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1. INTRODUCTION 
 
Beginning in the mid 1980s, statistics-related activities began to appear with regularity in the 

United States pre-university curricula (Watkins, Burrill, Landwehr, & Scheaffer 1992). 

Influenced in part by the Quantitative Literacy Series (Landwehr 1985), the approach taken in 

those curricula increasingly drew on the works of John Tukey and his revolutionary approach, 

Exploratory Data Analysis (Tukey 1977; Biehler 1989).  

 

The hope was that the informal tools and philosophy of Exploratory Data Analysis (EDA) would 

permit students to dive immediately in to the analysis of real data, to look for interesting patterns 

and trends without worrying about formulating and testing hypotheses. In this way, students 

could learn basic ideas of statistics without getting bogged down in formal statistical inference, 

with its reliance on probabilistic and counterfactual reasoning (“If there were really no difference 

in the two groups, the probability of this result would be x.”). Accordingly, Watkins et al. (1992) 

recommended that introductory statistics at the secondary level begin with “basic ideas of data 

analysis, informal probability, simulation, and an intuitive introduction to statistical inference” 

(p. 49). In a similar spirit, David Moore (1992) argued that introductory statistics courses at the 

university level “should cover no more probability than is actually needed to grasp the statistical 

concepts that will be presented” (p. 23). To the implied question, “How much probability do 

younger students need to be able to grasp basic data-analysis concepts?” the de facto answer 

arrived at for elementary and middle school students in the United States was “none.” Following 

the lead of the National Council of Teachers of Mathematics Standards documents (1989; 2000), 

existing middle school and elementary curricula treat the two topics as separate and independent 

strands.  

 

As researchers began studying settings in which students were introduced to EDA, an unsettling 

picture soon emerged. Students given considerable exposure to and instruction in data-analysis 

techniques nevertheless had difficulties performing one of the most basic tasks in analyzing data 

— judging whether two groups appeared different by comparing their averages or the 

approximate centers of their distributions (Hancock, Kaput & Goldsmith 1992; Watson & Moritz 

1999; Konold, Pollatsek, Well, & Gagnon 1997; Biehler 1997). This shortcoming has prompted 

researchers to delve more deeply into the underlying understandings and skills that would allow 
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students to make and justify such comparisons. Recently, these required understandings have 

been reconceived as a set of “informal inference” skills. Broadly speaking, informal inference 

involves making generalizations from samples without the use of formal statistical tests and the 

quantification of uncertainty that come with them (e.g., Makar & Rubin 2007). Looking across 

many of the descriptions of informal inference (e.g., Rubin, Hammerman, & Konold 2006; 

Pfannkuch 2006) we find repeated references to ideas associated with chance. It thus appears that 

many statistics educators are now taking seriously a possibility that Rolf Biehler suggested 

shortly after EDA found its way into classrooms: that many of the difficulties novices experience 

stem from “a too simple (probability-free) educational conception of data analysis” (1994, p. 20). 

 

For the past three years, and with funding from the National Science Foundation, we have been 

developing tools and materials for teaching data analysis and chance in the middle school. The 

main objective of the project is to help middle school students develop an integrated set of 

fundamental probabilistic and statistical ideas which, among other things, will support informal 

inference. In this article, we describe the approach we have taken. We first outline four ideas that 

we claim lie at the heart of both data analysis and chance: model fit, distribution, signal-noise, 

and the Law of Large Numbers. We follow this with a brief description of classroom activities 

focused on data analysis that we have developed to highlight these ideas and their 

interconnections. But the major focus of the article is on how we explore these same ideas in 

explorations of chance.  

 

We have recently finished a yearlong field test of these activities, working with grade 7 and 8 

students at a local public middle school. We have just begun an analysis of the data from that 

field test, data which includes classroom videotapes, performance on items administered 

throughout the field test, and post-instruction interviews with individual students. In future 

articles we will explore those data in depth. In this article, we describe the approach and 

activities we have developed and our rationale for them. While we do not provide extensive 

examples of student responses or analyses of their thinking, we do offer some brief summaries. 

These are based on overall impressions recorded in reflective notes we made following class 

sessions. These impressions, however, should be regarded skeptically; our sense of what students 

understood as a result of the activities will certainly change once we have systematically 
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analyzed data collected during the field test. And the design of our activities will likely undergo 

revisions as we look more in depth at students’ reasoning during and after the intervention.  

 

2. IDEAS IN DATA AND CHANCE  
 

We conceive of the activities we are developing as comprising two general strands — those that 

explore: 1) the “data in chance” and 2) the “chance in data.” Four main ideas, which we view as 

lying in the intersection of data and chance, form the backbone of our activities: model fit, 

distribution, signal-noise, and the Law of Large Numbers. Below we briefly describe what we 

mean by these and summarize some of what we know from research about students’ 

understandings of them. Although we describe these as separate ideas, they are highly 

interrelated. They are featured centrally (along with several other constructs) in Wild’s (2006) 

succinct description of the statistician’s view of the concept of distribution. 

2.1 Four Main Ideas 
 
Model Fit. In analyzing data, we have or develop expectations about features of the data. If we 

believe that a die is truly symmetric, then we expect to get about an equal number of each of the 

six sides when we roll it repeatedly. If we examine the heights of a sample of 16 year-olds, we 

expect the boys to be taller on average than the girls. When we look at data, we evaluate them 

with regard to our “model” (e.g., a guess, expectation, or prediction), sometimes rejecting the 

model based on the data. This is what we think Pfannkuch and Wild (2004, p. 22) point to when 

they emphasize the importance in statistical reasoning of the “recognition of the need for data.”  

 

Several researchers (Hancock, et al. 1992; Konold 1989; Watson, Collis, Callingham & Moritz 

1995) have noted that some students occasionally ignore data in arriving at conclusions. But 

numerous studies report more encouraging results — that the majority of even fairly young 

students use data in sensible ways to evaluate prior predictions and expectations. For example, in 

Petrosino, Lehrer and Schauble (2003), nine-year-old students used data they collected as 

evidence that rockets with rounded nose cones reached higher altitudes than those with pointed 

nose cones, despite the fact that initially the students expected just the opposite. Pratt (2000) and 

Tarr, Lee, and Rider (2006) described 10- to 12-year-olds as systematically collecting data from 
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chance devices to decide on their fairness. In many cases, the results led the students to revise 

their initial judgments that the devices were fair. Thus, the idea of putting conjectures to the test 

by looking at relevant data seems to make sense to even young students (see also Masnick, 

Klahr, & Morris 2007). 

 
Distribution. A collection of data (whether the sums obtained from rolling two dice or the 

heights of adult males) has properties that are different than the properties of the individual cases 

that make it up. If we organize numeric data as a frequency distribution, we can describe the 

distribution’s shape, center and spread — characteristics that are not shared with an individual 

case.  

 

Although the study of statistics concerns primarily these emergent, aggregate characteristics, 

numerous studies have demonstrated that novices tend not to focus on these features when 

interpreting data graphs (Ben-Zvi & Arcavi 2001; Hancock, et al. 1992; Konold, Higgins, 

Russell, & Khalil 2004). This research has inspired interventions targeting the development of 

aggregate reasoning in younger students. Those that have appeared successful (e.g., Bakker & 

Gravemeijer 2004; Cobb 1999; Lehrer & Schauble 2000) have these general characteristics in 

common. They: 

• are rich in student discussion of qualitative aspects of distribution shape, including 

identifications of the location of hills or bumps, gaps, and spread-out-ness;  

• keep students grounded in the real-world context from which the data came, so that when 

students begin noticing and talking about distribution features, the features are not 

disembodied characteristics of markings on paper, but are about the real-world situation 

under investigation; 

• have students invent and compare alternative methods of data display and summarization 

and ultimately justify why they prefer to use one rather than another.  

 

In short, effective interventions establish data collection and analysis as a modeling enterprise in 

which we need to evaluate choices in terms of the purposes they serve.  
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Signal-Noise. Separate samples obtained from rolling a die or from measuring the heights of a 

collection of females are unlikely to be identical. Because of chance variability inherent in the 

rolling of a die or the selection of particular individuals to measure, details vary from sample to 

sample. On the other hand, because a die is symmetric, the six sides will tend to come up equally 

often. And if we randomly sample from a population of females such that each individual has an 

equal chance of being in the sample, then the relative frequency of heights in a sample should 

tend to resemble the relative frequency in the population. Thus we can consider a sample as 

having two components — a “signal” that reflects the unchanging aspects of the population or 

process, and “noise” introduced via chance variability. 

 
Konold and Pollatsek (2002) cited research reporting students’ difficulties in using averages to 

compare groups as evidence that students were not regarding averages as signals. Based on 

historical analyses of the idea (e.g., by Stigler 1986; Porter 1986), Konold and Pollatsek (2002) 

suggested that repeated measures contexts, such as repeatedly measuring the length of some 

object, might provide a more suitable entry point for students into statistical measures. This is 

because in such contexts it is possible to associate signal-and-noise components of data to 

observable features of the measurement process. Several teaching experiments by Lehrer and his 

colleagues (e.g., Petrosino, et al. 2003) have made use of repeated measures and shown that 

students as young as ten can build up statistically sophisticated understandings of repeated 

measurements that are grounded on the conception that the measurements are composed of 

signal-and-noise components. 

 

Law of Large Numbers. According to this law, as a sample gets larger, its aggregate 

characteristics converge on the corresponding characteristics of the parent population or process. 

Thus, the relative frequency of the various sums of two dice and the mean height of a random 

sample of adult males both settle down on their expected values as the sample gets larger, and 

thus provide better estimates than smaller samples of the actual population values. An important 

corollary of this law is that results that deviate substantially from the expected values are more 

likely with smaller samples than with larger ones.  
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Early research by Piaget and Inhelder (1975) suggested that by age 12, children expect that 

physically-created chance distributions (such as those generated using a Galton Board) will be 

more regular as the number of objects dropped through the device gets larger. This finding stands 

in contrast to studies by Tversky and Kahneman that indicated that adults usually ignore sample 

size when estimating the likelihood of events for which sample size affects the probability. For 

example, Kahneman and Tversky (1972) found that a majority of people believed that a large 

hospital is as likely as a small hospital to observe days on which 60% or more of the births are 

males (the smaller hospital is more likely to observe such days). However, subsequent studies 

(e.g., Sedlmeier 2007; Sedlmeier & Gigerenzer 1997; Well, Pollatsek, & Boyce 1990) have 

indicated that when posed differently, people can correctly answer questions such as the hospital 

problem. And several recent teaching experiments using technology suggest that the idea that 

distributional features (such as shape) of random processes settle down as the sample gets larger 

is indeed within the grasp of fairly young students (Pratt 2000; Stohl & Tarr 2002).  

 

In developing these four ideas, the computer offers an especially powerful resource, both as a 

source of large data sets and also as a flexible and dynamic representational medium. Konold and 

Lehrer (2008) argue that computers offer dynamic forms of mathematical representation that 

spawn new avenues of thought. These dynamic representations also make accessible to even 

young students ideas and domains of explorations that, to this point, have been a high reach. 

Accordingly, as part of our project we have also been developing a probability simulation 

component that will be part of a future version of the data-analysis software TinkerPlots (Konold 

& Miller 2004). By housing probability simulation within a data-analysis tool, we provide a 

single environment within which students can explore the fundamental connections between data 

and chance.  

2.2 Explorations of the Chance in Data 
 
We have developed three types of activities for middle school students that highlight the role of 

chance in producing characteristic features in the distributions of data from 1) repeated measures, 

2) production processes, and 3) different individuals (see Konold, Harradine, & Kazak 2007; 

Konold, Kazak, Lehrer, & Kim 2007; Konold & Lehrer 2008). Here we describe only one of 

these activities, which involves students in the exploration of repeated measures data. 
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In collaboration with Richard Lehrer and his colleagues, we have been developing activities in 

which students repeatedly measure some unknown quantity to try to determine its value (Lehrer, 

Kim, & Konold 2006; Konold & Lehrer 2008). In one such activity, we give students a footprint 

copied on a piece of paper, the print supposedly left at the scene of a crime. In their role as 

crime-scene investigators, their first job is to determine the length of the print. After they have 

performed various measurements, we show them a distribution (see Figure 1) that includes their 

measures along with data collected from other students. Their task is to come up with an estimate 

of the actual print length. With these particular data, most students agree on the value of 23.9, 

presumably because of the near perfect symmetry of the data values. We also discuss why not 

every measurer gets the same value. Having observed one another measuring, students can 

pinpoint several sources of error, including the accuracy of placing the ruler’s 0 point, the angle 

of the ruler during the heel-to-toe measurement, and rounding decisions.  

 

As we claimed earlier, we believe that 

situations such as this are ideal ones for 

introducing students to the idea of data as 

comprising signal and noise. Because the 

actual length of the print is not changing, it 

makes sense to students to attribute all of 

the variability in the measures they make to 

error (noise), and to believe that the true 

foot length is somewhere in the part of the 

distribution where the measures are most 

densely clustered. The later belief hinges in part on their understanding that errors can be 

positive and negative. Their experience in actually producing the measures plays a crucial role in 

supporting this view, as most of them can describe situations that would produce errors of each 

type. Their observations of one another measuring also allows them to identify and consider 

different factors that contribute to measurement error and to suggest ways to reduce the 

magnitude of errors. In this way, they can relate the amount of variability (the spread) to 

 
 
Figure 1: Student measures of a footprint of 
unknown length. 
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Figure 2: A TinkerPlots Sampler built to model 60 repeated measurements of a footprint. The 
first spinner gives the value 23.9 to a case. This is the estimate of the true length of the 
footprint. (Having only one element in a sampling device is currently the only way in the 
Sampler to assign a constant.) The other four spinners assign an error of 0, .1, or -.1 to each of 
four sources of error named by the students. Summing the values from these five spinners 
produces a simulated measurement value that is a combination of the true length and the 
measurement errors. 

different measurement protocols and thus expect more accurate measurement methods and tools 

to have less spread (Petrosino et al. 2003). 

 
Building on these initial understandings, Lehrer, Kim, and Schauble (2007) have involved 

students in developing statistical measures of variation and in designing and critiquing 

simulation models of the repeated measurements built in the new development version of 

TinkerPlots. We have been classroom testing a related approach that involves showing students 

the Sampler shown in Figure 2 and asking them to predict features of the data (measurements) it 

will produce. 

 

The spinner on the far left of Figure 2 contains an estimate derived from student measurements 

of the actual length of the footprint. (Though perhaps not ideal, currently the only way to 

generate a constant using Sampler is by including a single element in a sampling device.) The 

other four spinners, each representing a source of error the students have identified, assign an 

error value for that factor of either 0, -.1 or .1. After explaining the Sampler, we produce one 

measurement from it to demonstrate how a simulated measurement is generated in steps and then 

composed as the sum of the values from the five spinners. So the first run might result in the 

values 23.9, .1, -.1, 0, -.1, for a sum of 23.8. Once students understand the process, we tell them 
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that we are going to use this Sampler to produce 60 measurements and ask them to anticipate 

what the distribution of those 60 measurements will look like. Among the questions we explore 

is whether data from the Sampler displayed as a frequency graph will resemble in shape the 

distribution of real measurements (Figure 1). Many believe that while the Sampler will produce 

measures of roughly the same range, that the distribution will be relatively flat and not peaked at 

23.9. They are therefore initially surprised to see that the Sampler gives them a shape similar to 

the one they observed for their actual measurements. To see whether this shape persists, we 

repeatedly run the model and look at several examples (Figure 3). After-the-fact, many students 

can offer a reasonable explanation for the shape — that it is rather hard to get extreme measures, 

because you have to be very “lucky” or “unlucky” to get the same error value (all -.1s or all +.1s) 

from the four error spinners. Combinations of the three possible values, which give sums near 

23.9, are more likely. 

  

At this point in the activity, there are two instantiations of signal and noise. One is the single 

distribution in which the signal is expressed as an average, and noise corresponds to the 

distribution of values around that signal. But we can also regard the shape of the distribution as a 

signal, caused by the independent contributions of error factors. The noise in this case is the 

variation in the shapes from one sample to the next. While each of the samples is unique, we can 

also begin to see a commonality of shape.  

 

 
Figure 3: Three samples of 60 measurements generated from the Sampler in Figure 2. The values 
of Sum (the modeled measurements) were determined by summing the values of each of the 5 
spinners for each of the 60 repetitions.  
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To address the question of whether the foot measure Sampler is a good model of actual 

measurements, we need a basis of comparison — “good” compared to what? To help move the 

students in this direction, we invite them to modify the Sampler so that it will make data that 

differ in noticeable ways from their actual data and/or to anticipate how various modifications 

will affect the output. It is relatively easy for them to produce distributions that are centered on 

different values and to increase the range. Making alterations that change the basic shape are 

more challenging and take students in the direction of considering bias in measurement. 

Thinking about how to reduce variability while leaving the number of error factors at four helps 

them think about the implications of fine-tuning a measurement process. With a collection of bad 

models as a basis of comparison, students can now engage in a meaningful conversation about 

whether and why the Sampler in Figure 2 is a good model and can suggest ways in which it 

might be improved.  

 

To summarize, our hope is to support students viewing repeated measurement data as a 

combination of signal and noise and to help foster a basic understanding of why distributions of 

such measurements are centered on, and clustered around, the true value (see Wilensky 1997).  

2.3 Explorations of the Data in Chance 
 
In the remainder of the article, we describe our approach to introducing students more formally 

to ideas of chance and probability while trying to maintain a focus on ideas that relate to and 

support data analysis. Probability comes with its own particular learning challenges, which we 

briefly consider as a backdrop for our approach.  

 

It is common to encounter in introductions of texts on probability an acknowledgment that, to 

many, the topic embodies a contradiction. How can we say that coin flipping is an inherently 

unpredictable, chance process and then turn around and assert, based on mathematical 

computations, that the probability of flipping heads four times in a row with a fair coin is 

0.0625? Precise numeric statements can seem decidedly out of place in the messy domain of 

chance. 
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In the domain of mathematical modeling, discomfort of this sort comes with the territory. In her 

book analyzing the history of the early development of probability, Daston (1988) observed that 

“Recasting ideas in mathematical form is a selective and not always faithful act of translation” 

(p. 4-5). Probability theorists of the late 17th and early 18th centuries were, according to her, 

guided initially by the degree to which their formalisms captured and modeled the world as they 

understood it. She examined how early probabilists “bent and hammered their definitions and 

postulates to fit the contours of the designated phenomena with unusual care” (p. 5). The 

ultimate fate of the formalisms hinged on how well they predicted the results of, and explained, 

the phenomena they were designed to model. But that was over 300 years ago, plenty of time to 

forget that it was only after years of considerable effort that probability could be perceived by its 

adherents as “common sense reduced to calculus” (Laplace 1814, as quoted by Daston 1988, p. 

68). 

 

Probability curricula trade in such historical amnesia. As a result, they rarely leave room for 

students to acknowledge and resolve thorny issues that arise as they are instructed in how to 

apply ready-made mathematical tools to carefully-carved pieces of the world. Steinbring (1991) 

suggested that a weakness of traditional probability instruction is that it presumes that by 

offering students clear definitions of probability from the beginning, a sound foundation can be 

established on which basic probability concepts can then be developed. Steinbring based his 

critique of this practice on the observation that probabilistic interpretations evolved historically 

in relation to one another and in response to disjunctions between objective and subjective 

interpretations (cf. Hacking 1975). He maintained that students’ understandings also develop in a 

dynamic, non-linear way despite instructional attempts to eliminate ambiguity and false steps. 

Accordingly, Steinbring advocated an instructional approach in which ambiguities and seeming 

paradoxes are explored rather than finessed with the hope that from such fluid explorations, 

coherent and robust probabilistic understandings can emerge. 

 

While agreeing in principle with Steinbring’s (1991) analysis, the pedagogical vision he offers is 

difficult to imagine working in classrooms where most teachers are, themselves, trying to come 

to grips with the domain. Our approach takes a different tack to address Steinbring’s concerns. 

We proceed by first establishing a set of shared observations that students, as a group, work to 
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understand, offering tools and formalisms only after students perceive the need for them. Thus, 

we do not start by providing definitions of events, sample spaces, and probabilities, but by 

having students collect data that reveal an unexpected pattern of results, results that beg for an 

explanation. In the process of further exploring the phenomenon, we introduce students to 

techniques and formalisms as possible explanatory tools, but leave it to them to test, discuss, and 

ultimately judge their usefulness. In this respect, the approach is similar to Daston’s description 

of the approach taken by early probabilists in which formalisms were crafted and adapted to fit 

the field of application, rather than the other way around. Our instructional approach is highly 

dependent on the computer’s power to generate large samples of data quickly, both to establish 

the phenomena that beg to be explained and also to test the ability of probability models to 

explain them.  

 

Our approach, evolved through several iterations of classroom testing, incorporates several of the 

suggestions offered by Scheaffer, Watkins, and Landwehr (1998), chief among which was the 

exhortation that “the unifying thread throughout the probability curriculum should be the idea of 

distribution” (p. 17). The focus on distribution is consistent with Shaughnessy’s (1997) 

exhortation that we spend more instructional time focusing on variability and less on center.  It is 

exemplified in probability instruction described by Abrahamson (2006) and by Hovarth and 

Lehrer (1998). In their classrooms, students do not compute probabilities of events but rather 

explore the shapes of distributions (such as the sum of two dice) obtained from repeated trials 

where a major objective is for students to come to understand these shapes in terms of the 

number of ways the various events can occur (i.e., the sample space). There are many advantages 

of focusing on distribution features rather than event probabilities. First, considerable research 

has established that students tend not to focus on aggregate features of distributions, but rather on 

the values of particular cases or the frequencies of selected outcomes (see Konold, et al. 2004). 

We hope that by focusing on distributions and their shapes we will prepare students to attend to 

distributional features when examining data. By focusing on general shape we also are able to 

finesse, for the time being, some common but erroneous beliefs that students have deduced from 

experience, such as the belief that a single die is less likely to come up a 6 than a 1 (see Watson 

& Moritz 2003). Second, focusing on distribution shape facilitates students eventually seeing the 

relationship between the data they generate and the sample space they construct. Consider what 
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is involved in evaluating the probability of a particular event. To determine the relation between 

the sample space and an actual result obtained in a sample requires computing and comparing a 

ratio of a subset of the sample space (say 6/36 for the sum of 7 of two dice), to the ratio of 7s in a 

particular sample (say 18/100). To do this requires good facility with rational numbers, which 

many of the middle school students we work with do not yet have. On the other hand, and as we 

describe later in the article, students can relatively quickly assess the qualitative fit between the 

general shape of the expected distribution based on the sample space, and the shape of the 

distribution of actual results. But perhaps the most important reason for focusing on distribution 

shape rather than event probabilities is that distributions simultaneously communicate the 

variability in the outcomes of the situation and the structure that begins to show through this 

variability as we add more and more data to the distribution. Thus, the distribution emphasizes 

the variability inherent in a chance process, which seems to be the main idea students hold about 

chance prior to instruction and, thus, a fruitful place to begin. 

 
3. OVERVIEW OF INSTRUCTION 

 

3.1 Classrooms 
 
We have conducted four rounds of field tests in classrooms at Lynch Middle School in Holyoke, 

Massachusetts. The field tests from which we draw most heavily in this article were conducted 

during the 2007-08 school year. During this period, we co-taught three 10-week classes devoted 

to the topics of probability and data analysis. Each class met every other day in 70-minute 

sessions in a classroom outfitted with laptop computers and a computer projection system. The 

classes included an 8th grade class (11 students) and two 7th grade classes (one with 8 students, 

the other with 9). Lynch Middle School serves about 400 students who are predominately 

minority (76%), with 85% of the students qualifying for free and reduced-priced lunches. 

Schools in the Holyoke School District have some of the lowest scores in Massachusetts on the 

high-stakes MCAS test. 
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3.2 Three Probability Contexts 
 
During the ten-weeks of instruction, we interwove activities dealing with data with ones dealing 

with chance. During this time, we involved the students in three, separate, multi-day chance 

activities, briefly described below.  

 

The Wink Game involves blindly drawing twice, with replacement, from a bag that contains two 

disks. One disk is labeled with a dot (•), the other with a dash (-). If both draws result in a dot 

(•,•), Player A wins. If both draws are dashes (-,-), Player B wins. Player C wins if the two draws 

are different (•,- or -,•). Imagining the symbols to be the two eyes of a person’s face, we refer to 

the mixed outcomes (•,- and -,•) as “Wink,” to two dashes (-,-) as “Blink,” and to two dots (•,•) 

as “Stare.” In addition to injecting a bit of humor into the game, using these names allows us to 

refer to the events in a way that provides no hint as to the critical role of the order in which the 

single outcomes, dash and dot, occur. The question we pose to students before playing the game 

is whether the game, with three players, is fair. Initially, most students believe it is. 

 

In the Family Problem, we explore the composition of the genders of children in families with 

exactly four children. After we examine a few specific families and place them on a distribution 

according to the number of boys in the family, we ask students: “If we graphed the number of 

boys in many, many real families with four children, which graph below do you think would 

look most like the real data?” (see Figure 4). 

                              
                 Graph 1                                       Graph 2                                       Graph 3 

Figure 4: Three possible distributions for the number of families with 0-4 boys. Many students 
initially select Graph 3. A common argument is that it is very hard to get either all boys or all 
girls, but the other three results should be about equal.  
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In the Dice Problem, we ask students to select from the alternatives shown in Figure 5 the 

distribution we would most likely get if we rolled two dice 1000 times and plotted the sums, 2-

12.  
 

 

 

 

Figure 5: Five possible distributions for the sum of two dice. Most students initially select graph 
III. A common explanation is that sums at the extremes will not occur very often but that the 
other sums will occur about equally often. 
 

There are a number of criteria we used in choosing these particular problems. All three contexts 

are approachable both through theoretical analysis via the sample space and through conducting 

physical trials. This allows us to explore the relationship between the two approaches. 

Accordingly, we have not spent much time having students explore chance set-ups that involve 

non-symmetric elementary outcomes, such as the tossing of thumbtacks (e.g., Newman, 

Obremski, & Scheaffer 1987, p. 8). We agree with Scheaffer, Watkins, and Landwehr (1998) 

that the study of counting methods has little to do with understanding probability. Thus we have 

restricted ourselves to situations where the sample space is relatively small such that students are 

capable of generating all possibilities by simply listing them. 

 

To facilitate the application of the idea of signal-noise, we chose contexts and the particular 

questions to pursue so that even in relatively small samples, a trend is already visible. All three 

investigations pose a question about compound events whose distribution is non-uniform. It is 
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the general shape of the distribution that surprises 

students and thus motivates further exploration and 

explanation. We have not had students investigate 

uniform distributions, such as the question of 

whether if you roll a fair die the results will be 

about equal across the six outcomes (e.g., see Tarr, 

Lee & Rider 2006). Deciding whether simulated or 

real data provide support for a uniform distribution 

is a difficult assessment for young students (and 

even adults), as some outcomes will almost always 

appear to them to be occurring more than expected 

and others less than expected (see Figure 6). This 

makes it hard to perceive the signal (the 

distribution’s on-average, uniform shape), through 

the noise. 

 

4. CHARACTERISTICS OF OUR APPROACH TO PROBABILITY 
 
All three of the investigations we have designed target the four central ideas we previously 

described — model-fit, distribution, signal-noise, and the Law of Large Numbers. In this section 

we outline general characteristics of each investigation that support student learning, citing 

examples from all three contexts. In brief, each investigation begins by establishing the need to 

explore the situation by keeping track of the results of repeated trials. These data generally are 

inconsistent with students’ initial expectations. To help explain the pattern of results they get, 

students build an “expected” distribution by generating elements in the sample space, arranging 

them as a distribution, and then using the computer to see how well this “expected distribution” 

fits the distribution of simulated results. The investigations conclude with students comparing the 

relative fit of the expected distribution to data from samples of different sizes.  

4.1 Making and Testing Initial Predictions  
 
We begin each probability investigation by having students make guesses about the situation. 

These guesses are based on their current understandings (or theories), which include primary 

 
Figure 6:  Simulated results of 100 rolls 
of a “fair” die. Students asked whether 
such data suggest that the outcomes are 
occurring about equally often will 
invariably conclude that some outcomes 
appear more likely than others. Students 
(and many experts) do not appreciate how 
much variability there is in random 
samples of this size. The “signal” in non-
uniform distributions is much easier to 
perceive informally even at small sample 
sizes than are the signals in uniform 
distributions. 
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intuitions (Fischbein 1975) such as the equiprobability bias (Lecoutre 1992), the 

representativeness heuristic (Kahneman & Tversky 1972), and the outcome approach (Konold 

1989). For example, after describing the Wink Game and selecting three students to play it in 

front of the class, we ask students to decide whether the game is fair and to write a brief 

explanation. Many students initially regard the game as fair based on the fact that there are three 

possibilities and that chips are blindly drawn from the 

bag after mixing them well. To introduce the Family 

Problem, we collect data by asking students to write on 

index cards the composition of boys and girls in four-

child families they know. We then add their cards to a 

stack of cards we have created beforehand to give a total 

of about 50 cases (see top of Figure 7). Before looking at 

the distribution of real data, students make their 

predictions about the distribution of the number of boys 

in four-child families by choosing one of three sketches 

(see Figure 4). After arranging the 50 cards according to 

the number of boys along a number line taped to the floor 

(see bottom of Figure 7), students discuss and revise their 

predictions based on the data. This distribution is 

different enough from what most expect that they begin 

to question their initial conjecture. But at this point, they 

have no clear explanation for why the distribution is 

shaped the way it is.  

 

There are several reasons for having students make initial predictions. First, it provides 

additional motivation for exploring the problem. Second, having explicit expectations prepares 

students to observe specific features of the data that otherwise might go unnoticed (see Konold 

1995). Most importantly, predictions serve to establish the purpose of the activity as 

understanding the situation and set in motion the activity of model fitting.  

 

            
 

    
Figure 7: Students record on 
individual cards the gender orders 
of families they know of with four 
children (top). They arrange these 
to form a frequency distribution of 
the number of boys in a family 
(bottom). 
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On each problem, after students make their predictions, we manually collect data from the 

process (e.g., we roll real dice). This is a critical phase because it helps to ensure that the students 

understand the process before they go on to model it. For the Wink Game, after playing the game 

once in front of the class, students break into pairs. Using a bag and two chips, each pair plays 

the game 12 times and records their results. We have found that with our problems (all of which 

involve a repeatable chance experiment), students are quick to evaluate their initial judgments 

(correct or not) on the basis of data they themselves collect. Indeed, as others have reported (e.g., 

Aspinwall & Tarr 2001), many of the students express confidence about conclusions drawn from 

quite small samples. Accordingly, we delay formal discussion of data until the sample under 

consideration is relatively large. 

 

In the case of the Wink Game, we accomplish this by recording the data collected by each pair 

on the classroom whiteboard (see Figure 8). In this table, each of the five columns contains the 

results of the 12 trials conducted by a pair of students. The sixth column, added at the suggestion 

of the students, shows the total wins for each event across the five groups. When asked what they 

conclude from their combined results, most students will now assert that the game is not fair — 

that Wink has a better chance. But they will also acknowledge that, due to the variability evident 

in the results of each pair, more data would help them decide with confidence whether the game 

is really fair or not. Thus, the 

sample-to-sample variability 

they see in the results of 

different groups seems to 

temper the confidence they 

would express if looking only 

at their own results.  

 

We have replicated the Wink Game activity in six different grade 6-8 classrooms, and the student 

responses have been quite consistent. Thus it seems, given this context at least, that even before 

instruction students have a general sense of model fit that helps them anticipate and interpret 

variable data. That is, they can anticipate the sort of data that will support their initial conjecture 

(in this case, that the three events will win about equally often) and will question that conjecture 

 
Figure 8: Table showing the results of five groups each of 
which played the Wink game 12 times. The rightmost column 
shows the combined totals for each event. 
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when the data are sufficiently different from what they expect. Furthermore, when confronted 

with the results of different groups, they are not surprised to see that the results vary and they try 

to perceive a general trend in them. Konold (1989) reported that some university students 

questioned the usefulness of data in deciding which side of an irregular-shaped bone was most 

likely to land upright. In particular, they did not make use of frequency data from 1000 rolls 

since the results of another 1000 trials would be different. By contrast, in the context of these 

three activities, students make use of data in deciding whether their initial thinking provides a 

good fit with the data. No student has argued that the variability in the results rendered the data 

useless. This also suggests that students have a basic notion of signal and noise even before 

instruction in that they can evaluate a particular sample in terms of its general trend and will 

regard deviations around what they expect as the 

contribution of chance. 

4.2 Testing Predictions with Simulated Data 
 
To further test their predictions, students use the 

development version of TinkerPlots to build a model 

of the situation that they use to quickly generate and 

analyze large samples. We first introduce students to 

TinkerPlots’ simulation component (called the 

“Sampler”) by using it to randomly select three 

students in the class to play the Wink Game. To do 

this, we create a mixer, as shown in Figure 9, that 

contains each of their first names. Working together 

as a class, we edit the mixer contents so that only 

students present that day are in the mixer and set it 

up so that three names will be drawn without 

replacement.  

 

Thus we introduce the Sampler to students not to 

model a chance phenomenon but as a way to fairly choose students from the class. The idea that 

we use the Sampler to model a chance event is first suggested by the students. This happens in 

 
Figure 9: To select three students to 
participate in the Wink Game, we fill a 
TinkerPlots Sampler (a mixer in this 
case) with balls labeled with the 
students’ names. Pressing the Run 
button causes the balls to bounce 
around in the mixer. Three balls are 
randomly selected, one at a time. 
When a ball is selected, its name floats 
up into one of the three slots above the 
mixer.  In this example, the first name 
chosen was “Paul.” The second name 
is in the process of being selected.  
The top of the mixer is open to 
indicate that the sample of three is 
being drawn without replacement. 
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the context of the Wink Game when we suggest to students that, to collect more data, each group 

play 100 repetitions of the game. They protest that it will take them too long, and finally one of 

the students will suggest using TinkerPlots. When we ask them how to do this, they instruct us to 

remove all but two elements, to label these with a dash and a dot, and to draw twice with 

replacement. We ask whether they are sure they will get the same sort of results from this 

Sampler as they do from the bag. Perhaps still worried that otherwise we will have them conduct 

100 physical trials, they express their confidence that playing the game with the computer 

version is exactly the same as playing it with the bag filled with two chips.  

 

Note that in this sequence of instructional activities, the students see the computer modeling as a 

logical next step, motivated by the need for more data and the time required to collect it by hand. 

Indeed, our aim in designing the sequence of activities in each of the investigations is that 

students see each subsequent phase as logically following from the previous one, providing a 

next sensible step in the exploration.  

 

In building a model of the situation in TinkerPlots, students work individually at computers. For 

the three problem contexts, students generally have relatively few difficulties building an 

appropriate model. The software allows them to build Samplers using mixers, spinners, or 

distribution objects, and to draw either repeatedly from the same device, or once each from a 

sequence of in-line devices. Figures 10 and 11 show three models, one for the Wink Game, and 

two for the Dice Problem. 

 

For the Wink Game, most students use one mixer, as it closely resembles the real situation where 

two discrete objects are drawn from a single bag (see Figure 10). In the case of rolling two dice, 

the two-spinner model (see right side of Figure 11) bears a closer resemblance to the real 

situation than does the one-spinner model (left side of Figure 11). As with real dice, the two-

spinner model involves two objects where each object has six different “landing” positions. 

Students have different preferences in the Samplers they build. Thus one student will often be 

working next to another who uses a different device type and/or in-line vs. looped sampling. 

When questioned, however, they will generally say that the differences between their models are 

not consequential — that both Samplers will generate the same sort of data. 
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Figure 10: Computer model of the Wink Game. A 
single mixer (upper left) is set to draw twice from 
the mixer a total of 100 times. The results table to 
the right of the mixer displays the repetitions as 
they occur. The plot at the upper right shows the 
number of outcomes of the four types in that 
sample of 100. In the graph at the bottom, the 
outcomes -,• and •,- have been combined into one 
bin by dragging one into the other. Surprisingly, 
students creating and interpreting these graphs do 
not in the process come to the realization that the 
reason Wink occurs about twice as often as Blink 
or Stare is that it comprises two different outcomes.  

 

 
 

                                  
Figure 11: Two alternative methods of building a TinkerPlots Sampler to model the rolling of 
two fair dice. In the Sampler on the left, a single spinner spins twice (draw number = 2) to 
execute a single trial. The loop at the right of the spinner indicates that the spinner will spin 
more than once per trial. The Sampler on the right uses two spinners, each spinning once to 
execute a trial of two rolls. The grey column at the left of the spinners is a stack of 100 balls 
(trials).  As the sample of 100 is drawn, the stack gets smaller. 
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Critical to the success of our instructional approach is that the students view the computer 

models they build and run as generating the same sort of data they get when they perform 

experiments with the actual physical devices. We designed the animations in the Sampler to 

support the belief (a fiction, of course) that the computer devices are working fundamentally the 

same as the corresponding physical devices: balls in the mixer bounce around randomly and with 

realistic motion; the arrow on the spinner rotates quickly at least one revolution and then 

gradually slows and stops. We suspect that most of the students know that the choosing is 

happening deeper in the computer code. Nevertheless, students judged our early animations as 

being nonrealistic and argued, therefore, that the samples drawn from them were not like the 

samples they would get from, e.g., real dice. So it seems that realistic animations are critical in 

supporting a trust that the computer is indeed drawing randomly. We occasionally question 

students’ beliefs about the computer-generated data, and most of them seem to accept their 

veracity. 

 

We also believe that critical to the acceptance of the computer models is the students’ initial 

experiences with the real phenomena (chips in a bag; real dice). When they do move to the 

computer, the fact that the data they get from it resembles the data they have already collected 

from the real situation undoubtedly lends support to their belief that the computer provides a 

veridical model. 

 

Using the Sampler, students draw large samples which give them more confidence that their 

initial predictions are incorrect. While most will say that, for example, Wink is twice as likely as 

Blink or Stare, they are not generally able at this point to offer a compelling argument as to why 

this is. This sets the stage for an exploration of the sample space.  

4.3 Using the Sample Space to Explain Distribution Shape 
 
Involving students in the development of the sample space serves several purposes in our activity 

sequence. First, it helps to explain the data students have previously collected either from the real 

situation and/or from the computer simulation. In the Wink Game in particular, the sample space 

provides an explanation that satisfies students as to why, contrary to their initial predictions, 

Wink wins about half the time. But as important, the sample space, organized as a distribution of 
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event types, prepares the students to perceive data they subsequently get from the Sampler in a 

more statistically structured way — as a noisy version of the distribution they expect (the signal) 

based on the sample space. 

 

To develop the sample space for the Family Problem, we begin by giving the students a task 

inspired by Abrahamson (2006). We hand out a supply of green and blue stickers along with 

strips of paper composed of a row of four squares. The students’ task is to create as many 

different “4-bars” as they can by placing stickers in the blank spaces. To help them keep track of 

configurations already made, about half of the 

students will begin organizing the completed bars by 

type: those with 1 blue-3 green, 2 blue-2 green, etc. 

Thus in the end, many of them have created a 

distribution that orders and organizes the 16 possible 

bars by type (see Figure 12). After generating this 

representation, students can quickly appropriate it to 

thinking about the number of possible four-children 

families, the colors green (G) and blue (B) 

facilitating this reinterpretation.  

 

In the case of the Wink Game, as soon as we ask students to list all possible results, about half of 

them will immediately list the four simple outcomes. Those who maintain that there are only 

three possibilities are ultimately convinced by an argument one of the students will typically 

come up with: as soon as the first chip is drawn from the bag, either the student with Blink or the 

student with Stare is eliminated. But the student with Wink is always still in the game after the 

first draw. This also leads them to the insight that Wink will win about half the time. Once it has 

been made explicit, students quickly see the sample space as explaining the results they have 

collected, saying things such as “Wink occurs twice as often because there are two ways to get 

it.”  

 

After constructing the sample space of the Wink Game and seeing that there are four possible 

outcomes, we use a model built in the Sampler to generate more data in front of the class. The 

 
Figure 12: The 16 possible four-bars 
generated by a pair of students and 
organized by type (i.e., by the number 
of blue stickers). During the 
construction process, this emerging 
organization helps the students to keep 
track of bars already made and to spot 
omissions. 
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data we generate are similar to the data they have each collected from the models they built and 

ran. We first display the data as shown at the top of Figure 13. We then color the cases by the 

attribute “Outcome,” (graph b) and ask them what they 

notice about the central, “Wink” column. They note that 

it is made up of two different colors. We now order the 

cases to produce the graph in c, and finally separate 

Wink into its two constituent classes (graph d). Our 

purpose is to support the students’ perception that the 

Wink column of the data is composed of the two 

outcomes, which explains why it is about twice as high 

as Stare and Blink. This perception, we believe, is not 

quite the same as understanding that there are two ways, 

in theory, to get Wink. In these graphs students can see 

that actual data can be recomposed to show the four 

simple outcomes, two of them comprising the event 

“Wink.”  

 

In our first classroom testing of the Wink Game, we 

expected that many students in producing their first 

graphs of their data in TinkerPlots would come to see 

that there are two ways to get Wink even before we 

formally explored the sample space. As you can see in 

Figure 13, TinkerPlots colors the two outcomes 

comprising Wink differently, and in making a graph 

showing the three winning events, students must 

physically drag the two outcomes together. Additionally, 

the name of the value on the graph is not “Wink,” but is 

made up of the concatenated labels of the individual 

outcomes (e.g., •,-/-,•). Surprisingly, only 2 of the roughly 70 students we have worked with 

have, as a result of operating on the graphs, come on their own to perceive as different the two 

outcomes that comprise Wink. The other students combine the two outcomes in the graph 

a. 

 
b. 

 
c. 

 
d. 

 
. 

Figure 13: Results of 100 
simulated trials of the Wink Game 
graphed in four different ways in 
TinkerPlots.  



 25 

because “they are the same thing,” so perhaps it makes sense to them that there are no important 

differences between the two outcomes that they need to consider. Students make a comparable 

fusion when they are recording the data from their physical trials. In the worksheet we provide, 

they record the outcomes as they occur, preserving the order information. But labeling both 

outcomes “Wink” apparently supports the idea that the two outcomes are indistinguishable, or at 

least that the difference between them is inconsequential.  

4.4 Seeing Signal and Noise in Empirical Distributions  
 
Each of our investigations concludes by exploring an issue that generally gets raised early in 

each investigation. This is the observation that when individual students collect data, they each 

get something a bit different. At some level, this fits with their expectations — they understand 

that when chance is involved, you do not get the same thing every time. We aim to build on this 

intuition, however, to help them come to see in data a noisy version of their expectation.  

 

To help support this view, we have found it necessary first to encourage a more holistic 

perception of data displayed in graphs. In our initial classroom tests, students would want to 

record exact frequencies for each event even in samples of 1000, and would report small 

differences between the heights of two bars as significant. To reorient their perceptions, we now 

instruct them in how to make quick “sketches” of data. 

 

We introduce sketching as a way for students to quickly record the results of a simulation. 

Pointing out that it would take a lot of time to draw on their worksheets exactly the graph they 

got or to count and report actual frequencies, we demonstrate quick sketching on the board. We 

point out that in making a sketch of a distribution, we pay attention only to the overall shape and 

to relative heights of bars or stacks. Following this instruction, we use the computer to draw 

large samples quickly and give the students about five seconds to sketch the graphs. We also 

play a game where one student of a pair makes quick sketches of five different graphs and the 

other student, whose back has been turned, has then to match those sketches to their source 

graphs. The game not only gives them more practice making sketches but also demonstrates that 

even sketches made very quickly can capture salient features of a distribution that one can use to 

pick it out of a “line up.” 
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The culmination of each investigation involves 

students using the computer models they have 

built to draw multiple samples and compare the 

distribution of results they get to the 

distribution they expect based on the sample 

space. Figure 14 shows the worksheet students 

used for the Family Problem. 

  

In this example, students draw a total of 4 

different samples of 160 simulated families. 

For each sample, they make a quick sketch of 

their results and then rate the degree of fit 

between that distribution and the one they 

expected based on the sample space (shown on 

the left of Figure 14). With samples of size 

160, most of the results, from students’ 

perspectives, tend to produce “Great” and 

“OK” fits. As part of the subsequent classroom 

discussion, we pose the question of whether the 

fit will be better or worse if we looked at 

samples of size 32. A few think they will be 

worse, but more of them predict that the fit will 

be better, perhaps thinking (correctly) that the 

chance of getting a perfect match to the 

expected values is greater. Students seem 

surprised when we run these simulations and 

observe mostly examples of “Bad” fits (see 

Figure 15).  

 
Figure 14: On the left is a graph made by 
organizing the 16 simple outcomes in the 
sample space for the Family Problem. The 
label “what you expect” suggests that 
students use it as an expectation for the shape 
of the distribution they will get when running 
the simulation. On the right are four 
empirical distributions, which a student 
sketched. These summarize results of four 
replications of a TinkerPlots simulation, each 
replication creating 160 “families.” For each 
observed distribution, the student has rated 
the degree of fit to the expected distribution. 
Note that this student was not satisfied with 
sketching the results; she also recorded the 
actual numbers above each frequency bar. 
Weaning some students from attending to 
details is not easy. 
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Figure 15: An example of the types of results obtained from running successive simulations of 
the Family Problem with small samples (here n=32).  
 

At this point, students request that we run both smaller and larger samples to see what happens. 

When we ask about their expectations regarding larger samples (e.g., 2000), most do not 

anticipate how closely they will resemble the expected distribution. The close fits of the larger 

samples (see Figure 16) generate considerable discussion and the desire for an explanation. 

     
Figure 16: An example of the types of results obtained from running successive simulations of 
the Family Problem with very large samples (here n=2000).  

 

Our perception of closeness hinges in part on the scaling that the graphs in TinkerPlots do 

automatically and on the fact that we are attending to global features revealed at the “sketch 

level” rather than to the absolute numerical differences among the event frequencies (see 

Hovarth & Lehrer 1998, p. 131, for a related discussion). Surely, most of our students do not 

appreciate the effects of scaling on their perceptions. We provide students a more qualitative 

explanation of the Law of Large Numbers, telling them that with large samples, we tend to get 

what we expect. With small samples, however, it is fairly easy, just by chance, to get results that 

deviate from what we expect. This is because just a few single outcomes in a small sample can 

radically affect the shape of the distribution. We follow this up by doing a classroom 

demonstration in which we repeatedly watch a sample of 2000 as it grows over time. The 

observation is that at the beginning, the distribution often looks little like the expected 

distribution but that, after time, it comes to closely resemble what we expect according to the 



 28 

sample-space analysis. When we encounter this problem again in other contexts, many of the 

students can quickly anticipate the relationship between sample size and model fit.  

4.5 Summary of Approach 
 
In the yellow and blue portions of Figure 17, we depict our view of the structure of students’ 

explorations of each of the three problem contexts. In this approach, we alternate repeatedly 

between phases of theory exploration and development (yellow portion of Figure 17) and data 

collection and analysis (blue portion). Each investigation begins by having students make their 

best guess about the particular situation. For example, in the Family Problem, most students 

     
Figure 17: Theory-data phases in our chance activities. This iterative structure between 
theorization (upper part of diagram) and data (lower portion) begins with students testing initial 
predictions (T0) by collecting data from the real situation (D1). Theorization typically progresses 
with an exploration of the sample space (T1), which students use both to explain the data they 
have previously observed and to formalize what they expect to observe in future samples, 
generated using TinkerPlots (D2). Finally, students use their computer model to repeatedly test 
how closely simulated data (D3) resemble their theoretical expectations. In the process, they come 
to understand sample-to-sample variation in terms of random noise (T3), which they can 
manipulate via the sample size (i.e., the Law of Large Numbers). 
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initially expect the distribution shown above T0 in the figure. This expectation might be based on 

a combined belief in the equiprobability bias (Lecoutre 1992) and the representativeness 

heuristic (Kahneman & Tversky 1972), according to which students regard the extreme values as 

unlikely but all other possibilities as equally likely.  

 

After they have made their expectations explicit, students then collect and analyze data from the 

real situation. In the Family Problem, this results in a distribution like that shown at the bottom 

left of Figure 17. These data typically lead students to question their initial ideas and motivates 

the need to develop an alternative theory. This misfit between their initial expectation and data 

they collect also helps establish the more general enterprise as one of model fitting. 

 

One alternative theory we prepare students to consider is based on an analysis of the set of 

possible outcomes — the sample space. In the Family Problem, students arrange all the 16 

possible gender orders in a distribution (see Figure 17 above T1). This distribution serves both as 

an expectation for the shape of the distributions they will later observe and also as an explanation 

for that shape. Continuing in the spirit of model-fitting, students put this new possible 

explanation to the test by building a computer model of the situation and conducting multiple 

trials to see how the simulated data are distributed (depicted below D2 in Figure 17). In 

TinkerPlots, students can color the cases in a graph according to values on another attribute. In 

the graph above T2 in Figure 17, the cases have been colored according to the specific individual 

outcomes. This feature helps students see the empirical distribution of the number of boys in 

terms of the expected distribution based on the sample space, because they can now observe that 

the highest frequency family of 2 boys and 2 girls is composed of 6 different specific orders 

while the families with 0 and 4 boys each have only one order.  

 

In the final stages of an investigation, students focus on differences (i.e., the fit) between the 

distribution they expect based on the sample space and the distributions they actually get. They 

come to see these differences as “noise” (depicted above T3 of Figure 17), which they can 

increase or decrease by changing the size of the sample they collect. 
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By the end of each investigation, students have observed both real data from the context and 

multiple repetitions of simulated data. From the multiple repetitions, the students get a better 

sense of sample-to-sample variability. Without the observation that samples can vary, it would 

not be possible in these contexts to foster a sense of data as signal and noise. Having observed 

the distribution of results looking different each time we press Run, we can raise the question of 

what, if anything, is staying the same from sample to sample. We cannot speak or think about 

data having a “signal” without simultaneously thinking or speaking about the noise, and vice 

versa. The two ideas are co-constructed. 

 

When we consider various statistical intuitions and ideas such as the idea of signal-noise, or 

sample space, or the Law of Large Numbers, we tend to think of them as conceptions. But they 

are perceptions as well. Indeed, it is somewhat misleading to regard conception and perception as 

two separate, cognitive processes, as they are highly interrelated. What we know highly 

influences what we can see; what we see drives what we can come to know (cf. Neisser 1976). 

 

So even though students are basically observing the same sort of data as they progress through an 

investigation, their conceptions and perceptions of those data are ideally changing. Once they 

have an image of the sample space, students are able to see new data they subsequently collect in 

a fundamentally different way. Similarly, coming to regard data as a combination of signal and 

noise involves perceiving data in a different way. The noise, or variability, is perhaps easiest to 

observe in real time, as we are collecting data. Using the computer, students can observe a 

distribution of sums of two dice start “growing,” and, as it gets large, more closely resemble the 

distribution predicted from the sample space. This is not a phenomenon that we can see without 

preparation. Thus, another way of understanding our sequence of activities in each of the three 

investigations is that at each stage, we are preparing students to see something new in data 

collected during a subsequent stage, where the ability to “see something new” is synonymous 

with learning a new conception.  

 

Without the computer, these sorts of observations are simply not possible. There is not enough 

classroom time to collect the amount of data needed, nor is there generally the ability to observe 

those data accumulating fast enough in real time so we can directly observe phenomena such as 
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“settling down.” The Sampler comes with a control that allows students to vary the speed of the 

sampling from very slow to very fast. While building a model of a situation in the Sampler, 

students typically begin sampling at the slower speeds. This allows them to evaluate and alter the 

settings (such as draw and repetition numbers) until they arrive at the desired model. Once they 

believe their model to be correct, they on their own speed up the sampling process. At the higher 

speeds, they can watch the graph of its output build quickly. Most do not go to the fastest setting, 

which draws all the data first and only then graphs them. Rather, they choose a speed which still 

shows cases being added to the graph in pieces. Interestingly, these are the speeds most effective 

for observing the phenomenon of “settling down.” 

 
5. CONCLUDING REFLECTIONS 

 
A major premise of our approach is that students’ investigation of chance should be centered on 

explaining and predicting actual data. In this way, the ideas they develop about chance are not 

disconnected from observable phenomena. Ideally, they do not feel that they are learning a way 

of thinking that is divorced from their actual experiences. Having developed a possible 

explanation for data observed during the early part of an investigation, they then collect more 

data, during which they can repeatedly observe events amassing in real time.  

 

In this report, we have offered little analysis of student thinking and learning. We have just 

begun an evaluation of the data collected from our last field test in which we attempted a 

systematic and rigorous assessment. Based on our initial impressions of the data, they include 

both hopeful indicators as well as some troubling ones. Among the hopeful ones are that few 

students at the end of the intervention seem to be reasoning according to the outcome approach 

(Konold, 1989). Among the troubling ones, and quite surprising to us, is how difficult it appears 

to be for students to learn the need to consider the sample space in thinking about new 

probabilistic situations. Once we remind them, most can quickly enumerate a sample space and 

use it to form reasonable expectations about the probability of events and the shape of 

distributions they are likely to observe. But without cueing, their thinking is dominated by 

intuitive judgments, even for situations that are isomorphic to ones we have explored together in 

depth. This is one reason that we have maintained three problem contexts in our materials, all of 

which focus on the same basic ideas. Even these three investigations, which together require 
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about two to three weeks of instruction, appear insufficient to prepare students to make correct 

predictions about similar situations without some support. However, that the amount of support 

required at the end of instruction is considerably less than at the beginning is an indicator of 

learning.  

 

We offer this as a possible consideration: suppose most young students cannot learn the basic 

ideas of probabilistic thinking over a period of a few weeks. This consideration is partly based on 

our experiences during the past twenty years teaching data and chance and also partly on 

reflecting on our own learning histories. Regarding the latter, neither of us can recall a single 

class experience which resulted in a new insight about probability. Our development of 

understanding seems to be spread over many years and perhaps never gelled into a reasonably 

coherent system until we began teaching it ourselves. If it turned out to be the case that 

probabilistic thinking is only slowly acquired, this would not mean that we should put off 

teaching it to young students. Indeed, if probabilistic thinking is an important educational goal, 

and it develops slowly, then we should begin instruction as early as possible and return to the 

topic regularly throughout the middle and high school years. However, if core probabilistic 

understandings develop slowly over years rather than weeks, it poses a challenge for those of us 

trying to assess the impact of our instructional interventions. Time to “relearn” a concept, or the 

level of support needed to apply it in a new situation, may prove more sensitive indicators than 

items intended to demonstrate unassisted application of that concept.  
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