-3, below. The six VDS 
overlap on the strip-map so that only two (775795 and 773204) are visible in Figure 2-2. 
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Figure 2-3: Physical locations of VDS from Table 2-2. Of these six VDS, only VDS 775795 and 773204, 
outlined in blue, appear in the mouse-over function on the online version of the strip-map. 

Figure 2-4 shows the strip-map for I-605 in the vicinity of the junction at I-210. Notice that the SB direction 
on the bottom of the strip-map appears to have VDS at an offramp, at a fwy-fwy connector, and at an on-
ramp at about the same place, whereas the NB direction has no VDS. 

 
Figure 2-4: Strip-map of I-605. NB direction is on top and SB direction is on the bottom. Numbers in 
the center indicate Abs PM. VDS are shown as pink, green, or grey markings. 

Table 2-3 displays PeMS configuration meta-data for the VDS associated with controller MS ID 4430 
located at Abs PM 27.95 on southbound I-605. Inspection of the “Name” column in Table 2-3, and cross-
referencing with Figure 2-5, reveals that most of these VDS have nothing to do with pavement located on 
southbound I-605. The main exception is VDS 774260, which is categorized reasonably. 
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Table 2-3: Listing of VDS associated with MS ID 4430 

Fwy County CA PM Abs PM ID Name Lanes Type MS ID 
I605-S Los Angeles 25.9 27.95 774264 NB 605 TO MT OLIVE 1 Fwy-Fwy 4430 
I605-S Los Angeles 25.9 27.95 774262 WB 210 TO MT OLIVE 1 Off Ramp 4430 
I605-S Los Angeles 25.9 27.95 774263 MT OLIVE TO WB 210 1 On Ramp 4430 
I605-S Los Angeles 25.9 27.95 774261 EB 210 TO MT OLIVE 1 Fwy-Fwy 4430 
I605-S Los Angeles 25.9 27.95 774260 MT OLIVE TO SB 605 1 On Ramp 4430 
I605-S Los Angeles 25.9 27.95 774258 MT OLIVE TO EB 210 1 On Ramp 4430 

The actual physical locations of the VDS in Table 2-3, above, are shown in Figure 2-5, below. The six VDS 
overlap on the strip-map so that only three (774262, 774261, and 774258) are visible in Figure 2-4. 

When comparing Table 2-3 to Figure 2-5 it is crucial to note that the “Type” provided in the table does 
not, in general, describe the relationship of the sensor to the “Fwy” as it would for typical installations 
away from a major fwy-fwy interchange. For example, while VDS 774262 could reasonably be described 
as an off-ramp with respect to WB I-210, it is not an off-ramp with respect to SB I-605. Unfortunately, the 
PeMS configuration specifies VDS 774262 as an off-ramp with respect to the wrong freeway as shown in 
Table 2-3. As a result, this meta-data is difficult to use. 

 
Figure 2-5: Physical locations of VDS from Table 2-3. Of these six VDS, only VDS 774262, 774261, and 
774258, outlined in blue, appear in the mouse-over function on the online version of the strip-map.  
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Subsequent sections will investigate how third-party data may be used to expand coverage and improve 
the quality of Caltrans’ performance reporting capabilities. The first natural extension is to expand 
coverage to ramps and connectors that already have PeMS detectors but are not yet represented in the 
performance measures. The first step toward this would be to improve the configuration meta-data of 
PeMS VDS on ramps and freeway connectors so that they can be appropriately conflated/mapped with 
third-party data available on the same facilities. 
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 SURVEY OF THIRD-PARTY DATA 
 

3.1. TAXONOMY OF DATA COLLECTION METHODS 

Traffic data collection methods can be organized into three categories, each with its own strengths and 
limitations. (Figure 2-6) 

 

Figure 2-6: A comparison of traffic data collection methods (Bayen, Sharafsaleh and Patire, 2013) 

3.1.1. POINT-BASED COLLECTION METHODS 

Point-based data collection methods, such as inductive loops and radars, measure traffic flows and/or 
speeds at one dedicated location. The strength of these methods is that they capture the complete cross-
section of all vehicles passing by a given location, and therefore obtain reliable measures of flow and 
speed—within the capabilities of each technology. The disadvantage is that they provide no direct 
information about what happens between those locations. For example, there is no way to detect a traffic 
incident between two point-detectors until a change in traffic state (resulting from the incident) 
propagates upstream or downstream to the point detectors. Even then, the exact position of the incident 
somewhere between the two point-detectors would remain unknown. 

3.1.2. SEGMENT-BASED COLLECTION METHODS 
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The second category of traffic data collection methods provides trip times for preset road segments. 
Segment-based data collection is achieved by vehicle re-identification, that is, the ability to uniquely 
match records of a traveling vehicle obtained at two different locations. Examples in this category include: 

• Toll-tag readers 
• License plate readers 
• Magnetometers 
• Bluetooth MAC address readers 
• WIFI MAC address readers 

Each of these methods can measure travel times between two locations. The number of vehicles that get 
re-identified varies with the specifics of each technology, and its deployment. With Bluetooth and WIFI, 
this rate also depends on the prevailing penetration rates of these technologies in consumer devices. In 
practice, the sample size is enough to provide useful median travel times. As with the point-based 
collection methods, segment-based methods require dedicated field infrastructure. 

3.1.3. MOBILE DATA SOURCES 

The third category of traffic data collection methods relies on the proliferation of GPS-enabled mobile 
devices and data networks to extract the position of individual vehicles over time. This offers two key 
advantages: (1) no field equipment is necessary (save for cellular network infrastructure, but that is 
exogenous), and (2) data can be obtained from virtually any location on the roadway network where 
cellular coverage exists. Mobile data sources can be further divided into several categories: 

i. Smartphone applications: GPS-enabled smartphones running any location-based app provide 
their location information. Depending on the app, the rate of location updates may vary. This app-
based data collection method is one of the main data streams of INRIX. 

ii. In-vehicle navigation devices: GPS-enabled devices embedded in the vehicle’s dashboard provide 
predictive navigational aid (e.g., visualizations of the vehicle’s current location and route-finding 
services).  The services offered by the in-vehicle navigational devices are very similar, if not 
identical, to the smartphone applications.  Some of the in-vehicle navigational devices also include 
safety features, such as the ability to call “911” automatically if the vehicle is involved in a collision.   
The major distinction between the in-vehicle devices and smartphone applications is that the in-
vehicle navigational devices are marketed, sold, and installed in-vehicle by the vehicle 
manufacturers.  

iii. Fleet telematics: Operators of vehicle fleets (including commercial trucking operations, rental car 
fleets, taxi fleets, transit bus fleets, etc.) track each vehicle’s position (provided by GPS units 
installed in the vehicle). Many of these fleets agree to let traffic information aggregators use that 
data to estimate current traffic conditions and archive it for historical reference. 

iv. Connected Vehicles: High-end, luxury vehicles have telematics modules that collect data about 
the vehicle and its internal diagnostics. Connected vehicles are vehicles that use any of a number 
of different communication technologies to communicate with the driver, other cars on the road 
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(vehicle-to-vehicle [V2V]), roadside infrastructure (vehicle-to-infrastructure [V2I]), and the 
“Cloud” [V2C] (Center for Advanced Automotive Technology, no date).  The shared or transmitted 
data can include the vehicle’s GPS position, speed and heading, acceleration and braking data, the 
vehicle identification and type of vehicle, along with information about the vehicle’s current 
operating conditions from the vehicle’s internal diagnostics systems. 

3.2. REVIEW OF KEY VENDORS 

This section provides a brief introduction to key data sources and/or vendors of mobile traffic data and 
summarizes their commercially provided data products and services.   
 
All of the described commercial vendors listed below depend heavily on mobile data sources (smartphone 
applications, in-vehicle navigation devices, and connected vehicles) as their main data sources for 
providing empirically-based traffic speeds and travel time information along with the other commercially 
available roadway performance measures.  Many of the vendors depend on secondary data sources (like 
State DOT provided traffic volume and speed data from roadway sensors, weather and/or incident data) 
to enhance services provided and/or for validation purposes.  Even though these “big-data” vendors are 
vying for market share, it is not uncommon to see data sharing and collaborating or data sharing 
agreements between subsets of these vendors.  

3.2.1. FHWA NPMRDS 

The National Performance Measure Research Data Set (NPMRDS) is a dataset acquired by FHWA for use 
in transportation performance measurement. The NPMRDS contains empirically based traffic passenger 
(auto) and commercial freight speeds and travel times on a set of predetermined roadway segments that 
are part of the U.S. National Highway System and for 25+ key Canadian and Mexican border crossings.  
The NPMRDS is the default dataset for calculating the new US Federal ‘PM3’ system and freight 
performance measures. 

The first NPMRDS dataset was provided by HERE North America, LLC (formerly known as Nokia/NAVTEQ). 
Starting in 2017, the NPMRDS data have been provided by INRIX.  The NPMRDS is made available free of 
charge to State Departments of Transportation and Metropolitan Planning Organizations to use for their 
performance management activities.   

3.2.2. HERE TECHNOLOGIES (HERE, 2019) 

HERE Technologies was founded as Navteq in Sunnyvale, California in 1985, and 
provides mapping and location data and related services to individuals and 
companies.  In 2007, the company was acquired by Finland-based Nokia.  Currently 
HERE is headquartered in Amsterdam, Netherlands, and is majority-owned by a 
consortium of German automotive companies.  HERE offer clients a range of 
products including: 

• Automotive Products – auto/mobile SDK for connected embedded navigation solutions, real-time 
navigational data and services, anticipatory data and sensor support for ADAS and autonomous 
driving applications, weather data, locational EV charging station data, locational fuel price data, 



Hybrid Data Implementation  Final Report 

21 

 

locational parking availability data, hazard warnings, intelligent sensor data for autonomous 
driving solutions, real-time traffic data 

• Location Services Products – fleet telematics, geocoding (mapping of geo-coordinates and 
addresses), interactive geo-visualization services, mobile SDK, interactive mapping, places and 
routing data, services, and products. 

• Map Content and Positioning Products – map data with visual places footprints, driver maneuver 
assistance (in-vehicle guidance for upcoming exits and lane splits) and smart positioning for 
mobile devices. 

• Traffic Products – real-time and historical traffic data, traffic analytics, and dashboards. 

3.2.3. TOMTOM (TOMTOM, 2019) 

TomTom was founded in 1991 and is headquartered in De 
Ruijterkade, Amsterdam, Netherlands. TomTom has offices in 30 
countries.  TomTom is a Dutch multinational developer and creator 
of location technologies and consumer electronics.  Since 2008, TomTom has been collecting anonymous 
consumer-driven GPS based measurements worldwide and used to build its historical traffic database.  

TomTom’s products include applications and products to aid drivers (navigation device and trip apps and 
devices), the automotive industry (autonomous driving apps and support, HD maps and map data for 
autonomous and traditional vehicles), and fleet management (enabling fleet management, vehicle 
tracking, fleet optimization, workforce management, green and safe driving, and business integration) 
business solutions and products. 

3.2.4. INRIX (INRIX, 2019) 

Founded in 2005, and headquartered in Kirkland Washington, INRIX has 
about 350 employees.  INRIX collects anonymized data on traffic 
congestion, traffic incidents, parking, and weather-related road conditions 
from millions of data points daily in over 80 countries. These data are 
combined and aggregated from in-vehicle devices and mobile devices, Departments of Transportation 
traffic data, cameras and sensors on roadways, and major events expected to impact traffic.  

INRIX provides a variety of products, apps, and solutions for drivers, the automotive and trucking 
industries, and government agencies and their business partners, including: 

• INRIX Drive Time – provides real-time assessment of potential commute and travel times. 
• Roadway Analytics – Data as a service platform and tools to optimize roadway planning, 

performance monitoring, and the decision-making process.   
• Performance Measures – Transportation data and intelligence for public agencies to help optimize 

roadway planning and decision-making. 
• Population Analytics – combines both GPS and mobile data intelligence to analyze and provide an 

understanding of the movement of people. 
• Volume – a traffic volume dataset with (U.S.) nationwide coverage across 2.65 million miles of 

road that includes vehicle volume by street direction, time of day, and day of week (in 15-minute 
bins by road segment). 
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• Trips – Origin-destination data to better understand the movement of people and the trips they 
make. 

3.2.5. STREETLIGHT (STREETLIGHT DATA INC., 2019) 

StreetLight Data was founded in 2011 and is headquartered in San 
Francisco, California. Every month, Streetlight Data takes in, indexes 
and processes over 100 billion anonymized location records from 
smartphone apps and in-vehicle navigation devices, and additional data from numerous other sources like 
parcel data and digital road network data. StreetLight Data validates the resulting traffic speeds, volumes 
and travel patterns against Department of Transportation traffic counters and embedded sensors data.  
Additionally, StreetLight Data fuses and enriches their datasets using supplemental data, like transit 
ticketing, shared mobility, or IoT data.  Lastly, StreetLight Data normalizes and aggregates the data into 
analytics, delivering empirically based data products on the movements of vehicles, bicycles and 
pedestrians. 

StreetLight Data’s traffic-related data products offered to private and public agency clients, include: trip 
speed, duration, and length, trip purpose, origin-destination metrics, and AADT (counts); travel modes 
include: bicycle, pedestrian, personal vehicles, ride-hailing and delivery, and truck trips. 

3.2.6. CITILABS (CITILABS, 2019) 

Headquartered in Sacramento, California with offices in Atlanta, 
Tallahassee, Abu Dhabi, and Milan, Citilabs provides a comprehensive 
suite of transportation industry related products, services and solutions 
to public and private clients. Citilabs supports nearly 2,500 clients in more than 70 countries. 

Citilabs has long been associated with travel demand modeling software, services and solutions.  
Nonetheless, in recent years Citilabs has expanded their set of products to include big-data transportation 
data and analytics for private and government agency clients. With their Streetlytics platform, Citilabs can 
provide empirically based (historical) traffic volumes and speeds on nearly all public roadways in 
California. The Citilabs’ Streetlytics platform pulls data and information from billions of points of GPS, 
cellular, connected car, Bluetooth, ticketing, demographics, and ground truth data to produce traffic-
related utilization and performance metrics on public roadways.  To accomplish this, Streetlytics employs 
a proprietary optimization process, which combines data of multiple types from multiple sources: 

• Sampled location data from the movement of smartphones and vehicles 
• Full population movement data calculated using models of travel behavior applied on current 

household and employment data 
• Ground truth measurement from a database of current traffic counts 

The Citilabs Streetlytics platform’s key features and services include: 

• Directional speed and volume data for roadways (including minor arterials and collector streets); 
hour-by-hour data by weekday type and month of year 

• Trip purpose and mode of travel data 
• Route or itinerary data – routes used to travel between origins and destinations 
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• Home location and demographic characteristics of travelers 

3.3. COMPARISON OF PRODUCTS 

This section presents a matrix comparing key products and data delivery capabilities of each of the 
commercial vendors.   
 
All the commercial vendors of “big-data” roadway traffic utilization and performance data depend heavily 
on smartphone applications, in-vehicle OEM navigational devices, and data from connected vehicles. To 
obtain these data, the vendors have business agreements with multiple cell phone manufacturers, 
carriers, and/or smartphone app providers.  For example, INRIX has a free downloadable app aptly named 
“Inrix Traffic” which provides maps, navigational or route guidance information, and driver alerts.  HERE 
Technologies is majority-owned by a consortium of German automotive companies – as such, they have 
unique data sharing opportunities with these auto manufacturers. 
 

The matrix in Table 3-1 summarizes the vendor’s data sources and relevant data products, along with a 
few supplemental information categories of interest.  In Table 3-1, “CELL/GPS/CV” indicates that the data 
sources were from the suite of smartphone applications, in-vehicle OEM navigation devices, and from 
connected vehicles. Note that HERE provides “split lane speeds” which are speed estimates for two 
dissimilar lane groups, where the speed on one lane group differs from the speed on the second lane 
group.  Typical locations are freeway diverges and freeway merges where one set of lanes or lane group 
is congested, and the adjacent lane group may be freely flowing. 
 
The viability of each of the vendor’s products depends on several factors, like: 

• the importance of real-time data vs only requiring historic data 
• whether volume data are required, or if speed (and vehicular travel time data) will suffice 
• whether the data are required for interstate and freeways only (i.e., where Caltrans PeMS data 

are available) or whether the data are required for arterial and/or less traveled roadways 
• the required accuracies of the data to meet Caltrans’ needs 

 
Aggregated traffic speed and travel time data were among the first of the roadway traffic data that 
became commercially available.  The ability to provide trip origin-destination estimates came several 
years later.  Providing traffic volume estimates is a relatively new feature for these “big-data” providers, 
only available within the last few years.  As the popularity of cell phones and vehicle route guidance apps 
grew, the amount of data available to these vendors increased, as did the reliability and accuracy of their 
traffic speed and travel time estimations improved (and the listing of products offered expanded).  As 
technologies and the use of big data in the transportation industries continue to evolve and advance, costs 
will decline and products will become even more reliable, robust, and comprehensive.  
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Table 3-1: Comparative Summary of Traffic Data Provider  
 FHWA NPMRDS HERE Technologies TOMTOM INRIX STREETLIGHT CITILABS 

Key Data 
Sources 

HERE Technologies 
or  

INRIX 
CELL/GPS/CV 

Multiple sources 
CELL/GPS/CV 

Multiple sources 
CELL/GPS/CV 

Multiple sources 
CELL/GPS/CV 

Multiple sources 
CELL/GPS/CV 

(AirSage) 
Agency Traffic Counts 

Data 
Collection 
Method(s) 

HERE Technologies 
or 

INRIX Methods 

Smartphone App,  
Vehicle OEM device, 
and Multiple Other 

Smartphone App,  
Vehicle OEM device, 
and Multiple Other 

Smartphone App,  
Vehicle OEM device, 
and Multiple Other 

Smartphone App,  
Vehicle OEM device, 
and Multiple Other 

AirSage and 
Citilabs proprietary 

optimization process 

Main 
Products 

(Auto and Truck) 
SPEED SPEED SPEED SPEED 

VOLUME 
SPEED 

VOLUME 
O-D 

SPEED 
VOLUME 

O-D 

Additional 
Data 

Products 
and/or 

Information 

Historical speeds 
and travel times 
(auto and truck 

modes) 

Historical speeds 
and travel times, 
Real-time speeds 
and travel times,  
HOV lane speeds,  
split lane speeds, 

incident feed,  
traffic safety 

warnings 

Historical speeds 
and travel times,  

Routes, O-D, 
Incidents,  

Bottlenecks 

Historical speeds 
and travel times, 
Real-time speeds 
and travel times, 

Bottlenecks,  
O-D, Volume,  

Parking, Population 
Warehousing 

Historical speeds 
and travel times, 

Trip Duration,  
Trip Length, 
Trip Purpose 

Vehicle AADT, O-D, 
(Ped/Bike estimates) 

"Streetlytics" 
historical speed 

And travel times, 
O-D by block-group, 

AADT & Hourly 
Traffic Volumes  

(Trip Purpose and 
Mode estimates) 

Real-time 
Delivery 

Capability 
NO 

YES 
Real-time and 

predictive 

YES 
Real-time and 

predictive 

YES 
Real-time and 

predictive 
NO NO 

Historical 
Delivery 

Capability 
YES 

(delivered monthly) 
YES  

(delivered daily) YES YES  
(delivered daily) 

YES  
(delivered daily) 

YES 
(as per client 
agreement) 

Data 
validation 
reports? 

YES YES ? YES YES YES 

Mapping 
Capability 

NO 
(uses HERE 
mapping) 

Have map 
products 

Have map 
products 

Previously used  
OSM (free) and 

TomTom (premium),  
migrating to HERE 

NO 
(uses INRIX 
mapping) 

NO 
(uses HERE 
mapping) 
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Chapter 3  

Estimating Vehicle Hours of Delay 
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 OVERVIEW 

This chapter focuses on developing a reporting method for Vehicle Hours of Delay (VHD) and algorithms 
to estimate it using a flexible mix of probe data from third-party vendors and data from traditional fixed 
detectors. Other performance measures, such as Vehicle Miles Traveled (VMT) and Vehicle Hours Traveled 
(VHT) are also considered. 

1.1. APPROACH 

The overall framework incorporates four steps as shown in Figure 3-1. At first, the data is acquired from 
both traditional point detectors or VDS, and third-party vendors. An initial data quality check is conducted 
to evaluate whether the data are usable to estimate performance measures. After performing the quality 
control on the data, imputation may be performed if data are missing. Both flow and travel time data are 
conflated to project them onto the desired cell. After having both flow and travel time data conflated, 
data fusion is performed to calculate the desired performance measures. 

 
Figure 3-1 Steps for performance measurement estimation 

 

Figure 3-2 presents the data conflation and fusion steps with a simple schematic diagram. It shows that 
data from PeMS VDS (Figure 3-2a) are available on specific points along the freeway, which does not, in 
general, line up with the layout of the third-party vendor provided data (Figure 3-2b). Both VDS and third-
party data can include imputed data, in case the real-time measured data is unavailable due to detector 
malfunction, communication error, or absence of probe vehicles. Often the imputed data are drawn from 
historic observations over the same spatio-temporal domain. Once data are conflated on the same 
network (Figure 3-2c), both flow and travel time data are available for each cell. Later using the conflated 

Performance Measures Calculation

Data Fusion

Flow and Travel Time Conflation
Hybrid Data Analysis

Data Quality Control
Validate data integrity Coordinate map reference system

Data Ingestion
Point Detector

(Flow on state map)
Third-party data

(Travel time on vendor map)
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data, performance measures are estimated on the cells, and aggregated over the total spatio-temporal 
coverage of interest (Figure 3-2d). 

 
Figure 3-2 Data conflation and fusion 

In this report, the evaluations of the developed algorithms are performed using a simulation model. Using 
any simulated network, the overall framework (as shown in Figure 3-3) can be implemented. A simulated 
model generates data based on the data characteristics of PeMS and any representative third-party 
vendor, (e.g., vendor A and B as shown in the figure). The intermediate steps of data quality control, 
imputation, conflation, and fusion follow the sequence of Figure 3-1. In this research, a single vendor is 
considered, and imputation is not included in the evaluation of final performance measures. More details 
on the conflation and fusion criteria are included in Section 3. 
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Figure 3-3 Research approach 

1.2. SUMMARY FINDINGS 

This section discusses a framework of estimating performance measures using a mix of data from 
traditional point detectors and third-party vendors. For the freeway mainline analysis, probe penetration 
is 5%, whereas for connector analysis all vehicle data are used. For both analyses, point detector speed is 
estimated with a g-factor based method, which is discussed in Section 3.1.1. 

Based on the analysis conducted in the research, it is found that the hybrid method provides a better 
estimate of performance measures compared to the single point detector-based method. The analysis is 
conducted for both freeway-mainline and freeway-freeway connectors, and for five different times of day 
during weekday hours. For almost all the scenarios, similar findings are observed that the inclusion of 
third-party vendor-provided data reduces the estimation errors.  
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 LITERATURE REVIEW 

This section provides a review of related research involving methods for conflation and data fusion. 

2.1. DATA CONFLATION 

In one study, the authors presented a smoothing method which can interpolate data from single 
stationary sensors to any intermediate points on a spatio-temporal domain (Treiber and Helbing, 2002). 
The authors reconstructed data from incomplete information to identify bottleneck efficiently. They used 
a non-linear weight-based reconstruction method, which used both congested and free-flow velocity 
information as the a priori traffic estimate. They derived two linear anisotropic kernel functions to smooth 
the available data based on traffic speed propagation in two states (i.e., free-flow and congested). Fixed 
values were used for spatio-temporal smoothing window, perturbation propagation velocity, and 
transition velocity (for both free-flow and congested). The method was used to identify bottlenecks in two 
real-world scenarios. The authors reconstructed speed for a freeway section using only 35% of the 
information. However, only visual comparison was used to evaluate the reconstructed data. They 
suggested the incorporation of traffic parameter-continuity equations to increase reconstruction 
accuracy. 

In another study, the authors extended the method developed by Treiber & Helbing (2002)  to provide a 
heuristic data fusion model that follows traffic flow theory, and can reconstruct the data with inherent 
structural ambiguity in the spatio-temporal domain (Van Lint and Hoogendoorn, 2010). As first order 
traffic flow models and Kalman Filters can only be used to fuse data that are already aligned, the authors 
developed the Extended Generalized Treiber Helbing filter. They applied an area-based restriction to 
reconstruct data at any specific point. To fuse data from multiple data sources, they also developed a 
linear formulation with one additional weight. This weight considered the reliability of the data sources. 
A simulation study was used with 19 km freeway segment in Europe with on-ramp, off-ramp and weaving 
sections. Compared to the single data source-based reconstruction, bias was reduced while using data 
from multiple sources. It was found that the dense loop placement (inter-detector distance of 500m) with 
(1) floating car data (2%, 5%, and 10%) or (2) automatic vehicle identifier (AVI) (coverage: 1500m and 3000 
m) provided better reconstruction result compared to the sparse detector placements. Reconstruction 
error occurred in edges of the congested region with wider detector spacing, lower floating car 
penetration, and coarser data from AVI. The future extension of this research included better estimation 
of the model parameters from an automated process or a priori estimate based on Bayesian statistics. 

Treiber et al. (2011) expanded the method developed by Treiber & Helbing (2002) to the ‘Generalized 
Adaptive Smoothing Method’ to incorporate data from heterogeneous sources (Treiber, Kesting and 
Wilson, 2011). The motivations were to address the sparseness and noise of a single data source by 
combining data from multiple sources. The authors used a simulated 12 km highway with 4 loop detectors 
and 10 floating cars. Using point speed from a few floating cars along with the detector-based speeds, the 
smoothed velocity reconstruction achieved better accuracy compared to the single source-based 
reconstructions. Using this method, the authors recommended data reconstruction for places with 
detectors spacing up to 1.8 mile. The close positioning of detectors was recommended for bottleneck 
locations to accurately identify the congestion. The generalized smoothing method is used by later studies 
(Ottaviano, Cui and Chow, 2017). 



Hybrid Data Implementation  Final Report 

30 

 

One extension of the Van Lint and Hoogendoorn (2010) study was performed in Li et al. (2016) where the 
authors developed the fusion algorithm for urban expressways. The authors modified the weight function 
to fuse data from multiple sources based on the data captured from the urban expressway. They used 
real-world data from a 10 km corridor in Beijing. The data collection interval for the loop detectors was 2 
min, while for GPS-based vehicles it was 5 min. Using only vehicle data, a minimum 5% penetration rate 
was identified to provide a reliable travel time estimation. In addition, the fusion of loop detector data 
and GPS data (at 2% penetration) outperformed the travel time estimation from single data sources. 

2.2. DATA FUSION  

In one study about data fusion, the authors summarized the issues about input data based on the sensors’ 
setup and operational characteristics, captured data characteristics and influence of the external 
environment (Khaleghi et al., 2013). They reviewed state-of-the-art data fusion methods based on specific 
data issues to provide an organized view of data fusion methods, specifying the applicability, advantages, 
and limitations. For imperfect data issues, the authors found these methods are used: a probabilistic 
method for data uncertainty, an evidential method for uncertain and ambiguous data, and a rough set-
theoretic for data without preliminary information. The stochastic adaptive sensor modeling is used if 
outliers exist. According to this study, the emerging data fusion methods included opportunistic 
information fusion model (dynamically discover sensor, computational load, and dynamic fusion rule), 
and adaptive data fusion (adaptive Kalman filter, reinforcement learning). However, this review paper 
does not include the discussion on deep learning models for data fusion. 

In one study, Liu et al. (2020) discussed the categories of deep learning-based urban multi-source big data 
fusion, and challenges and methods of dealing with urban big data. They summarized the fusion method 
(including deep learning) based on spatio-temporal characteristics of the data, and future deep learning-
based data fusion research directions. At first, based on the spatio-temporal characteristics of the data, 
they categorized fusion methods into three groups: feature-level based (using similar features from 
heterogeneous sources), stage-based (disaggregating the fusion in multiple connected stages), and 
semantic meaning based (using the similarity and correlation of the multiple data). Later, deep learning-
based fusion methods (feature-level fusion) were categorized into three groups, which are: output-based 
(late fusion), input-based (early fusion), and double stage based (both early and late fusion). The data 
quality, sparsity, modality, and spatio-temporal characteristics of the data affect big data fusion. The 
future research directions include the incorporation of deep learning based fusion method to handle 
missing data and multi-modality in the urban big data, and the inclusion of multi-model fusion (e.g., 
Convolutional Neural Network or CNN and Recurrent Neural Network or RNN). 

In their study, Ambühl & Menendez (2016) used a weight-based model to determine the average flow and 
density of a network to estimate the macroscopic flow model (MFD). The developed model does not need 
prior information like Kalman Filter does, only needs the information from probe vehicles and 
homogeneously situated loop. The motivation of the authors was to develop a simple network-level 
estimation model. They determined flow and density from detector and probe separately, and estimated 
probe vehicle penetration based on probe vehicle number and detector captured total vehicles. Using 
individual flow and density data from loop and probe vehicles, the authors calculated network flow and 
density given fixed weights and probe penetration. Two simulation networks with a grid system and 
downtown Zurich. The authors found fusion produces better result compared to loop and probe alone. 
The measurement errors of both loops and vehicles had no impact of estimation as MFD uses aggregated 
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information, which can nullify the individual errors. However, this method is not applicable for low 
detector penetration. The authors assumed homogeneous distribution of loop.   

Patire et al. (2015) estimated travel time using point-based GPS data from probe and loop detector data. 
One challenge was to map probe-based GPS points to the freeway. The authors used a Path Inference 
Filter for the projection. At first, the authors filtered and down selected loop and probe data, then fed 
these data into the fusion engine. The fusion methods used the Godunov scheme discretized Lighthill and 
Whitham model to estimate speed. Data were fused using Ensemble Kalman Filtering (EnKF). The authors 
used an iterative calibration process to fine-tune the model parameters. The EnKF was calibrated with 
Bluetooth based data. The model was validated with multiple networks. One key result was the 
relationship between GPS sample-rate and vehicle penetration rate. On freeways, better travel time 
estimation was achieved using data with a low sample-rate and a high penetration rate, than that achieved 
using data with a high sample-rate and a low penetration rate. In addition, where no loop detectors 
existed, travel time could be estimated with reliable accuracy using only probe vehicle data. 

In another study, the authors estimated route flow based on loop detector and cellular data fusion using 
convex optimization (Wu et al., 2015). As urban traffic may not be in any equilibrium state, the authors 
developed a data driven route flow estimation model without relying on equilibrium-based models. The 
optimization method fitted the estimated route flow with loop detector data. The inputs to the flow 
estimation model included road network, origin-destination demands, set of routes, cellular-based flow 
measurements, and loop detector data from a subset of the corridors from the entire network. Numerical 
studies were conducted where authors achieved 99% route flow estimation accuracy for the I-210 freeway 
near Los Angeles with data from loop detector and cellular networks. One limitation of the study is that 
the authors considered static traffic demands for the network, which is not realistic for real-world 
implementation. 

Wang et al. (2019) reconstructed traffic data from multiple sources. They considered both internal 
structure of single data and relationships among multi-source data to reconstruct the data. They 
developed framework separated noise from the real data and measured relationship among multiple data 
using the fundamental flow diagram relationships. The Alternating Direction of Multipliers optimization 
method was used to obtain the reconstructed data. The authors used real-world average speed data from 
28 links using cell phone and floating car for single parameter reconstruction. For multi-parameter 
reconstruction, they used real-world speed, occupancy, and volume data collected from a microwave 
detector. For single-parameter reconstruction, with 80% data loss the reconstruction error was less than 
15%. However, this method is only applicable to uninterrupted flow. In addition, the authors’ assumed 
that the single measurements for the same position from multiple sensors are same, which is not always 
valid in the real-world. 

In their study, Wright & Horowitz (2016) estimated freeway density from loop and probe vehicle data 
using Rao-Blackwellized particle filter to match the solution of traffic partial differential equations with 
the available sensor data. The assumptions were that the density and velocity of a time are independent 
of a previous time. The authors used a stochastic cell transmission model (CTM), macroscopic flow model, 
initial density distribution, per-link predicted velocity distribution, and likelihood functions for density and 
velocity and performed recursive one-step CTM model update.  
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 METHODS 

This section discusses the research method used for the performance measure estimation using both the 
single point detector-based method and the hybrid method. The existing methods of computing VMT, 
VHT, and VHD are adopted based on the methods used by the Caltrans PeMS. In the end, this section 
discusses the evaluation setup and scenarios to evaluate the frameworks. Figure 3-4 shows the overall 
framework of both PeMS and hybrid methods. 

 
Figure 3-4 Performance measure estimation framework 

3.1. PEMS METHOD  

This section describes the existing method to calculate performance measures currently employed in 
PeMS. 

3.1.1. PEMS SPEED ESTIMATION 

Using single loop detectors, flow (i.e., the number of vehicles passing the detector during a certain time 
interval) and occupancy (i.e., the percentage of the time during which the detector is occupied) values are 
reported. To calculate speed from flow and occupancy, another parameter called a g-factor is estimated 
which is the average length of vehicles passing over the detectors. Assume that for any time interval i, oi, 
and qi are the occupancy and flow values, respectively, for the loop detector. Using multiple iterations 
with the experimental setup (discussed in Section 3.3), the suitable g-factor values for each lane on the 
freeways are estimated. The preliminary speed, si, is: 

 si =
g ∙ qi

oi
 Eq.  3-1 
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Here g is the g-factor value. Using an exponential filter, the final calculated speed estimate 𝑣𝑣𝑖𝑖 is obtained 
from the estimated speed 𝑠𝑠𝑖𝑖, as shown in Eq.  3-2. The variable, wi, can be estimated with Eq.  3-3. The 
value of smoothing parameter, a, is considered from (Zwet et al., 2003). 

 vi = wi ∙ si + (1 − wi) ∙ vi−1 Eq.  3-2 

 

 wi =
qi

qi + a
 Eq.  3-3 

The final calculated speed represents a point-speed for the associated loop detector. At any location, 
several individual loop detectors can form a VDS as shown in Figure 3-5. To estimate the speed at a VDS 
for a time interval i, estimates from all loop detectors are averaged. 

 
Figure 3-5 Schematic of multiple loops forming single VDS 

3.1.2. PEMS PERFORMANCE MEASURES ESTIMATION 

PeMS assumes that each VDS is representative of the freeway segment from the upstream midpoint to 
the downstream midpoint of neighboring VDS. In Figure 3-6, the green double arrow denotes the freeway 
segment of the VDS that lies within it. The yellow stars mark the midpoint of two successive VDS. In terms 
of traffic data, the key measurements captured or estimated at the VDS locations are vehicle counts, 
occupancies, and speeds.  

For an interval time interval i, VMT is the sum of the total miles driven by all vehicles for a freeway in that 
time interval. VMT is represented in the units of vehicle-miles and can be calculated over a specific interval 
by the following equation: 

 VMT = � L ∙ qi
i

 Eq.  3-4 

Where qi  is the number of vehicles that passed over the VDS and 𝐿𝐿 is the length of its associated freeway 
segment. 



Hybrid Data Implementation  Final Report 

34 

 

 
Figure 3-6 Freeway segment representing coverage of VDS 

For any interval time i, VHT is the sum of the total hours driven by all vehicles for a freeway in that time 
interval. VHT is represented in the units of vehicle-hours and can be calculated over a specific interval by 
the following equation. 

 VHT = �
L ∙ qi

vii

 Eq.  3-5 

Where, 𝑣𝑣, is the speed from the VDS in question. 

Delay is represented in units of vehicle∙hours and is calculated against a threshold speed. 

 VHD = � qi �
L
vi
−

L
b
�

i

  Eq.  3-6 

Where, 𝑣𝑣, is the speed from the VDS in question and, b, is the threshold speed. The 65 and 35 mph 
threshold speeds are considered in this research for freeway mainline and freeway-freeway connectors, 
respectively. 

3.1.3. COMMENTS ON THE MPR METHOD 

The two main opportunities for errors to arise in this method are: 

• usage of the g-factor approximation to estimate speeds 
• usage of a point measurement to approximate the measurement across an expanse of road 

Single loops, as predominantly deployed, do not actually measure speeds. Even if the point speed is 
measured with other sensors (e.g., dual loops), the point speed does not reflect the overall operational 
condition for a freeway segment. One may expect that direct measurement of travel-times that are 
possible with third-party data may be advantageous. 
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3.2. HYBRID METHOD  

The hybrid method is illustrated using Figure 3-7 which shows input data, intermediate analysis steps, and 
output with the estimated performance measures. The input data include flow and speed from the VDS, 
and travel time (TT) data provided by third-party vendors. For the analysis of this research, one vendor is 
considered (Vendor A) who provides data in a separate spatial reference system which does not match 
that used by Caltrans PeMS. For the freeway mainline, Figure 3-7 shows such a situation where the links 
with travel time data do not align with the VDS locations. Also, the travel time data is not based on the 
whole vehicle population, it is from a sample probe vehicle group (x% of the whole population).  

Imputation is performed where data is missing in case of any inactive or decommissioned VDS. Once data 
are available in all VDS, flow is conflated or projected to the desired cells along the freeway. Based on the 
conflated flow, travel time data from third-party vendors are also conflated. Once both flow and travel 
time data are available on the desired cells, the final performance measures are calculated by aggregating 
data from all cells in the freeway. In this technical report, the cell-based calculation is conducted for the 
freeway-mainlines. However, freeway-freeway connectors are not subdivided into smaller pieces. For the 
freeway-freeway connectors, the data fusion is not performed using cells, rather it is done for the whole 
length of the connectors. 

 
Figure 3-7 Hybrid method to estimate performance measures 

3.2.1. INCOMPLETE VDS DATA IMPUTATION 

In this analysis, a machine learning (ML)-based imputation method is studied to impute flow in the missing 
VDS locations. At first, two images are generated to train the ML model as shown in Figure 3-8. The first 
image is generated with the flow data from the VDS locations that includes both VDS with and without 
missing data. Here VDS with missing data does not have any data at the missing locations. The second 
image has data of the missing locations. The x-axis of the image represents the per minute time interval, 
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and the y-axis represents the VDS. For a total of B minutes, the following matrix C represents the input 
data for freeway with A VDS, or equivalently, A freeway segments. 

 C = �
c1,1 ⋯ c1,B
⋮ ⋱ ⋮

cA,1 ⋯ cA,B

� Eq.  3-7 

Where c represents the flow at VDS, a, for the b-th time interval (in minutes). The motivation of having 
an image-based analysis is to use both spatio-temporal information to impute missing data (Ma et al., 
2017). A regular image can have pixel values ranging from 0 to 255, whereas in this study the pixel values 
are flow values at a certain location and time. Also, regular images can have 1 channel (grayscale image) 
or 3 channels (Red Green Blue image). In this analysis, only one channel is used for the flow data. The 
captured feature maps by different layers of the ML models are the relationship between traffic flow and 
VDS locations.  

 
Figure 3-8 schematic of imputation model development 

Figure 3-9 shows the two phases related to the ML models, which are training and test. Different datasets 
are used for training and test. At the training phase, the model hyperparameters are selected based on 
the cross-validation error using the training dataset. Hyperparameters are those variables which affect 
the performance of the model, and that cannot be estimated from the data by the model itself. For CNN, 
these hyperparameters are the number of hidden layers, epoch (number of times the data is passed 
forward and backward through the network), batch size (number of data present in a group that is passed 
through the model), learning rate (the rate at which the weights are updated), and decay rate (the rate at 
which learning rate changes). Later the final trained model’s performance is measured based on the 
estimated flow and actual flow on the test dataset. The following subsections further discuss the 
imputation methods.     
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Figure 3-9 ML-based training and test 

CONVOLUTIONAL NEURAL NETWORK 

CNN is a widely accepted ML technique for image-based analysis. Here, a brief discussion is included to 
explain the underlying concept of the CNN model, which is implemented based on (Ma et al., 2017). In 
this model, convolution and pooling layers are the core parts as shown in Figure 3-10. In the convolution 
layer, features from the input image are extracted by sliding a filter over the image. A convolutional filter’s 
dimension is height X width X channel, where channel number depends on the channel of the input image. 
In the pooling layer, the dimensions of the incoming data are reduced to minimize the number of 
parameters. For a certain layer l (with a total number of convolution filters, t), assume that the input, 
output, weight, bias, and channel index of convolutional filters are c, y, p, j, and m, respectively. The 
following shows the output from the first convolutional and pooling layer.    

 y1m = pool �β ∙ (p1m ∙ c1m + j1m)�, m ∈ [1, tl] Eq.  3-8 

Here β is the activation function. The following equation shows the output from the additional 
convolutional and pooling layers.  

 y1m = pool �β ∙ ��(plm ∙ cln + j1m)
tl−1

n=1

�� , m ∈ [1, tl] Eq.  3-9 

A dense layer concentrates (in other word, flattens) the final features learned by the intermediate layers, 
which can be written as the following equation. Here the depth of CNN is denoted by L.  

 yLflatten = flatten ([yL1, yL2, … , yLm]), m = tL 
Eq.  3-10 

In the end, the model output (y�) (as shown in Eq.  3-11) is generated with a fully connected layer, f.  
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 y� = pf ∙ yLflatten + jf 
Eq.  3-11 

 
Figure 3-10  CNN-based imputation model 

The model output,y�, is the imputed data at the VDS locations with the missing data. In the training phase, 
the model hyperparameters are optimized, and later the trained model is used with the test dataset. 

CAPSULE NETWORK 

There is a chance of losing information in the pooling function operated by CNN, which mainly down 
samples the incoming data from the input image or previous layer. To address the issue, capsule network 
(CapsNet) is developed. CapsNet has layers with capsules (a group of neurons) with additional information 
handling capabilities. Layers of CapsNet store information about different properties of the same object. 
There are two main capsule layers, the first one is the primary capsule layer and the second one is the 
flow capsule layer, as shown in Figure 3-11. The input and output of capsule layers have vector forms, 
while regular neurons in CNN have scalar forms. Assume i and j are two capsules at the upper and lower 
levels. The variables ∝, c, j, and y are the non-linear activation function, coupling coefficient, weight 
matrix, and output vectors, respectively. Eq.  3-12 shows the output vector from a capsule  

 yj = ∝ (� cij
i

∙ jij ∙ yi) Eq.  3-12 

The coupling coefficient, c is estimated using a dynamic routing method (Sabour, Frosst and Hinton, 2017) 
which basically specifies if the weights estimated from the low-level capsules are in agreement with the 
weights estimated by the high-level capsules.  
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Figure 3-11 CapsNet-based imputation model 

3.2.2. HYBRID DATA CONFLATION 

In this subsection, the data conflation method is discussed. The main purpose of this step is to make both 
flow and travel time data from multiple data sources available on a single spatial reference scheme, in 
this case, cells along the freeway. 

DESIRED CELLS OF ANALYSIS 

Figure 3-12 shows a schematic of evenly sized cells along the freeway mainline. In general, travel time 
data on links do not line up with VDS data on segments, which do not line up with the cells along the 
desired domain of analysis. The cells are the blue bounding boxes, and they cover freeway mainlines. The 
motivation of cell-based analysis is to narrow down the locations of the bottlenecks and compute delay 
properly using conflated flow in each cell. With large cells, variations in flow cannot be properly captured 
and it can lead to erroneous delay calculation. In this analysis, the cell length is 0.25 miles. Therefore, flow 
data from the VDS are projected every 0.25 miles. If any VDS is within 200 ft from a cell boundary, the cell 
location is not considered and the raw VDS data is used as is. At the end of the conflation process, flow 
data is available at each VDS (measured flow) and cell boundary (conflated flow). 

 
Figure 3-12 Freeway with cells 
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FLOW CONFLATION 

The flow conflation method is developed based on the Generalized Adaptive Smoothing Method (GASM) 
(Treiber and Helbing, 2002; Treiber, Kesting and Wilson, 2011). The purpose of the method is to spatio-
temporarily reconstruct traffic data at specific locations using data captured by point detectors or VDS. At 
certain cell points (where x and t are the position and time) on a spatio-temporal domain, the flow data q 
can be calculated using GASM. In this method, f(x,t) is a normalization factor, and k is the kernel value. 
According to GASM, the conflated flow at cell point (x, t) is obtained from all VDS captured flow values in 
the upstream and downstream regions. In GASM, localized smoothing is performed, meaning flow at a 
certain cell point (x, t) is affected strongly by the closer VDS, and weakly by the distant VDS. The widths of 
spatial and temporal smoothing are 𝛿𝛿 and 𝜇𝜇, respectively. 

GASM is developed to overcome the challenge of isotropic smoothing of traffic data (i.e., non-skewing 
smoothing). The equations of the GASM method are provided here with the non-skewing smoothing. Here 
i and j refer to the time interval and VDS number, respectively, for the study period and analysis area. At 
any cell point located at x position, qc(x,t) is the flow at time interval t. The variable qvds(i,j)is the flow of 
the j-th VDS at the i-th time interval.  

 qc(x,t) =  
1

f(x,t)
�� k(x−xj,   t−ti) ∙ qvds(i,j)

N

j=1

T

i=1

 Eq.  3-13 

 f(x,t) =  �� k(x−xj,   t−ti)

N

j=1

T

i=1

 Eq.  3-14 

 k(x−xj,   t−ti) =  exp [−(
�x − xj�

δ
+

|t − ti|
μ

)] 
Eq.  3-15 

Here N is the total number of VDS, and T is the last time interval. GASM includes the idea of skewed 
smoothing of traffic data. In the free-flow (ff) direction, the smoothing is performed with the free-flow 
propagation speed (vff). In the congested (cong) direction, the smoothing is performed with the backward 
propagation speed (vcong). In this analysis, the available VDS are confined to the immediate upstream and 
downstream VDS, and thus the smoothing method is named as ‘Confined Generalized Adaptive 
Smoothing Method (C-GASM)’. Figure 3-13 shows the situation where intermediate cells between two 
VDS are conflated with the data from the immediate upstream and downstream VDS. 
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Figure 3-13 C-GASM for conflating with surrounding VDS 

Based on the confinement rule, the values for conflated flow in congested and free-flow conditions at cell 
point (x, t) are estimated with Eq.  3-16 and Eq.  3-18, respectively. Here u is the upstream VDS while d 
is the downstream one. 

 

 qc,ff(x,t) =  
1

fff(x,t)
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x−xd
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T
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Eq.  3-16 
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 Eq.  3-19 

 
 
 

To calculate a single smoothed flow value for (x, t), a weighted filter is used. With Eq.  3-20, the final flow 
value at the cell point (x,t), which is qf(x,t), is estimated. 

 
qf(x,t) =  z(x,t) ∙ qc,cong(x,t) + (1 − z(x,t)) ∙ qc,ff(x,t) Eq.  3-20 

The weight z(x,t) is calculated with an s-shape function, which depends on crossover speed (vcr) and 
transition width (∆v) from congestion to free flow.  
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 z(x,t) =  
1
2
∙ [1 + tanh (

vcr − min (vc,ff(x,t), vc,cong(x,t))
∆v

)] Eq.  3-21 

At the cell point (x,t), values of vc,ff(x,t) and vc,cong(x,t) are calculated using equations similar to Eq.  3-16 
and Eq.  3-18 with the VDS-captured speeds. C-GASM based flow conflation method depends on 
parameters such as 𝛿𝛿, 𝜇𝜇, 𝑣𝑣𝑓𝑓𝑓𝑓 , vcong, 𝑣𝑣𝑐𝑐𝑐𝑐 , and ∆𝑣𝑣. The typical values of these parameters are discussed 
in(Treiber and Helbing, 2002; Treiber, Kesting and Wilson, 2011). In this analysis, these parameters are 
selected based on multiple trials where the chosen set of acceptable values gives the highest accuracy. 
Figure 3-14 shows an overview of the flow conflation method using C-GASM.   

 
Figure 3-14 C-GASM method 

THIRD-PARTY DATA CONFLATION  

Once the flow values from the point sensors are conflated to the desired cell locations, the next step is to 
conflate the third-party data on the same cells. Travel time data provided by a third party is conflated to 
the desired cells, as shown in Figure 3-15, where the link is divided by the overlapping cells. The 
assumption of travel time conflation is that travel time data can be distributed along the links to the cells 
based on the vehicle number distribution in the cells. The higher number of vehicles in a cell will result in 
higher travel times, and vice versa. Assume that, vendor A provided travel time data for a link is TTi at time 
interval i. In that link, the total number of cells is G which divide the link into (G+1) parts. For a certain cell 
located at x on that link, the associated travel time data (ttx,i) at time interval i from vendor A, is estimated 
with this equation. 

 𝑡𝑡𝑡𝑡𝑥𝑥,𝑖𝑖 =  𝑇𝑇𝑇𝑇𝑖𝑖 ∙
𝑐𝑐𝑥𝑥,𝑖𝑖

∑ 𝑐𝑐𝑛𝑛,𝑖𝑖
𝐺𝐺+1
𝑛𝑛=1

 Eq.  3-22 

The number of vehicles in a cell (𝑐𝑐𝑥𝑥,𝑖𝑖) located at x for the time interval i can be estimated by the conflated 
density on the cell, and associated length of the link from that cell to the next cell. The conflated density 
is estimated with the C-GASM method. 
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Travel time for the cells, which cover edges of multiple links, are calculated by aggregating travel time for 
those link edges at time interval i. Travel time data from multiple vendors can be estimated with a 
weighted sum approach. The weight (∅) can be assigned based on the confidence of the third-party 
vendor provided data. The confidence can be related to the travel time data characteristics (penetration 
level of probe vehicles, real-time data availability) of the vendor provide data. 

 𝑡𝑡𝑡𝑡𝑥𝑥,𝑖𝑖 =  ∅𝐴𝐴 ∙ 𝑡𝑡𝑡𝑡𝐴𝐴,𝑥𝑥,𝑖𝑖 + ∅𝐵𝐵 ∙ 𝑡𝑡𝑡𝑡𝐵𝐵,𝑥𝑥,𝑖𝑖, ∅ ∈ [0,1], ∅𝐴𝐴 + ∅𝐵𝐵 = 1 
Eq.  3-23 

 

 
Figure 3-15 Travel time conflation 

If multiple vendors have same weights, ∅ will have equal values, and the sum of all weights will be equal 
to 1.  In this research evaluation, only one vendor is considered. 

3.2.3. HYBRID PERFORMANCE MEASURES ESTIMATION 

Once multiple data from different sources are conflated on the same network along the desired cells, 
VMT, VHT, and VHD are calculated for each cell. Final values for the freeway are calculated by summing 
up the values for the individual cell, as shown in Figure 3-7. 

3.3. EXPERIMENTAL SETUP 

In order to evaluate the performance of the PeMS and hybrid methods, an experimental setup is 
developed and used with a simulated model of the I-210 corridor.  

3.3.1. SIMULATION MODEL 

Figure 3-16 shows the calibrated model of the I-210 corridor that is used in this research. The simulation 
model is developed for the Connected Corridors program, which has different roadways (freeways, ramps, 
and arterials) calibrated for both weekends and weekdays (Connected Corridors, 2020). 
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Figure 3-16 I-210 simulation model 

The red highlighted freeway used in this analysis is the westbound portion of the I-210 freeway. The VDS 
in the simulated model are laid out following the VDS placement on the real-world freeway. To synthesize 
the third-party vendor travel time data, raw location data is collected from a sample of the total vehicles 
(e.g., 5% of the simulated vehicles). The probe vehicle data is only considered when the vehicle data is 
available for the initial and last 10% part of the link. This is done to ensure that the vehicle has crossed 
the link. From the initial and final location and timestamp data of the associated probe vehicle, travel time 
is calculated for that vehicle. Later, the data is aggregated for every minute time interval, and the final 
dataset has the travel time data aggregated for every minute.  

For this simulation, only the westbound lanes along a 16-mile portion (highlighted in red) of I-210 are used 
to calculate VHD for the following scenarios: 

1) Before morning peak (6 am - 7 am) 
2) Morning peak (7 am - 8 am) 
3) Noon time (1 pm - 2 pm) 
4) Afternoon peak (5 pm - 6 pm) 

There are 33 VDS locations along the 16-mile I-210 corridor (highlighted in red). For conflation and hybrid 
data fusion, the corridor was divided into 55 cells. The simulated point-sensor data was extracted using 
the VDS locations, and the simulated third-party vendor data was extracted using an assumed 5% probe 
penetration of the vehicle population. The findings presented are based on the average of two replications 
(i.e., different simulation runs using a different random seed) for each of the scenarios.  

Figure 3-17 shows the representation of how trajectories are used to calculate travel times. The probe 
vehicle data from P1, P2, and P3 are captured only when these vehicles crossed the section.  
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Figure 3-17 Probe vehicle travel time data generation 

 

3.3.2. SIMULATION SCENARIOS 

The following subsections discuss the considerations of different simulation scenarios. 

MISSING VDS DATA IMPUTATION 

To test the missing data imputation framework using ML-based methods, a real-world PeMS dataset is 
used. The captured data is obtained from the historic PeMS data warehouse, and only weekday data are 
used. Figure 3-18 shows the area where data from 9 consecutive VDS are missing on a day. In order to 
impute the data in the missing region, 7 upstream and downstream VDS for that time interval are used. 
Both CNN and CapsNet are trained with the same training dataset and evaluated against the same test 
dataset. The total number of days for this experiment is 55, and data is used for the afternoon peak period 
(5 pm-6 pm) during weekdays. Among these days, 32 days are used to train the imputation model, and 23 
days to evaluate.  
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Figure 3-18 Imputation study area 

The details of the CNN-based imputation model are provided in Table 3-1. In the imputation model, there 
are three convolution + pooling layers. The initial learning rate and decay rate for the model are found to 
be 0.1, and 0.99, respectively. The batch size is equal to one individual day of data. The model is 
implemented with the Tensorflow library. The final output of the fully connected layer provides one-
minute data for the total 60-minute interval, and for the 9 missing VDS.  

Table 3-1 CNN-based imputation model 
Layer name Layer detail Layer output shape 
Convolution Layer #1 Filter =256, Kernel size= 2x2,  

Activation = 'selu', Padding= 'Same' 
22 x 60 x 256 (Total active and 
inactive VDS x Total time interval in 
min x Filter size) 

Pooling Layer #1 Kernel size = 2x2, Stride=2, 
Padding='Valid' 

11 x 30 x 256 

Convolution Layer #2 Filter =128, Kernel size= 3x3,  
Activation = 'relu', Padding= 'Same' 

11 x 30 x 128 

Pooling Layer #2 Kernel_size = 2x2, stride=2, 
Padding='VALID' 

5 x 15 x 128 

Convolution Layer #3 Filter =32, Kernel size= 3x3,  
Activation = 'relu', Padding= 'Same' 

5 x 15 x 32 

Pooling Layer #3 Kernel_size = 2x2, stride=2, 
Padding='VALID' 

2 x 7 x 32 

Fully Connected Layer  540 (Total inactive VDS x Total time 
interval in min) 

In the CapsNet-based imputation model, the number of iterations for the dynamic routing process 
(between Primary Caps and Flow Caps) is limited to 3 iterations. The capsule in the Primary Caps layer 
represents the VDS, and the dynamic routing algorithm extracts the relationship between all the VDS in 
the Primary Caps layer. The square-root of the sum of each 16-dimensional capsule vector (squared 
element) in the Flow Caps layer represents the flow in the VDS. The following Table 3-2 shows the details 
of the CapsNet-based imputation model. The learning rate and decay rate are 0.05, and 0.9, respectively.  
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Table 3-2 CapsNet-based imputation model 
Layer name Layer detail Layer output shape 
Convolution Layer #1 Filter =32, Kernel size= 3x3,  

Activation = 'relu' 
22 x 60 x 32 (Total active and inactive 
VDS x Total time interval in min x 
Filter size) 

Primary Capsule Capsule output vector size=8D, 
Filter = 64, Kernel size= 3x3,  
Activation = 'relu' 

10560 x 8 (((Total active and inactive 
VDS x Total time interval in min x 
Filter size)/Output capsule dimension) 
x Output capsule dimension) 

Flow Capsule Capsule output vector size=16D 540 x 16 ((Total inactive VDS x Total 
time interval in min) x Output capsule 
dimension) 

FREEWAY MAINLINE PERFORMANCE MEASURES 

The 16-mile length of the westbound I-210 mainline lanes is used for the evaluation of the PeMS and 
hybrid methods. Here, no imputation testing is conducted. Along the selected freeway, 33 VDS are 
available. The final number of cells along the freeway is 55. 

VHT and VHD are calculated with respect to the 65-mph speed threshold. VMT, VHT, and VHD are 
calculated for the following scenarios: 

5) Before morning peak (6 am - 7 am) 
6) Morning peak (7 am - 8 am) 
7) Noon time (1 pm - 2 pm) 
8) Afternoon peak (5 pm - 6 pm) 
9) Night off-peak (8 pm - 9 pm) 

The findings presented in this analysis are based on the average of two replications (i.e., the different 
simulation runs using different random seeds) for each of the scenarios. For mainline analysis, probe data 
is provided by 5% of the vehicles. 

FREEWAY-FREEWAY CONNECTOR PERFORMANCE MEASURES 

In this evaluation, the hybrid calculation is performed for the freeway-freeway connectors using data from 
both data sources. However, data is not conflated here. For the specific connector, the VDS flow data is 
used along with the travel time data for that connector. Figure 3-19 shows the connectors and VDS along 
the study area. VHD and VHT are calculated with respect to the 35-mph speed threshold. Like the mainline 
analysis, results are presented based on the average of two replications and for five scenarios. For 
connector analysis, probe data is provided by 100% of the vehicles. 
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Figure 3-19 I 210 - I 605 connectors 
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 RESULTS 

In this section, findings from the imputation, conflation, and hybrid data fusion methods are discussed. 
Although imputation is a part of the hybrid method, in this analysis imputation is not included in the hybrid 
performance measure estimation. Rather, the findings from the ML-based imputation are discussed 
separately. The hybrid method is conducted with conflation and data fusion only.  

4.1. RESEARCH CONSIDERATION 

There are several assumptions considered in the research. For the input data, a one-minute time window 
is considered. This means data from VDS and a third party are sampled at intervals of one minute. This 
time interval can be re-sampled to any other preferred time interval. In the analysis, travel time from a 
third party is used for freeway mainlines; as in reality this data can include data from vehicles on HOV 
lanes too. The cell-based analysis is conducted for the freeway mainline lanes, whereas for the freeway-
freeway connectors, the analysis is conducted for the entire length of the connector. 

4.2. ML-BASED MISSING VDS DATA IMPUTATION 

ML-based models are data driven models, which means the overall model architecture and model 
hyperparameters depend on the underlying data. As discussed in Section 3.2.1, the hyperparameters 
required by ML-based models are estimated by the trial and error method using the training dataset. The 
first decision to make is to define the required size of the training dataset for each of the ML-based 
models. Figure 3-20 shows the reduction in error with respect to the increase in the number of training 
datasets. Here real-world data from the PeMS website was used in the model. As shown in the figure, the 
performance of both CNN and CapsNet becomes almost steady after 32 datasets. For this reason, data 
from 32 days are used as the training dataset for both models.  

 
Figure 3-20 Effect of datasets on training 

Table 3-3 shows the results from the ML-based imputation. The error or difference is measured based on: 
(i) the actual data (available in the PeMS dataset), and (ii) the imputed data (imputed by CNN and 
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CapsNet). The findings are based on the evaluation of every minute of data for each VDS available in the 
23 test days. Based on the findings, the CNN model outperforms the CapsNet model with a difference of 
6 veh/min/VDS error. The standard deviation of the error for CNN is also less compared to the CapsNet. 
Although CapsNet can capture more features, further evaluation is needed to study how those additional 
features can help to reduce the imputation errors.  

 
Table 3-3 Imputation model performance 

Imputation 
Method 

Difference of actual and imputed count (Veh/min/VDS) 

Mean Std. deviation 25th Percentile 50th Percentile 75th Percentile 

CNN 14.8 13.5 5.4 11.3 20.1 

CapsNet 20.8 14.9 9.9 18.5 28.2 

4.3. PEMS SPEED CALCULATION 

To calculate speed from single loop detectors available in the study area, the g-factor based speed 
estimation method (as discussed in Section 3.1.1) is used. These g-factors, which are basically the average 
length of vehicles crossing a detector, influence the final calculated speed. A set of g-factors are used for 
each lane to identify which factor gives an acceptable range of error for almost all single loops. For a one-
hour time interval, where loop data are aggregated for each minute, Figure 3-21 shows the error of 
calculated speed (i.e., speed using g-factor) and actual speed (i.e., speed from the simulation) for a specific 
g-factor (i.e., 22 ft.) for all loops in lane 1 of the freeway mainlines. The error is acceptable if: (i) the 50th 
percentile value of the error range is close to 0, and (ii) the sample size is near-equal for the overestimated 
and underestimated values.  
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Figure 3-21 Calculated speed error for lane 1 in freeway mainline 

A similar analysis is conducted for single loops in both freeway mainline and freeway-freeway connectors. 
For the freeway mainline, the final g-factor values for six lanes are found to be 22, 22, 26, 25, 24, and 23 
ft., from the leftmost to the rightmost lane. For freeway-freeway connectors, the left and right lane g-
factor values are both 23 ft. 

Table 3-4 shows the findings for the absolute difference between g-factor estimated speed and the 
simulated speed for the morning congested scenario. Here data are aggregated for all single loops in the 
freeway mainline. For the congested scenario, the mean speed difference is 2.32 mph with a standard 
deviation of 2.89 mph, which means that in simulation, the g-factor method can generate speed values 
that are very close to the simulated speeds. 

 
Table 3-4 PeMS speed estimation result 

Simulation 
Scenario 

Absolute difference of final calculated and actual speed (mph) 

Sample Mean Std. 
deviation 

25th 
Percentile 

50th 
Percentile 75th Percentile 

Morning 
congestion 8496 2.32 2.89 0.68 1.49 2.85 
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4.4. FREEWAY MAINLINE PERFORMANCE MEASURES 

This section discusses the findings of both PeMS and hybrid methods to calculate the performance 
measures.  

4.4.1. CONFLATION FOR THE HYBRID METHOD 

Data conflation projects data (from different sources) onto the same spatial reference system. Figure 3-22 
shows a sample representation of the flow data availability from VDS along the westbound portion of I-
210. These flow data are conflated to the desired cells with a length of 0.25 miles. After applying the flow 
conflation using GASM and C-GASM methods, conflated flow at these cells is available. The error of the 
flow conflation method can be calculated based on the actual flow data available from the loops which 
are placed at those cell locations.   

 
Figure 3-22 Sample available data from VDS along I-210 westbound 

The vcong and vff values are 80 and -25 kmph. The spatial and temporal smoothing widths, 𝛿𝛿 and 𝜇𝜇, are 
found based on trial and error. Table 4-3 shows the mean absolute error and mean absolute percentage 
error for every minute at all cell locations for the morning peak period. In the analysis, the error values 
are the average error of two simulated replications. As C-GASM exhibited superior performance, it is used 
in the final application of performance measure estimation.  
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Table 3-5 Error of flow conflation at morning peak 

Conflation Method Mean Absolute Error (veh/hr)  Mean Absolute Percentage Error (%) 

C-GASM 482 8 

GASM 515 8.2 

4.4.2. COMPARISON OF PEMS AND HYBRID METHODS 

Following Section 3.1.2, performance measures are estimated using the PeMS method. In the hybrid 
method, once both flow and travel time data are conflated, the performance measures (VMT, VHT, and 
VHD) are calculated at the desired cell locations. Finally, all values along the whole freeway are summed 
up to get the final VMT, VHT, and VHD for the whole freeway.  

Table 3-6 shows the VMT, VHT, and VHD values for all scenarios, and methods. Simulated ground truth 
data is calculated from the model. The simulation provides space-mean speed and vehicle count data for 
the simulated sections, which are used to get the base VMT, VHT, and VHD. For each scenario, VMT 
calculated with the hybrid method is closer to the simulation ground truth, than that calculated with the 
PeMS method. A small VHD is observed during the night off-peak scenario as an artifact of the cell-based 
travel time conflation, however, this can be considered as negligible. 

Table 3-6 Performance measures for freeway mainline 

Scenario Calculation Method VMT (veh-mile) VHT (veh-hour) VHD (veh-hour) 

Before Morning 
Peak 

SGT* 94598.56 2924.55 1374.44 

PeMS 92624.45 2788.03 1270.74 

Hybrid 93316.80 2918.89 1456.94 

Morning Peak 

SGT 80237.48 4689.71 3354.89 

PeMS 77405.69 4338.11 3051.96 

Hybrid 78128.70 4630.18 3366.20 

Noon Time 

SGT 93634.13 2598.23 1064.56 

PeMS 92035.59 2641.62 1119.39 

Hybrid 92675.72 2507.76 1054.24 

Afternoon Peak 

SGT 91021.54 3235.14 1743.29 

PeMS 89291.75 2975.35 1514.38 

Hybrid 90060.30 3098.24 1696.65 

Night Off-peak 

SGT 56544.19 822.31 0.04 

PeMS 55889.45 837.67 0.00 

Hybrid 56212.10 741.84 1.14 
* SGT = simulated ground truth 
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Figure 3-23 shows the benefit of including third party data for VMT, VHT, and VHD calculations. For the 
morning and afternoon peaks, the hybrid method yields an improvement of 9% and 10.4%, respectively, 
for VHD compared to the PeMS method. Due to C-GASM based conflation, VMT also improves when using 
the hybrid method. Both PeMS and hybrid methods underestimate all the performance measures in both 
scenarios.  

 
Figure 3-23 Peak period comparisons for freeway mainline 

For the before-morning and noon scenarios, the hybrid method yields an improvement of 1.5% and 5.0%, 
respectively, for VHD compared to the PeMS method as shown in Figure 3-24. Due to C-GASM based 
conflation, VMT also improves when using the hybrid method. For the noon scenario, PeMS overestimates 
both VHT and VHD, whereas the hybrid method underestimates them. 

 

 
Figure 3-24 Other period comparisons for freeway mainline 
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4.5. FREEWAY-FREEWAY CONNECTOR PERFORMANCE MEASURES 

Performance measures are calculated for the I-210 and I-605 freeway-freeway connectors using both the 
PeMS and hybrid methods.  

Table 3-7 shows the findings for all the scenarios. Ground truth data is calculated from the simulation. The 
model provides space-mean speed and vehicle count data for the simulated sections, which are used to 
obtain ground truth VMT, VHT, and VHD. For almost every scenario, the inclusion of third-party travel 
time data improved the accuracy of the performance measures (VHT and VHD). The one exception is the 
afternoon peak. For connectors, no cells are used, and therefore VMT calculations for both hybrid and 
PeMS methods are identical, as the same data and calculation steps are used in both methods to compute 
VMT.  

 
Table 3-7 Performance measures for freeway-freeway connector 

Scenario Calculation Method VMT (veh-mile) VHT (veh-hour) VHD (veh-hour) 

Before Morning 
Peak 

SGT* 3929.53 113.78 43.15 

PeMS 3927.19 94.65 25.73 

Hybrid 3927.19 110.84 42.98 

Morning Peak 

SGT 4404.76 174.83 94.41 

PeMS 4364.82 124.32 50.44 

Hybrid 4364.82 167.69 90.82 

Noon Off-peak 

SGT 3657.01 68.69 6.37 

PeMS 3641.40 60.94 2.52 

Hybrid 3641.40 65.30 5.60 

Afternoon Peak 

SGT 4020.99 177.43 106.10 

PeMS 3870.43 167.75 101.28 

Hybrid 3870.44 166.81 101.55 

Night Off-peak 

SGT 3338.02 53.09 0.00 

PeMS 3328.17 48.67 0.00 

Hybrid 3328.17 49.89 0.00 
* SGT = simulated ground truth 

During the morning peak, before the morning peak, and at noon scenarios, noticeable improvements can 
be achieved by using hybrid data. As shown in Figure 3-25, the VHT and VHD error reductions are 29.8% 
and 61%, respectively during the morning peak. During the afternoon, major congestion occurs in the 
Northbound I-605 to Eastbound I-210 connector in the bottom-right, as shown in Figure 3-26 in red. For 
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this connector, point speeds captured by loops on the connector matches the space-mean speed data 
calculated using the third-party travel times. 

 
Figure 3-25 Peak period comparisons for freeway-freeway connectors 

 
Figure 3-26 Freeway-freeway connector congestion during afternoon peak 

 

Improvements are observed for both the before-morning peak and noon scenarios. As shown in Figure 
3-27 for before-morning and noon, error reductions are 40% and 52%, respectively, if VHD is calculated 
with data from both VDS and third-party. 
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Figure 3-27  Other period comparisons for freeway-freeway connectors 
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4.6. CONCLUSIONS 

The objectives of this research are to develop and evaluate a framework to calculate performance 
measures using a mix of data from multiple data sources. A literature review is conducted to study the 
current practices of data conflation and data fusion. The experimental design includes the use of the I-
210 simulated freeway. Research is conducted for freeway mainline and freeway-freeway connectors 
using the simulated model. Both g-factor based point speed estimation (for both mainline and connectors) 
and limited probe data availability (for freeway mainlines) are considered to mimic real-world conditions. 

The summary study findings are as follows: 

1) The experiment conducted in this study for the ML-based imputation is performed for a specific 
scenario with 16 VDS having data and 9 VDS missing data. Based on the findings, these data-driven 
models have the potential to impute missing count data at such VDS locations. However, the 
development, validation, and implementation of general data-driven models to handle multiple 
scenarios require additional effort for further refinement.  

2) Based on the experiment for morning congestion, the g-factor based speed calculation for single 
loops can generate a good estimation of point speed in simulation. However, using the point 
speed to calculate freeway wide VMT, VHT, and VHD can produce erroneous results, even if the 
point speed is measured with other sensors (e.g., dual loops).  

3) For freeway mainlines, fusing data from third-party vendors helps to get a better estimation of 
the performance measures in almost all scenarios. For the off-peak period, when there is no 
noticeable fluctuation in demand, single point detector-based estimation is enough to estimate 
the performance measures. This happens as the point-speed at off-peak periods is very close to 
the space mean speed for the link. 

4) For freeway-freeway connectors, similar results are observed, except that the improvements can 
be much greater. Many of the connectors are metered. The effect of metering cannot, in general, 
be captured by an upstream VDS on the connector. In cases where the traffic state at the VDS 
happened to be representative of that on the connector, then fusing data from third-party sources 
yielded no substantial improvement. 
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Chapter 4  

Incorporating Third Party Data 
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 OVERVIEW 

This chapter evaluates methods for estimating VHD (Vehicle Hours of Delay) in multiple ways using a 
flexible mix of both traditional sensor data and third-party, probe-based mobile data. The following topics 
are discussed: Point-based detector deployment strategy, evaluating VHD estimation using hybrid data 
fusion along fully instrumented freeways; and opportunities for improved coverage using hybrid data 
along limited instrumented freeways. 

1.1. APPROACH 

It is often unfeasible for detector coverage to extend across an entire road network in an agency’s 
jurisdiction. Due to resource constraints, less critical roadways have reduced or limited instrumentation 
coverage in the network. The purpose of this section is to understand the extent to which error is 
introduced while calculating VHD using third-party vendor data when point-based sensor data are either: 

a) Selectively removed and compensated for with third-party data, or  
b) Entirely supplemented with third-party data (e.g., roadways with limited instrumentation).  

The extended coverage pertains to freeway segments only (e.g., remote rural highways) and not local 
arterials. The VHD calculation methods explored here may not be appropriate for local arterials since their 
traffic dynamics are strongly affected by traffic signals. Arterials may require different techniques as well 
as more detailed data in addition to commonly available travel times. 

1.1.1. COMPENSATING FOR REDUCED POINT-SENSOR DATA  

To evaluate the framework of point-based detector placement and demonstrate the potential ability for 
third-party data to compensate for the loss of VDS data, this report evaluates the effect of VDS removal 
both with and without third-party data. VDS are organized into FATVs. Each FATV contains two adjacent 
mainline VDS, one at its entrance, and one at its exit. Along a freeway, the VDS in each FATV are removed. 
VHD estimation accuracy is compared with and without third-party data and with and without VDS 
removed. Figure 4-1 illustrates the scenario of interest. Since a pair of VDSs are used to project traffic 
conditions along a segment, a pair of VDSs are removed at a time, repeating the comparison along the 
entire length of the corridor to generate a distribution of potential error. 



Hybrid Data Implementation  Final Report 

61 

 

 
Figure 4-1 Point detector placement experiment 

1.1.2. COVERAGE OF ROADWAYS WITH LIMITED INSTRUMENTATION 

In addition to compensating for VDS loss or removal, another possible application of the third-party data 
is with roadways with limited instrumentation where no detectors are operating. Generally, the primary 
source of traffic count data on these corridors are aggregated AADT volume, which is typically estimated 
from sample counts from temporary sensors. To obtain the count at specific times of the day, generic flow 
profiles of hourly count distributions are used. Figure 4-2 shows such an hourly count distribution (Roess, 
Prassas and McShane, 2011). 

 

 
Figure 4-2 Sample hourly count distribution 

These flow profiles can then be used to project AADT into hourly counts, which are then extrapolated into 
Vehicle Hours of Delay (VHD). The motivation of this research is to estimate the errors that can occur 
while estimating VHD using AADT values and third-party provided travel time.  

1.1.3. SIMULATION STUDY 

The proposed evaluation framework in this report was tested using data generated from a simulation 
model. This simulation of the I-210 corridor is described in Chapter 3, Section 3.3 Experimental Setup. 
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Simulated data allows the opportunity to observe data from all traffic along the entirety of the corridor. 
From this, researchers can extract select data subsets as if collected via point-based sensors or the 
spatially distributed third-party vendor data. This allows the natural introduction of error, such as with g-
factor estimation, while still being able to compare against the original simulated “ground truth” (SGT) 
data.  

VHD is calculated using the 65-mph speed threshold as the baseline. A more detailed discussion about the 
model, g-factor based speed estimation (for point detectors), and probe vehicle data simulation is 
discussed in the Chapter 3 Estimating Vehicle Hours of Delay. The absolute percentage error of both 
traditional and hybrid methods is calculated compared to SGT values which are obtained from the 
AIMSUN simulation. AIMSUN provides data for every link for any specified simulation time interval. The 
data includes vehicle count and space mean speed, which are used to calculate the SGT value for every 
simulation case. 

1.2. SUMMARY FINDINGS 

This technical report discusses a framework for two applications of third-party data: evaluating the use of 
third-party data to supplement VHD estimation with the removal of point-based detectors, and the ability 
to estimate delay on freeways with limited instrumentation. For the freeway mainline analysis, probe 
penetration of third-party data is assumed to be 5% and point detector speed is estimated from occupancy 
using a g-factor based method. Further discussions are included in the following sections to illustrate 
strategies to incorporate third-party vendor data. 

Based on the analysis conducted in the research, there are two key findings: 

• The hybrid method improved VHD estimates when FATV sensor groups were systematically 
removed (3.4% error with hybrid and 12.7% error with traditional data) 

• Third-party data can estimate VHD using AADT on roadways with limited instrumentation, but 
the error is high (on average 41.3% error when using generic flow profiles, and 19.4% error with 
measured flow profiles). 

The analysis is conducted for different times of day during weekday hours. Overall, in almost all the 
scenarios, findings show that including third-party data reduces VHD estimation error. 

The findings suggest that including third-party data would be an improvement over traditional methods. 
There are two main ways this improvement could be used. The first would be to improve the accuracy of 
performance measures. Better measurement could enable better prioritization of resources and better 
investment decisions. Alternatively, the improvement could be used to gain a cost savings by using a 
different data mix while maintaining the current accuracy of performance measures. 
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 EFFICIENT DEPLOYMENT OF POINT-BASED DETECTORS 

This section first reviews the key advantages and disadvantages of conventional, point-based sensor 
systems. This discussion includes existing data pipelines, PeMS sensor location and meta-data 
configurations, and general point-based detector limitations. This is followed by a proposed framework 
and simulation study for evaluating the efficient deployment of point-based sensors and incorporating 
third-party vendor data. This section concludes with an analysis and discussion of the results of the new 
hybrid data strategy. 

2.1. KEY VALUE OF POINT-BASED DETECTORS 

Point-based sensors represent the backbone of traffic monitoring systems, collecting vital data at points 
across the network. Point detectors are widely deployed in California to collect traffic data but maintaining 
a vast network of point detectors can become costly and burdensome. With the exciting new potential of 
third-party vendor data, it is easy to imagine the obsoletion of point-based sensors. However, this is far 
from reality as point-based sensors still provide vital traffic data. Point-based sensors offer key advantages 
over emerging data sources: 

• Full counts – Point-based detectors count every vehicle that passes (assuming negligible error), 
unlike mobile data which relies on a small sample of mobile-equipped probe vehicles. These full 
counts are necessary for travel demand and traffic census efforts, as well as traffic control 
operations, such as on/off-ramp monitoring, traveler information signs, and variable toll pricing. 
Mobile data samples can also introduce sampling and data-quality bias (e.g., commercial vs. non-
commercial)  

• Precision – Point-based sensors are physically placed, enabling consistent measurement at a 
specific location or across individual lanes.  The precision afforded by point sensors is vital to 
traffic control and lane management strategies, such as HOV and HOT lane management. 

2.2. KEY CHALLENGES OF POINT-BASED DETECTORS 

Despite their advantages, point-based sensors possess an array of issues and limitations. Understanding 
the limitations of the point detectors will help to understand the sources and extent of error in the VHD 
calculation. These issues can be divided into four basic categories: 

• Fundamental limitations about collected data – Point-based sensors typically only capture flow 
and occupancy, requiring speed and travel time to be estimated using assumed values (e.g., g-
factor estimation) that introduce errors. The traffic between point-based sensor locations must 
be inferred, which if spaced too far apart can fail to accurately capture variable traffic flows, such 
as backward propagating waves.  

• Location discrepancies – In PeMS, sensor locations are mapped to the linear postmile position of 
the central control boxes and communications equipment, and not the actual location of the 
sensors themselves.  This creates challenges for analysis and modeling efforts. 

• Organizational structure – The existing PeMS meta-data convention indicating sensor location on 
the freeway is inadequate for more complex urban freeway interchanges and is prone to 
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misconfiguration. This makes it difficult to check data consistency and data quality, to use data 
for modeling, and to incorporate third-party data. 

• Cost – Point-based sensors are physical assets with costs associated with installation, 
maintenance, and operation. Sensors can malfunction due to any number of reasons, such as 
power outages, hardware communications failures, or general wear. These costs make the 
management of a large system difficult and cost prohibitive to expand network coverage to less 
utilized roadways, such as remote rural highways.  

2.3. FRAMEWORK FOR EFFICIENT DEPLOYMENT 

If a sensor is removed from a freeway, then traffic conditions must be inferred using data from remaining 
sensors further upstream and downstream. This potentially obscures traffic conditions in the vicinity of 
the removed sensor, resulting in erroneous VHD calculations due to traffic flow variations, such as 
backward propagating shockwaves or roadway geometry changes (i.e., decrease or increase in lanes). To 
measure this error, count locations are systematically removed and evaluated in a simulation study. 

Considering the FATV sensor groups on I-210, VDS placement efficiency can be analyzed by removing a 
FATV sensor group and evaluating the resulting error incurred from the removal. Along the I-210, the 
subsets of FATVs can be thought of as two consecutive VDSs, where the first one represents the in-set 
and the second one represents the out-set. Figure 4-3 shows such arrangements to evaluate the efficient 
VDS placement framework. 

 
Figure 4-3 FATVs along I-210 

In the first evaluation scenario, FATV #1 is removed and the other FATV locations remain to calculate VHD. 
Error is then calculated between the VHD estimate with all FATV locations and the VHD with one removed. 
In a subsequent scenario, FATV #2 is removed instead of FATV #1, calculating VHD using all remaining 
locations. This process is systematically continued across all FATV locations, effectively calculating VHD 
given the loss of each FATV location. The one caveat is that the very first and last VDSs are not removed 
in any evaluation scenario. These boundary VDS are needed for both flow and travel time conflation at 
the edge locations of the corridor. 

To evaluate the potential impact of third-party data, VHD is estimated using two different methods, shown 
in Figure 4-4: 

• Traditional data method – Data from only point detectors are used to estimate VHD. 
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• Hybrid Data Method – Data from a third-party is used with remaining point detector data.  

In the traditional method, the upstream and downstream detectors become responsible for longer 
segments. In Figure 4-4, the traffic in the green shaded area on the left will be reorganized into the two 
extended road segments illustrated on the right.  

 
Figure 4-4 Framework for evaluating the efficient deployment of point-based sensors 

In the hybrid method, data from both point detectors and third-party vendors are used to estimate VHD. 
As with the traditional data method, traffic information in the hybrid method is projected from further 
upstream and downstream but is also conflated onto the cells for third-party data fusion. The VHD 
calculation method (including flow conflation and data fusion) is described in Chapter 3: Estimating 
Vehicle Hours of Delay. 

2.4. ANALYSIS AND DISCUSSION 

The findings suggest that including third-party data would be an improvement over traditional methods. 
There are two main ways this improvement could be used. The first would be to improve the accuracy of 
performance measures. Better measurement could enable better prioritization of resources and better 
investment decisions. Alternatively, the improvement could be used to gain a cost savings by using a 
different data mix while maintaining the current accuracy of performance measures. 

The initial analysis is conducted for the point detectors using the traditional method. Figure 4-5 shows the 
distribution of absolute percentage error for four different scenarios using the traditional and hybrid 
methods compared to the ground truth values. Using the traditional method for both peak periods 
(morning and afternoon), the mean absolute percentage errors are 14.6% and 18.8%; with the maximum 
error of 20.7% and 35.3%, respectively. Using the hybrid method for both peak periods (morning and 
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afternoon) the mean absolute percentage errors are 0.9% and 4.6%; with the maximum error of 2.1% and 
6.5%, respectively. 

 

 
Figure 4-5 Abs percentage error for traditional and hybrid methods 

The comparison between the traditional and hybrid methods in Figure 4-5 shows that the incorporation 
of third-party vendor-provided data can limit the absolute percentage error to a maximum of 6.5% in all 
scenarios. Whereas in the traditional method, the error can be as high as 35%. Figure 4-6 shows the 
distribution of absolute percentage errors of both methods for all scenarios. It is assumed that the errors 
follow a normal distribution. The mean absolute percentage error for the hybrid method is 3.4% while it 
is 12.7% for the traditional method. It is evident from the analysis that, although the FATVs are removed, 
the incorporation of third-party vendor-provided data can keep the error within a much lower range 
(mean % error less than 5%). 

 
Figure 4-6 Abs percentage error distribution for FATV removals 
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The addition of third-party data yielded promising results. While third-party data did not achieve perfect 
results, it did effectively compensate for VDS loss, reducing the mean error by nearly four-fold from 12.7% 
to 3.4%. Whether this level of error is within acceptable tolerance limits depends on the specific 
application, but the improvement is substantial. All of this implies that in the context of delay estimation, 
third-party data can be used effectively to supplement a reduction in point sensors such as loops. 

In general, the removal of FATV locations resulted in an increase in error as expected. What is not yet 
clear are the impacts from removing specific sensors. Some sensors provide a greater contribution to 
accuracy, perhaps near interchanges or along curves, and others result in less error if removed. It is 
challenging to generalize the results. They depend on the traffic patterns and congestion, in addition to 
the physical features of the road. However, we have provided a framework to evaluate the importance of 
sensor groups in both traditional and hybrid contexts. A summary of individual sensor error at Individual 
VDS Locations is included in Appendix A – VHD Calculation Error at Individual VDS Locations.  
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 OPPORTUNITIES FOR IMPROVED COVERAGE 

Due to resource constraints, it is often unfeasible to extend sensor coverage across an entire road network 
in an agency’s jurisdiction. It is possible that third-party vendor data can cost-effectively extend coverage 
to freeways with limited instrumentation. The purpose of this section is to understand the extent of error 
when estimating VHD using third-party data along roadways with limited instrumentation.  

The extended coverage pertains to freeway segments only (e.g., remote rural highways) and not local 
arterials. The VHD calculation methods explored here may not be appropriate for local arterials since their 
traffic dynamics are strongly affected by traffic signals. Arterials may require different techniques as well 
as more detailed data in addition to commonly available travel times.  

3.1. EXTENSION OF COVERAGE TO FREEWAYS WITH LIMITED INSTRUMENTATION 

Using third-party data, it is possible to expand the VHD estimation to freeways with limited 
instrumentation where only AADT data is available. This can be achieved by integrating the hourly 
segment travel times, obtained from third-party data, against the hourly traffic volumes. The hourly traffic 
volumes can be estimated as the hourly proportion of daily traffic (i.e., AADT) calculated from an hourly 
traffic flow profile. The traffic flow profile can either be a generic flow profile (e.g., from a traffic 
handbook) or measured from an available sensor nearby. 

Since the flow profile is not the actual flow profile of the roadway in question, an error will be introduced. 
To determine the error incurred from VHD estimation on limited instrumentation roadways, a simulated 
approach similar to that described in Section 1.1.3 is used. The simulation generates the third-party data 
and simulated ground truth (SGT). VHD is then calculated using third-party travel time data, available 
AADT data, and a flow profile. Error is calculated between the simulated ground truth (SGT) and the 
estimated VHD. To determine the extent of error that might occur depending on flow profile sources, two 
test cases are explored: 

• Generic flow profile (Case 1) – A generic flow profile is assumed to represent traffic flow along 
the entire segment. 

• Measured flow profile (Case 2) – A measured flow profile from a nearby VDS is assumed to 
represent traffic along the entire segment. 

In both cases, AADT and third-party data are available from somewhere along the segment and a flow 
profile is assumed to represent traffic flow for the entire segment. The key difference is whether the flow 
profile is generic, such as from a traffic handbook, or if it is a measured flow profile from a nearby sensor. 

Figure 4-7 shows the generic flow distribution used in Case 1. The time-of-day simulation points (before 
morning, morning peak, noon, and afternoon peak) where VHD is calculated are highlighted in the figure. 
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Figure 4-7 Generic hourly flow distribution 

To calculate a range of errors, several AADT values from different points along the I-210 freeway are used 
to estimate delay, where AADT values are from real-world data. The AADT data was collected on August 
1st, 2019 from the PeMS database, shown in Table 4-1 (Caltrans, 2020a). 

Table 4-1 AADT values considered for Case 1 
VDS ID AADT 
764137 117,446 
717637 103,593 
717644 100,789 
717653 101,769 
717669 91,726 
761342 87,442 
718210 86,933 
769702 73,981 
769722 78,366 
717673 74,989 

In Case 2, the measured flow profiles are based on data from nearby VDS locations within 10 miles 
upstream and downstream from the I-210 study corridor, but not on the corridor itself. This accounts for 
error varying depending on sensor proximity to the corridor. Once again using real-world data, the flow 
profile VDS locations, listed in Table 4-2, were collected on September 16th, 2020. 

Table 4-2 VDS ID for Case 2 
Serial Number VDS ID 

1 770200 
2 770141 
3 769867 
4 770386 
5 717694 
6 769953 
7 718047 
8 769136 
9 767940 

10 768000 

Figure 4-9 and Figure 4-9 show the flow profiles for the 10 nearby VDS locations, demonstrating the range 
of flow profile variation upstream and downstream from the study corridor. 
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Figure 4-8 Measured flow profiles from I-210 up and downstream VDS 
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Figure 4-9 Measured flow profiles from I-210 up and downstream VDS (continued) 

 

3.2. ANALYSIS AND DISCUSSION 

Figure 4-10 shows the range of errors for four different scenarios compared between the two cases. For 
Case 1, the means of absolute percentage error are 72%, 60%, 19%, and 14% for the before morning peak, 
morning peak, noon time, and afternoon peak, respectively. For Case 2, the means of absolute percentage 
error are 22%, 23%, 10%, and 23% for the same times. In both cases, the errors are relatively high 
compared to the scenario where point-based sensor data are available for the corridor. However, the 
errors in Case 1 with the generic flow profile were substantially higher in the morning hours. This presents 
a major weakness to a simple generic profile introducing a large source of error.  
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Figure 4-10 Abs percentage error with a flow profile 

For an overall comparison of approaches, Figure 4-11 shows the absolute percentage error when using 
traditional point-based sensor data only with removed FATVs, hybrid data with removed FATVs, and for 
the two limited instrumentation cases. It should be noted that while most distributions appear to follow 
a Gaussian distribution, this cannot be confirmed for the limited instrumentation Case 2. The large gaps 
in data points, particularly in the center, make it difficult to confirm. Regardless, the distribution still 
demonstrates the relative mean and spread of error.  

 
Figure 4-11 Abs percentage error distribution using different data sources 

Overall, the hybrid data case yielded the best level of error at only 3.4% compared to 12.7%, as discussed 
previously in Section 2.4 of this chapter. However, both levels of error are relatively low compared to 
cases with limited instrumentation. The latter yield means of absolute error of 19.4% and 41.3% for the 
measured and generic profile cases, respectively. However, if only rough estimates of delay are required 
for some roadways, such high levels of error might be acceptable.  
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Chapter 5  

Strategy to Incorporate Third-Party Data 
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 OVERVIEW 

In this chapter, proposed strategies for incorporating third-party data are discussed. First is a review and 
comparison of third-party and point-based data. This is followed by proposed strategies for a hybrid data 
framework, and a third-party data roadmap strategy. 
 
Accurate and precise traffic information is vital to the operation, planning, and governance of roadway 
networks. Traffic information is used for a range of purposes, from high level decision making and 
design, down to providing traffic information to commuters. In recent years as capacity expansion has 
begun reaching practical limitations, the focus has shifted away from capacity expansion and towards 
traffic management strategies, making the need for high quality traffic data paramount.  

Third-party data (from mobile devices or other sources) could be incorporated into transportation 
management systems to complement data currently collected by Caltrans. Employed sensibly, such a 
hybrid data strategy could augment information availability and quality with potential cost savings 
compared to current business practices. Increasing information access would improve Caltrans’ and its 
local partners’ ability to manage roadway traffic in a variety of existing and emerging ways to balance 
demand and flow to better utilize infrastructure investments.  

1.1. DATA COMPARISON 

Point-based sensors, such as induction loops, have been the backbone of traffic monitoring systems for 
decades and provide the basic function of counting vehicles that pass a point over a given time duration. 
However, point-sensors are ultimately limited by only collecting data from a singular point, and not 
continuously along a roadway segment. Data captured at a specific point means that traffic conditions 
upstream and downstream from the sensor must be extrapolated or projected. This conflation introduces 
potential sources of error if traffic conditions are not consistent between sensors. This is particularly true 
when calculating travel time if, for example, a slow-down or some backward propagating wave occurs 
causing traffic flow conditions to be non-uniform along the segment. Of course, accuracy can be improved 
by increasing sensor frequency and decreasing the distance between sensor locations, but this can quickly 
become cost prohibitive. Another critical source of estimation error is that single-loop sensors cannot 
estimate speed directly. Instead, speed is estimated using some assumed average vehicle length and 
occupancy to calculate speed (e.g., g-factor estimation). This assumption introduces error because vehicle 
length varies, which is further compounded by any occupancy measurement error.  

Rather than calculating the speed over a span of time at a single point, the mean speed spanning a length 
of the roadway can be calculated from multiple vehicles simultaneously. This yields a more reliable speed 
calculation, and thus travel time. Prior to enough market penetration of location-tracked mobile devices 
(e.g., GPS enabled smartphones or connected vehicles), data for such a calculation were difficult to 
capture. Now with the proliferation of mobile devices, third-party vendor data is readily available, offering 
accurate speed and travel time estimates. However, third-party mobile data generally relies on a small 
sample of mobile-equipped probe vehicles within the traffic stream, which makes third-party data less 
appropriate for traffic control applications and introduces potential sampling bias. For example, 
penetration rate may vary across income levels, across vehicle types such as commercial vs. non-
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commercial traffic, regions with poor cellular coverage, and due to location-sharing privacy concerns. 
Point-based sensors in contrast provide full traffic counts. 

The inherent characteristics of the two different data sources, fixed point-based versus mobile detection, 
make the hybrid calculation a challenging task. The third-party provided data must be conflated on the 
same coordinate system to be fused with the VDS data. However, existing disparities between coordinate 
systems used by the vendors and transportation agencies can hinder the desired conflation. These 
differences can arise from a change in linear reference systems, freeway segmentation definitions, data 
coverage, and roadway geometries (Chen, 2019). Third-party data typically do not disclose the available 
probe vehicle penetration levels. For freeways with mainline and HOV lanes, third-party data will typically 
provide aggregated travel time information, which does not distinguish travel times between the mainline 
and HOV lanes. In contrast, point detectors, like VDS, provide lane-specific data and full counts, but only 
flow and occupancy values are available if only single loop detectors are used.  

Overall, both data sources provide trade-off benefits and dis-benefits. Third-party mobile data offers 
advantages over point sensors for longer road segments, reducing the need for frequently spaced 
detector stations and potentially extending coverage to remote roadways with limited instrumentation. 
But point-sensors offer full counts and fixed precision (e.g., specific lanes). These advantages for fixed 
sensors are necessary for more complex traffic conditions or where traffic control is required, such as 
actuation for traffic signals located at the intersection of freeway ramps and arterial streets, ramp 
metering control at freeway on-ramps, and pricing for HOT lanes. 
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 PROPOSED HYBRID DATA FRAMEWORK 

This overall framework incorporates four steps as shown in Figure 5-1. At first, the data is acquired from 
both traditional point detectors (i.e., VDS) and third-party vendors. An initial data quality check is 
conducted to evaluate whether the data are usable to estimate performance measures. After performing 
the quality control on the data, both flow and travel time data are conflated to project them onto the 
desired cell. After having both flow and travel time data conflated, data fusion is performed to calculate 
the desired performance measures.  

 
Figure 5-1 Steps for performance measurement estimation 

The proposed framework contains three overall components, Data ingestion, Data Quality Control and 
Coordination, and the Hybrid Analysis itself. The following three subsections will discuss the proposed 
strategies associated with each step.  

• Proposed Organizational Approach for Data Quality Control and Coordination using FATV 
concept – FATV is a proposed remedy to improve data quality and provide precise location 
information that is needed for incorporating third-party data and ensuring data integrity.  

• Proposed strategy for VHD in PeMS – A proposed strategy for VHD in PeMS and the potential for 
improved point-based sensor data and coverage extension. 

• Third Party Data Roadmap – Presents a strategy and a two-part plan for Caltrans to move forward 
with hybrid data implementation. 

The three proposed strategies will be discussed in the following sections.  

Performance Measures Calculation

Data Fusion

Flow and Travel Time Conflation
Hybrid Data Analysis

Data Quality Control
Validate data integrity Coordinate map reference system

Data Ingestion
Point Detector

(Flow on state map)
Third-party data

(Travel time on vendor map)
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2.1. PROPOSED ORGANIZATIONAL APPROACH WITH FATV CONCEPT 

As previously discussed, the current organizational configuration of point-based sensor meta-data is 
prone to misconfiguration and fails to detect anomalies. This makes it difficult not only to utilize data for 
analysis and modeling, but also in going forward with third-party data integration. While fundamental 
limitations of point-based sensors are unavoidable, issues relating to location discrepancies and meta-
data organizational structure can be mitigated.  

Short of a complete overhaul of the organizational structure and geospatial locations of point-based 
sensors, a proposed remedy is the FATV concept. FATV is an organizational hierarchy with two primary 
objectives: 

• To support automated validation of sensor data, and  
• To spatially organize sensors for future fusion with third-party data. 

The basic approach of FATV is to compare the ingress and egress vehicle counts of a group of detectors. 
That is, to compare the total number of vehicles entering and exiting a freeway segment. Each FATV set 
can be defined by the union of two subsets of point detectors, an in-set, and out-set where a vehicle that 
arrives from the in-set cannot exit the network without traveling through the out-set. For any FATV set, 
the vehicle total count at any given interval can be written as CIN+ CCN = COUT + CRM. Here for a FATV confined 
area CCN and CRM are the numbers of vehicles contained at the beginning of the time interval, and 
remaining at the end of the interval, respectively. CIN and COUT are the numbers of vehicles captured by 
the in-set and out-set point detectors, respectfully, at the end of the time interval.  

Figure 5-2 shows an example of FATV at the I-210 and I-605 interchange. The blue arrows show the 
entering traffic, while the orange ones show the exiting traffic volume. The plots show the total number 
of egress and ingress vehicles captured by the VDS sets. The same VDS 773205 is part of the in-set and 
out-set for two different FATVs. In both figures, the inflow line closely follows the outflow line, which 
means the VDSs are working properly with limited possibilities of miscounting. The reason that the two 
lines are not perfectly aligned is because vehicles accumulate inside the volume, especially during 
congested periods.  
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(a) FATV with VDS 773205 in the in-set 

 

(a) FATV with VDS 773205 in the out-set 
Figure 5-2 FATV example demonstration 

The FATV concept not only provides an automated validation method, but effectively groups sensors into 
an organized hierarchy. This hierarchy can then be used to map FATV groups to a spatial network for 
fusion with third-party data. 

2.2. PROPOSED STRATEGY FOR VHD IN PEMS 

Third-party data, which provides speed and travel time values along segments, naturally lends itself to 
delay estimation. The hybrid data method proved effective, yielding accuracy gains when fixed sensor 
groups (i.e., FATV) were selectively removed. Third-party data showed promising results for roadways 
with limited instrumentation. However, there are caveats. To summarize, the key conclusions are: 

• Third-party data can compensate for the loss of point-based sensors 
o Possible to remove less critical sensors where flow changes are small 
o Not advisable to remove critical sensors at locations used for control, or where flow 

changes are large (e.g., fwy-fwy connector and interchanges) 
o More investigation is needed to identify key factors for sensor removal 

• Third-party data can roughly estimate delay on roadways with limited instrumentation 
o VHD error was largely dependent on the accuracy of hourly flow profiles 
o Generic profile incurred severe error (>40%) 
o Measured profiles from nearby sensors incurred high, but less severe error (≈20%) 

The strategic implications of these results are that hybrid data can increase the distance between point-
based sensors while limiting the degradation of VHD results. This has the greatest implications for well-
instrumented roadway segments with many point-sensors. However, areas with complex flow patterns 
or needs for traffic control still require point-based sensors, such as critical interchanges, added/removed 
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lanes, and HOV/HOT lanes. In these cases, the probe-based third-party data may not provide enough 
spatial precision necessary for analysis and management.   

While hybrid data can compensate for VDS loss in VHD estimation, replacing point-based sensor data 
entirely on roadways with limited instrumentation yielded relatively weak results. Estimating VHD using 
only third-party data on roadways with limited instrumentation using generic and measured flow profiles 
yielded a mean absolute error of 41.3% and 19.4%, respectively. This is substantially higher than the 
traditional and hybrid methods with point-based sensors at 12.7% and 3.4%, respectively. In general, VHD 
estimation on roadways with limited instrumentation is not recommended for any sensitive applications 
where precision is required. However, there may be applications where a rough value is useful, even with 
accuracy limitations. For example, a rough estimate of the overall delay could be used as justification for 
a more detailed investigation. In these cases, it may prove useful to include VHD from roadways with 
limited instrumentation in PeMS. In all cases, the provenance of the data should be maintained along with 
some expectation of its precision. 

2.3. RECOMMENDATIONS 

There are four main methods that were compared for estimating VHD: 

• Traditional data and calculation 
o Uses point-sensor data only 
o Calculates delay over long freeway segments 

• 3rd party + traditional calculation 
o Only possible when spatial reference systems match 
o Uses point-sensor data for flows and third-party data for travel times 
o Calculates delay over one connector, or a long freeway segment 

• Hybrid calculation 
o Required when spatial reference systems do not match 
o Uses point-sensor data for flows and third-party data for travel times 
o Divides long freeway segments into cells for greater accuracy 
o Applies traffic theory to accommodate the distance between point-sensors 

• Adjustments for limited instrumentation 
o Uses rough estimates for flows and third-party data for travel times 
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Table 5-1: Recommended Delay Calculation Method for Each Facility 

 
ML HOV Connectors Ramps Arterials 

Traditional data and 
calculation 

 
3rd party data 
not widely 
available 

   

3rd party + 
traditional 
calculation 

  Obtained good 
performance 

  

Hybrid calculation Obtained best 
performance 

Potential for 
the future 

   

No recommendation    
Needs 
further 
work 

Needs 
further 
work 

 

Based on the analysis in this report, the recommended VHD estimation method depends on the 
infrastructure type and the data available. Recommendations are summarized in Table 5-1. For freeway 
mainlines, the best performance was achieved with the hybrid calculation. For HOV lanes, traditional 
traffic sensing methods must be used until third-party data become available that offer precision to 
reliably distinguish HOV lanes from mainline lanes. For connectors, good performance was obtained using 
third-party data combined with the traditional calculation. For ramps and arterials, further work is 
required. 
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 THIRD PARTY DATA ROADMAP STRATEGY 

A roadmap towards the implementation of a hybrid data collection strategy for Caltrans should advance 
the following broad goals: 

• Reduce costs and increase coverage of traffic monitoring 
• Provide a sound methodology for VHD estimation 
• Enable a smarter deployment of point-based sensors 

In addition, a path forward should: 

• Leverage new and emerging technologies such as cloud computing 
• Benefit from Caltrans' investment in data hub development in Connected Corridors 
• Plan for integration with multiple data types and multiple providers 

Cloud computing provides the opportunity to contract out the business of maintaining physical hardware 
and servers. It also allows for increased flexibility, scalability, and the ability to incorporate new 
technologies quickly. 

A hybrid approach to data requires the ability to tap into multiple sources while also keeping track of 
quality control, and data provenance. Key technical challenges include: 

• Networking and communications 
• Data ingestion and quality control 
• Spatial reference translation 
• Data fusion and performance metric estimation 
• Reporting and visualization 

In addition to the technical challenges, any hybrid data solution will require ongoing support and 
maintenance. A good solution will support gradual experimentation and the ability to be shaped 
incrementally from direct experience with third-party data. 

We recommend the following two-step roadmap: 

 

Step 1: Limited pilot 

A first step on the path towards implementation would consist of launching a limited pilot over one or 
several freeways that have excellent data and have been well studied. This choice will minimize the effort 
and risk associated with spatial reference translation. 

If possible, it is beneficial to leverage any prior investments in experimentation platforms for multiple 
systems integration and processes that leverage third-party data, or data other than that procured 
through systems solely operated by Caltrans. The pilot system would operate in parallel and complement 
ATMS and PeMS. 
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The importance of continual maintenance of transportation asset data cannot be understated. Assets 
include the physical road network as well as the sensors providing the data. Each provider may have its 
own method for updating its representation of the road network and the delivery of its travel time 
estimates. Any hybrid system will need to solve the conflation problem—that is to project data from any 
source onto the desired domain of analysis to calculate and to report the performance metrics of interest. 
If possible, it is helpful to select a corridor in which the initial work to organize VDS into FATVs with 
detailed geospatial information has already been completed. 

In this step, modifications to detector deployment strategy and the potential trade-offs of accuracy and 
cost could be evaluated in detail before being implemented on a wider scale. An additional goal would be 
to investigate details of performance metrics calculation involving such facilities as HOV lanes and ramps. 
Results will inform the potential expansion of hybrid data techniques. 

This research project focused on the performance measure of delay. However, there are other needs for 
data, such as situational awareness and for real-time traffic management. A limited pilot would enable 
experimentation on a small scale to incorporate other metrics and the ability to visualize and display traffic 
information for other purposes. 

Key research related tasks that could inform such a limited pilot are as follows: 

• Create an initial set of freeways with high quality and reliable data.  
• Pre-select sites in which the existing placement of loops or other point-detectors are likely to 

provide synergy with third-party data.  
• Perform an initial FATV assessment of selected freeways to help determine more precise location 

information for sensors at freeway-freeway connectors.  
• Finally perform a redundancy analysis to prioritize existing sensors relative to their marginal 

information content. 

 

Step 2: Full-scale pilot in selected district 

The second step we propose is a full-scale pilot in a selected district before Caltrans should elevate a 
hybrid traffic data collection strategy to a statewide practice. 

Under this scenario, a fully operational traffic management system fed by a hybrid set of traffic data would 
be rolled out in the district’s TMC. That traffic management system may either be an evolution of current 
ATMS software, a module thereof, or a brand-new implementation.  

Innovations and lessons learned from Step 1 could be applied to provide new sets of metrics and new 
abilities to visualize and display traffic information. In addition to visualizing data from individual sensors, 
this system would have the capability to display traffic state and performance metrics based on a hybrid 
fusion of data from all available sources. Situational awareness could be based on a state estimator that 
takes all the data into account. This is a marked and important change, as it will be important to have the 
ability to switch among data vendors as legacy products evolve and new products are brought into the 
data marketplace. 
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The new traffic management system could initially be rolled out in parallel to the existing ATMS to ensure 
a smooth transition and the ability to roll back if needed.  

Such an effort would demonstrate Caltrans' ability to evolve with changing technologies, and to leverage 
the benefits of cloud computing. In an increasingly interconnected world, the future of transportation 
management will require better and more complete data that can only be obtained through greater 
connectivity to the data feeds of private vendors as well as increased cooperation and collaboration with 
local stakeholders. A first step in this direction is to adopt computing tools and infrastructure that have 
already been tried and implemented at scale in the private sector. 

In the past, a perceived risk of using hybrid data for traffic management systems was its dependence on 
external vendors. However, the new risk is that mobile devices are so prolific that drivers are now being 
influenced by the apps, and traffic management systems lack direct access to this influential, and useful, 
information. 

Of course, data quality would need to be monitored on a continuous basis, and attention should be paid 
to costs when selecting a portfolio of data sources. This perspective applies also to the role and usage of 
traditional detectors as well. The deployment of a traffic management system that uses hybrid traffic data 
will provide the opportunity to start altering the selected district’s detector strategy. It would enable 
defining critical detectors that need continued maintenance and reassess future needs. 

Experiences gained from this step on the implementation path should provide perspective on how to 
manage new risks and to benefit from new opportunities. Cutting-edge solutions adopted in the selected 
district can become a model of organizational excellence and be copied across California and around the 
world. 
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Appendix A – VHD Calculation Error at Individual VDS Locations 

 

For Task 4, the VHD calculation error caused by the removal of each FATV group is listed in the following 
table. The table has the errors calculated by both the traditional method and the hybrid method, and for 
all four evaluation scenarios. The absolute percentage error is calculated compared to the simulated 
ground truth values. The ‘VDS IDs of removed FATVs’ column has the IDs of the VDSs of the FATV group 
which is removed in the experiment, meaning the count and occupancy data of the VDSs are not available. 
The cross streets are the names associated with the VDS.  
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Table: Absolute percentage error of VHD calculation  

VDS IDs of 
removed FATVs 

Cross Street of the 
removed VDSs 

Abs % Error using traditional method Abs % Error using hybrid method 
Before 

morning 
peak 

Morning 
peak 

Noon 
time 

Afternoon 
peak 

Before 
morning 

peak 

Morning 
peak 

Noon 
time 

Afternoon 
peak 

['717685', '772902'] CITRUS  and PASADENA 
AVE 19.08 14.84 3.98 13.58 2.50 1.13 5.60 5.16 

['772902', '717682'] PASADENA AVE  and AZUSA 
2 14.41 12.23 4.20 13.47 1.99 1.17 5.51 5.67 

['717682', '717678'] AZUSA 2  and AZUSA 1 14.77 12.37 4.42 13.23 2.99 1.28 4.53 5.54 
['717678', '717676'] AZUSA 1  and VERNON 15.54 13.16 2.85 13.46 2.42 1.97 5.50 5.93 

['717676', '772888'] VERNON  and ZACHARY 
PADILLA 13.78 12.70 2.87 13.69 2.66 1.86 5.10 5.52 

['772888', '717675'] ZACHARY PADILLA  and 
IRWINDALE 2 12.97 12.39 2.56 13.79 2.89 0.53 4.78 3.98 

['717675', '717674'] IRWINDALE 2  and 
IRWINDALE 1 11.05 11.43 1.88 13.81 2.35 0.90 4.72 5.77 

['717674', '772873'] IRWINDALE 1  and W/O 
IRWINDALE 9.19 10.51 2.69 13.53 3.45 2.14 4.96 6.50 

['772873', '772858'] W/O IRWINDALE  and SAN 
GABRIEL RIVER 9.09 11.41 2.24 13.28 2.76 2.04 4.86 6.50 

['772858', '717673'] SAN GABRIEL RIVER  and 
MOUNT OLIVE DR / 605 8.30 13.24 9.03 13.14 3.27 0.57 5.13 4.93 

['717673', '769722'] 
MOUNT OLIVE DR / 605  
and NB 605 TO WB 210 

CON 
7.53 12.22 7.15 13.14 3.91 0.50 3.66 4.24 

['769722', '769702'] NB 605 TO WB 210 CON  
and HIGHLAND 7.53 12.00 4.77 13.14 4.66 0.65 2.87 4.30 

['769702', '761374'] HIGHLAND  and BUENA 
VISTA 9.82 17.01 13.26 14.50 3.77 0.09 4.14 5.00 
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['761374', '718210'] BUENA VISTA  and 
MOUNTAIN AV 14.63 19.59 13.77 16.63 2.61 0.66 6.04 6.42 

['718210', '761356'] MOUNTAIN AV  and 
MYRTLE AV 14.15 20.71 13.85 22.36 4.13 0.42 4.29 5.31 

['761356', '761342'] MYRTLE AV  and 
HUNTINGTON 1 17.75 20.31 13.49 26.27 4.61 1.27 4.87 5.55 

['761342', '773194'] HUNTINGTON 1  and E OF 
SECOND 14.00 16.68 7.76 23.12 4.46 0.82 3.26 4.09 

['773194', '764146'] E OF SECOND  and SANTA 
ANITA 2 11.12 14.70 4.27 20.66 3.77 1.19 2.80 3.67 

['764146', '717669'] SANTA ANITA 2  and SANTA 
ANITA 1 12.19 15.30 6.00 21.46 4.55 0.30 2.33 3.79 

['717669', '717664'] SANTA ANITA 1  and 
BALDWIN 2 14.19 16.81 7.99 23.31 3.93 0.23 2.25 4.41 

['717664', '717663'] BALDWIN 2  and BALDWIN 
1 10.87 14.72 3.96 20.29 3.72 1.12 4.00 4.64 

['717663', '773179'] BALDWIN 1  and VAQUERO 7.36 12.43 0.89 16.78 4.02 1.01 4.17 3.79 

['773179', '717661'] VAQUERO  and 
MICHILLINDA 8.28 13.13 0.82 17.78 5.03 0.60 3.20 3.57 

['717661', '717657'] MICHILLINDA  and 
ROSEMEAD 2 6.46 12.22 1.39 16.90 5.33 0.83 2.78 3.63 

['717657', '717653'] ROSEMEAD 2  and 
ROSEMEAD 1 5.08 12.14 4.59 17.55 5.39 0.31 3.12 3.54 

['717653', '717649'] ROSEMEAD 1  and SIERRA 
MADRE V1 8.58 15.79 5.11 24.12 5.85 0.30 3.06 3.49 

['717649', '717644'] SIERRA MADRE V1  and SAN 
GABRIEL 11.42 17.48 5.04 28.32 5.81 0.90 3.02 3.25 

['717644', '717642'] SAN GABRIEL  and 
ALTADENA 12.36 17.48 5.13 28.69 5.05 0.34 3.94 3.58 

['717642', '717637'] ALTADENA  and HILL 18.61 19.15 5.07 35.29 4.51 1.65 2.73 3.58 
['717637', '717634'] HILL  and LAKE 1 15.04 15.15 3.47 29.71 6.23 0.58 2.96 3.51 
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