
UCLA
Information and Technology

Title
A Scalable Knowledge Base: the eLibrarian 2.0 Project

Permalink
https://escholarship.org/uc/item/32d0462p

Authors
Borah, Eloisa Gomez
Carlson, Timothy

Publication Date
2005-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/32d0462p
https://escholarship.org
http://www.cdlib.org/

A Scalable Knowledge Base: the eLibrarian 2.0 Project

Eloisa Borah, Librarian, Head of Public Services
Rosenfeld Library
Anderson Computing and Information Services
UCLA Anderson School of Management
eloisa.borah@anderson.ucla.edu

Tim Carlson, Programmer, Project Manager
Software Development Group
Anderson Computing and Information Services
UCLA Anderson School of Management
tim.carlson@anderson.ucla.edu

Summary

When a popular service was facing an overwhelming level of demand and becoming a
victim of its own success, a technology solution was sought to come to its rescue. The
original eLibrarian service used email to have the reference librarians provide students
with research strategies within a 24-hour turnaround. The current eLibrarian 2.0 system
is entirely Web-based, and provides new functionalities that increase the capacity of the
service, while under the constraint of a steady-state number of librarians. These
enhancements include an auto-populated knowledge base and a recommender system.

eLibrarian – What is it?

The eLibrarian service provides assistance to remote users. A team of reference
librarians respond to requests for help in locating information. According to the
eLibrarian Guidelines1, the librarian recommends the best databases and other
resources for the need at hand, pre-tests the database search, outlines this search in a
brief tutorial, and may include a sample search result to provide confirmation that the
research strategy is on target. Responses are delivered within 24 hours of the initial
request.

In keeping with the teaching mission of an academic library, the eLibrarian service does
not do the actual research required by the course work, as a research-on-demand
service would do in a non-academic setting. What eLibrarian provides is the research
strategy necessary to locate the information requested, and thereby the instruction to
learn to satisfy this information need in the future.

Evolution of the Concept

The ubiquitous Internet and the “anywhere, anytime” expectation of information seekers
has made the reference desk just one way to seek help from a librarian. Reference
help via email started almost as soon as email accounts started proliferating, and other
online options, such as chat reference, have been added to the list of access options at
most libraries. This is the case at the Rosenfeld Library.

However, the original email reference service at the Rosenfeld Library had been under-
utilized, so it was re-designed from providing ready-reference to providing research
strategies. Providing research strategies, under the eLibrarian, took more librarian time,
however, it proved to be exactly what our users wanted. With eLibrarian, the user

perceives the librarian as their information partner. The demand for the service
increased dramatically.

Improvements made to cope with the increasing demand included a Web front-end that
included a Web form to submit new requests. However, it became evident rather
quickly that a broader technology solution was necessary to manage the increasing
workload, and a plan needed to be put in place.

Problem Solved!

Before going into how we solved the problem, it is important to describe the
collaborative environment that is the Anderson Computing and Information Services, or
ACIS. The Rosenfeld Library is part of ACIS as a result of a successful convergence of
library and computing services2, which was solidly in place by the time UCLA Anderson
School moved into its new physical complex in 1996.

In the ACIS environment, librarians, computer support technicians, and programmers sit
side-by-side in the workplace, and are involved in collaborative projects to improve our
clients’ abilities to access, gather and manage the information they need.

Our clients are full-time, fully-employed, and Executive MBA students at the UCLA
Anderson School of Management, which is a top business school, in both U.S. and
international rankings.

The plan to find a technology solution to manage eLibrarian’s unbridled popularity
started with a series of planning retreats attended by all the librarians at the Rosenfeld
Library, the ACIS director, and a programmer from ACIS Software Development Group
at ACIS. At the initial retreat many options were considered, which even included the
dire options of discontinuance and rationing access. However, very early in the meeting
the focus narrowed to investigating technological solutions that would help librarians
work better with the staff time available.

A management process, adopted by the ACIS Software Development Group for its
software engineering methodology, called Rational Unified Process (RUP), was
engaged to identify components of the service delivery flow and the technology
solutions that were most cost effective to implement. RUP’s excellent requirements
gathering techniques, its iterative development lifecycle, and it provision of fine quality
document templates were among many elements that made RUP one of this project’s
success factors.

The resulting move to eLibrarian 2.0, facilitated by a librarian and a programmer as lead
developers, was made in stages, with testing and assessment after each roll-out. It
started with streamlining the email-based environment to deal with non-eLibrarian
communication, and eventually moved to an entirely Web-based environment that
removed that bottleneck altogether.

Summary of Functions

Under eLibrarian 2.0, the productivity of the reference librarians is enhanced in many
ways. Primary among these are a more structured inquiry form, an eLibrarian
Workspace on the web, and a new Web-based eLibrarian Knowledge Base, which is
automatically populated with completed inquiries and replies, provides search
capabilities, and makes recommendations to requestors.

The redesign of the new inquiry form makes use of data fields in existing databases on
the UCLA Anderson network, identified and enabled by our team’s programmer, in order
to authenticate the requestor name, email address, and current course load. This
eliminates the time it takes librarians to check for requestor’s student status, as well as
any possible typos in name, email address, and especially in the course title related to
the research, as this helps librarians understand the context of the inquiry. The new
inquiry form also requires the requestor to select from the four basic types of business
information needs3 (company, industry, management function, or business
environment). These required input data, mentioned above, become the key
searchable fields in the knowledge base.

The Web-based common workspace automatically assigns each newly received
eLibrarian inquiry to the reference librarian on that work shift, using a pre-determined
work schedule. The status of all inquiries in the queue are also displayed, along with
their different stages of completion. This spares the reference librarians the confusion
over which inquiries are actually being worked on, and by whom.

The Workspace also has a convenient link to searching the knowledge base.
Reference librarians can easily search for similar requests for a possible time-saving
cut-and-paste of relevant research steps from prior responses. The reference librarians
can search past inquiries and replies by requestor name, by assigned reference
librarian, by course number or instructor, or by keyword within the entire text.
Requestors will be offered the search function in a future version of eLibrarian.

There is also an interesting new link in the workspace which allows the reference
librarian to check previous requests from the same requestor to find relevant threads, or
catch duplicate submissions before precious time is wasted. The workspace allows
reference librarians to attach documents, to provide links to relevant websites, and other
functionalities that the reference librarians had been using in the previous email-based
environment.

The new eLibrarian knowledge base is Web-based, and is automatically populated with
both inquiries and replies after each transaction is completed. For confidentiality,
personal information is stripped from the text by the librarian during the reply process,
before each record is added to the knowledge base.

An exciting “smart” element of eLibrarian is its recommendation system – you may be
familiar with the one used at Amazon. After the requestor selects the course he is doing

research for, eLibrarian 2.0 will automatically push on to the requestor’s screen inquiries
from that same course from the eLibrarian knowledge base. The requestor may view
any or all the records offered and still return to complete an original inquiry form.
However, if after viewing one or more of the offered records, the requestor finds his
information need satisfied and clicks on a button confirming this and exits the system,
then the transaction is counted as “answered by the Knowledge Base”.

The eLibrarian 2.0 Web-Based Process

This is the perfect time to show you a demo of the eLibrarian 2.0 Web-based processes.

We have previously described the user authentication function and the important role
that the request forms play in our system, as well as the recommender system offered
by our knowledge base.

We have also described above the time-saving and organizational benefits reaped by
the reference librarians from the common workspace and the ability to search past
records from the knowledge base.

When the reference librarian completes the response, an email is sent to the requestor
that contains a link to the response. The response, in printable format, ends with a brief
user survey. To maximize survey participation and response pick-up, the system
features a daily offline process that looks at all answered responses without completed
surveys. If five days have elapsed without a survey, this program sends the requestor
an email reminding them that the response is still available. The program is executed
via a UNIX cron process.

Real-time Web reports are planned for a future phase, but currently our solution was to
hook up an MS ACCESS front-end to our SYBASE tables. Our assistant then exports
the data to MS Excel for reporting. Again, since we try to capture all the “who did what
and when” data, there are many possibilities for reports. Among the metrics we file in
reports are: use by course, by faculty and by student population group.

Software

The eLibrarian 2.0 system is written entirely in-house. Perl was chosen for its excellent
text handling features, its platform portability, and its wide usage and known reliability in
Web applications. There is also a minimal amount of Javascript in the system.
Although it currently using SYBASE tables, eLibrarian -- as part of a department-wide
effort -- is converting to MS SQL Server on August 1, 2005. No other commercial
software is used in the eLibrarian 2.0 system.

Technical Design Considerations

We faced many challenging technical design decisions in developing the eLibrarian 2.0
system. Since eLibrarian replaced an existing email based system, one major concern

was that the new version would not entail a lower service or functional level than email.
Email is, of course, among the most successful computer applications of all time. The
process of replacing an email based system allows a designer to realize how
functionally rich and user-friendly most email clients are.

Initially there was concern by some librarians that a Web-based system might be less
stable than the existing email platform. We reasoned -- based on general observation --
that the Web platform is as stable as email systems. This has been born out -- albeit
subjectively -- by experience. Most of our users, in fact, feel that this system is more
robust than the previous release.

To replicate or ‘meet and beat’ email functionality, the first step was to design functions
that corresponded to email behavior. Thus, the user request function, the common
workspace, and the user response functions, shown earlier, correspond to a requestor
sending and a librarian responding to an email. The ability to forward an email to
another librarian is done via the claiming function in the workspace. Email folders no
longer exist of course, but the data is organized in the database and can be accessed a
number of ways. Email folder searching has been replaced by the search function.
Although email folders are very flexible and allow users to organize on the fly, clearly
they are an inferior organization of data than a well designed set of relational data base
tables.

E-mail’s ability to save drafts has its equivalent in the “confirm changes” button in the
workspace. One technically challenging area was replicating e-mail's ability to attach
documents. Our solution involves storing the “attached” document into a special
directory and then sending a link to that document in our response.

Iterative development is recognized as an IT best practice. eLibrarian incorporated this
practice in several ways. First and foremost was our decision to start with a release that
featured some key, but easy to implement, enhancements. That release did not involve
any new databases, but it did separate the system for internal and external users and
also began the practice of pulling data from Anderson databases and minimizing text
entry. This iteration allowed us to prove that the quality of data and ability to
differentiate internal and external users were enhanced and useful. There have been
17 minor releases since 2.0 went live, incorporating various enhancements. Various
design decisions, maximizing code maintainability, have facilitated our ability to
iteratively improve the system. Management support, allowing us to develop in an
incremental on-going fashion, has also been a major success factor. ACIS uses the
Rational Unified Process as its software engineering methodology. Iterative
development is a key practice in the RUP methodology.

Another challenge, of special interest in library applications, was finding a way to insure
privacy and confidentiality for our requestors, while at the same time being able to retain
data in its original form. As seen in the workspace and other functions, one solution
was to allow librarians to edit the original requests, including removing any personal
information. Although a requestor can see their original request, other requestors only

see edited requests. The ability to edit requests and categories, while keeping the
original also allows for better quality of data, and an ability to track how much data
improvement is required or performed. Another privacy protection is in the link to URLs
for viewing the response, which contain the requestors email address and an internal
generated number for security.

Portability and Scalability

In designing eLibrarian, we attempted to maximize its future portability both in terms of
computer platform and in terms of multi-library implementation.

From a platform standpoint, Perl can run on a variety of platforms and has been widely
used to support large scale applications. UNIX, SYBASE and SQL SERVER are all
recognized for their ability to handle large-scale and complex applications.

eLibrarian uses an in-house written enhanced front-end to the Perl DBI module. Perl
DBI is Perl’s standard data base API which can run against virtually any prominent
RDBMS. The SQL calls within the program are all SQL-92 complaint which also
increases the system’s platform portability.

Several application-level features enhance multi-facility support; in the database, each
table has a field called “facility_code”. Each library’s URL passes the facility code as a
parameter to the Perl scripts which then incorporate it in all SQL calls. The facility code
may also be used in getting appropriate data from configuration files. Thus with almost
no programming, the system can support multiple facilities just by a parameter in the
URL.

Another database feature which supports portability is an ability to dynamically define
table columns. For example, each facility may want different survey questions and
different categories. To accomplish this, there is one table that defines questions or
categories for each institution. A corresponding table holds the answer or value for that
field. The row with the actual data points back to the corresponding definition of the
survey question or category. The programs thus pull category and survey definitions
out of the tables for display. Once categories or survey questions are defined and
instantiated this way, no library-specific programming is required to handle them across
facilities.

Other database features to support institutional portability include: a table to define
each institution's personnel, and a table which holds information about a particular
library including its home page URL, particular text, turn-around time threshold and so
forth.

All page headers and footers are created via function calls. The function calls can be
pulled out of a configuration table, so again no special programming, other than the
target library creating its function calls, is required.

Separating presentation, business logic and data layers is recognized as a best practice
in Information Technology. As already shown, the data layer is well defined in the
tables. To support the visual layer separation, the system uses a Perl module called
HTML::Template. This module separates logical and visual layers by allowing page
layout definitions which include variables. The variables are assigned values in the
program and the page template is called for display. The result is neater, more
maintainable code than the typical “here document” used in Perl programs for painting
html.

What’s in the Future?

Among what is envisioned for future versions of eLibrarian is: Web reporting, some
aesthetic enhancements, and plans to retro-populate the knowledge base.

Some roll-outs are also planned to test eLibrarian 2.0 at a business school at another
UC campus, as well as other business schools across the country. Also a test to see
how it functions across subject disciplines in a campus-wide roll-out. A test roll-out to
professional schools other than business, such as law, medicine and engineering could
also prove the viability of this system. Finally, it has come to our attention that the
eLibrarian 2.0 system is a superb knowledge base generator that can be ported to many
non-library applications.

--
Footnotes

1 UCLA Rosenfeld Library, Rosenfeld Library eLibrarian Service,
http://www.anderson.ucla.edu/resources/library/eLibrarian_guidelines_Oct2004.pdf.

2 Bellanti, Bob and Jason Frand, “Connectivity and Convergence”, UCLA Librarian, 48
(1995-96) 24-31.
http://www.anderson.ucla.edu/faculty/jason.frand/researcher/articles/librarian96/page1.h
tm

3 Yeargain, Eloisa Gomez, “Conceptual Analysis of Business Information Needs”,
(paper presented to the Business Reference Services Discussion Group (now BRASS)
at the annual conference of the American Library Association, San Francisco, June 30,
1987).

