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Abstract

This paper presents a method for reproducing a simple cen-
tral pattern generator (CPG) using a modified Echo State Net-
work (ESN). Conventionally, the dynamical reservoir needs to
be damped to stabilize and preserve memory. However, we
find that a reservoir that develops oscillatory activity without
any external excitation can mimic the behaviour of a simple
CPG in biological systems. We define the specific neuron en-
semble required for generating oscillations in the reservoir and
demonstrate how adjustments to the leaking rate, spectral ra-
dius, topology, and population size can increase the probability
of reproducing these oscillations. The results of the experi-
ments, conducted on the time series simulation tasks, demon-
strate that the ESN is able to generate the desired waveform
without any input. This approach offers a promising solution
for the development of bio-inspired controllers for robotic sys-
tems.
Keywords: Reservoir Computing; Echo State Network; Cen-
tral Pattern Generator; Oscillation

Introduction
Central pattern generators (CPGs) are neural circuits (e.g.,
Stomatogastric ganglion circuit and crustacean cardiac gan-
glion) found in many animals that are responsible for gener-
ating rhythmic motor patterns, such as those used in walking,
swimming, and breathing (Marder & Bucher, 2001; Harris-
Warrick, 2011; Ijspeert, 2008; Sims, Humphries, Hu, Medan,
& Berni, 2019). Most interestingly, such motor patterns can
be achieved without a driving input. Since its discovery, much
research has focused on attempting to reproduce CPGs in or-
der to understand how they work and potentially apply this
knowledge to the development of, for instance, prosthetic
limbs, robotic systems, and more (Ijspeert, 2008; Ijspeert
& Crespi, 2007; Torrealba, Cappelletto, Fermı́n, Fernández-
López, & Grieco, 2012; Sartoretti et al., 2018; Lopez-Osorio,
Patino-Saucedo, Dominguez-Morales, Rostro-Gonzalez, &
Perez-Peña, 2022). The researchers used a combination of
artificial neural networks and mathematical modeling tech-
niques to achieve this goal.

However, previous attempts to develop a computational
model of CGPs have not been successful in creating a model
that operates without any external input. Mathematical mod-
els of CPGs have typically relied on predefined mathematical
functions, such as the half-center model and Hopf oscillator,
to act as pacemakers or half-center oscillators (Sartoretti et
al., 2018; Crespi & Ijspeert, 2006; Owaki & Ishiguro, 2017;
Yu, Gao, & Deng, 2020; Aoi et al., 2012). Methods that used

artificial neural networks to generate oscillation often involve
networks with predefined topology, input, or external feed-
back to calibrate the output or generate oscillation (Lopez-
Osorio et al., 2022; Wyffels & Schrauwen, 2009a; Strohmer,
Manoonpong, & Larsen, 2020; Rostro-Gonzalez et al., 2015;
Vandesompele, Urbain, Dambre, et al., 2019; Li, 2011), and
in some cases, the model must be optimized before it can
generate oscillation (Wyffels & Schrauwen, 2009b; Rusch &
Mishra, 2020). In this study, we show how CPG can be repro-
duced with modified Echo State Networks (ESNs) to address
these limitations. The use of ESNs in this study is significant
because they are known for their simplicity of implementa-
tion and their ability to model complex dynamics, making
them well-suited for reproducing CPGs behaviour. Addition-
ally, ESNs have the advantage of being able to work in an
online mode, which means that the network can continue to
learn and adapt as it receives new inputs.

That being said, this research aims to develop a simplified
computational model of a CPG that can generate rhythmic
patterns without any external input or feedback. The model,
called Self-Oscillatory Echo State Network (SO-ESN), gen-
erates oscillations to reproduce desired waveforms. The re-
produced waveforms are identical to reproducing CPG motor
patterns, which can be applied to the actuators of a robotic
system to create rhythmic movement. The novelty of our
model lies in (1) its connectivity, which can generate spon-
taneous, diverse, and self-sustaining oscillations without any
external input or feedback, (2) the model is simple and fast,
and (3) the oscillation patterns are not predefined.

Background
Echo State Network
An ESN is a type of recurrent neural network (RNN) that is
easy to train and excels in modeling dynamic systems (Jaeger,
2002, 2001). The network architecture consists of a ‘reser-
voir’ where the connectivity and weights of reservoir units are
randomly initialized, recurrent, and fixed throughout training.
A readout layer is trained using the nonlinear response from
the reservoir to predict a set of outputs. So far, ESNs have
been successfully applied to a wide range of tasks, such as
time series prediction, system identification, and natural lan-
guage processing.

Conventionally, the dynamical reservoir needs to be
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damped to preserve the memory of past inputs (Jaeger,
2002). In this paper, however, we discover that a reservoir
can develop oscillatory activity without any external excita-
tion, which mimics the basic characteristic of a CPG.

In this section, we briefly revisit the workflow of ESNs. In
a classical ESN with N neurons in the reservoir, the update is
typically defined by a set of linear equations of the form:

xt+1 = (1−a)xt +a× f (Winut +Wxt) (1)

where xt is the state of the reservoir at time t, ut is the K
dimensional input, Win is the N ×K weight matrix connect-
ing the input to the reservoir, W is the N ×N weight matrix
connecting the reservoir neurons to each other, a is the leak-
ing rate, and f is a non-linear activation function. The future
reservoir state xt+1 is a function of the previous state xt and
the input ut and is updated every time an input is presented.

The output yt is generated by a linear combination of the
current state of the reservoir xt and a weight matrix Wout . The
equation for generating the output is typically defined as:

yt = g(Woutxt) (2)

where yt is the L dimensional output at time t, Wout is the
N × L weight matrix connecting the reservoir to the output
layer, and g is an output activation function (g can be omitted
depending on the tasks). The only part of the network that is
trained during the learning process is the weight matrix Wout ,
whereas the reservoir weights W are fixed after initialization.

Self-Oscillatory Echo State Network (SO-ESN)
Here, we introduce a SO-ESN consisting of a reservoir that
generates oscillations without any feedback or input. The
weight and the initial state of the reservoir units are initial-
ized arbitrarily from a uniform distribution [−0.5,0.5]. Note
that, the initial state of reservoir units should be non-zero
to ‘kick start’ the oscillation. The success rate for gener-
ating oscillations is not affected by the scaling of the initial
state. However, a small initial state may delay the time it
takes to reach the oscillation phase. A readout layer is con-
nected to the reservoir and is fine-tuned to produce the desired
waves.

Since our model architecture (Fig. 1) does not contain an
input layer or feedback weights, the form of the reservoir unit
state update equation is modified:

xt+1 = (1−a)xt +a× f (Wxt) (3)

Where f is a tanh function. Essentially, the current state of
reservoir units is updated via the dot product of the weight
matrix and the previous state, with respect to the leaking rate.
The leaking rate controls the extent to which the state of the
reservoir neurons decays over time. In other words, the leak-
ing rate affects the memory capacity of the ESN. A high leak-
ing rate will make the network forget previous information
quickly, while a low leaking rate will make the network retain

previous information for a long time. Compared to the clas-
sical ESN, the leaking rate plays a different role in SO-ESN.
Here, it controls the frequency of the oscillation produced.

The output of SO-ESN is computed by Eq. 2, but with
the activation function g omitted. Ridge regression is used
to train the readout layer Wout :

Wout = (X⊤X +λI)−1X⊤Y (4)

where X is the history of the reservoir units state
{x0,x1, · · · ,xτ} ∈ X , Y is the ground truth, and λ = 1e − 8
is the ridge parameter. Note that Eq. 4 is not required to gen-
erate self-oscillation of the reservoir units.

Figure 1: Model architecture of SO-ESN. W and Wout denote
the connectivity of the reservoir and the reservoir to the read-
out layer, respectively, x is the state of the reservoir units, and
y is the output.

Updating without any external input creates a scenario
where the occurrence of oscillation highly relies on the con-
nectivity, leaking rate, and spectral radius (the maximum ab-
solute eigenvalue of the reservoir weight matrix) of the reser-
voir units. These components are explored extensively in this
paper.

Results
Self-Oscillatory Reservoir can Generate Oscillations
To understand the dynamics of our network, we randomly ini-
tialized several reservoirs and observed the reservoir units’
states. The reservoirs are initialized with a population of
N = 100, leaking rate a = 0.5, and spectral radius ρ = 1.25.
In Fig. 2, we plot the dynamics of some reservoirs by running
the networks for 1000 time steps and recording the state of the
reservoir units. The results illustrated that some reservoirs
generate damped oscillations, where oscillations fade away
and the state of the reservoir units converges to a constant
value. On the other hand, some reservoirs generate stable
and self-sustaining oscillation. We observed that the reser-
voir unit’s state varies in amplitude but shares the same fre-
quency. Such phase locking of frequency is induced by the
strong coupling of reservoir units. In this paper, we refer to
the reservoir that oscillates as self-oscillatory reservoir.
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Figure 2: Examples of oscilla-
tions produced by the internal neu-
rons of the self-oscillatory reser-
voirs. (A) Damped oscillation.
(B) Self-sustaining oscillation gen-
erated from a self-oscillatory reser-
voir. After a few time steps, the
initial conditions of the neurons are
eliminated, and the neurons reach a
steady oscillation phase. (C) Com-
plex waveforms generated from a
self-oscillatory reservoir. The anal-
ysis of complex waveforms using
the fast Fourier transform reveals
that they consist of multiple fre-
quency components.

The self-oscillatory reservoir can generate complex wave-
forms, which are created spontaneously from the combina-
tion of multiple sub-sets of the coupled reservoir units. These
waveforms are important as they carry more information than
real-valued waveforms, facilitating the reproduction of more
complex behaviour. Otherwise, we can obtain a complex
waveform using the linear combination of the readout layer.

Interestingly, the self-oscillatory reservoir remains to obey
the echo state property, where the initial state of the neurons
is washed away after several time steps and enters a stable
oscillation phase.

Leaking Rate and Spectral Radius
The findings in the previous subsection raised the questions
of (1) what criteria are required for the reservoir to oscil-
late, (2) how to increase the probability of initializing a self-
oscillatory reservoir. and (3) the effect of leaking rate and
spectral radius on the produced oscillation. To answer these
questions, we performed the following experiment. We per-
form parameter sweeping of the leaking rate and spectral ra-
dius with the range of 0 ≤ a ≤ 1 and 0.1 ≤ ρ ≤ 3 respectively.
With each set of parameters, we perform Monte Carlo sam-
pling by generating 1000 reservoirs and determining the ratio
of self-oscillatory reservoirs successfully generated. We use
the periodogram method to identify if the reservoir is self-
oscillating by analyzing the signal produced in the last 100
timesteps of the reservoir units. This method checks if the
spectral density of the signal has non-zero values at multi-
ple frequency components, which indicates that the signal is
likely oscillating.

The heatmap in Fig. 3 displays the relationship between the
leaking rate and spectral radius of the self-oscillatory reser-
voir. The results demonstrated that when the spectral ra-
dius is close to or smaller than 1, the reservoir is less likely
or unable to self-oscillate. Additionally, a larger spectral ra-
dius tends to produce more chaotic oscillations than a smaller

one. On the other hand, the leaking rate does not signifi-
cantly impact the likelihood of generating a self-oscillatory
reservoir, but it can be used to adjust the frequency of the os-
cillation. Slow oscillation is more likely to be achieved when
the leaking rate is small; Otherwise, a self-oscillatory reser-
voir tends to generate fast oscillation when the leaking rate is
large.

Neuron Ensemble Responsible for Oscillation
In this section, we identify a few neuron ensembles respon-
sible for generating oscillation within the reservoir, referred
to as self-oscillatory neuron ensembles. Starting from the
simplest form of a neuron ensemble, we showed (Fig. 4A)
that two neurons can oscillate via a reciprocal and recurrent
connection. A neuron ensemble with such a configuration
typically consists of 3 excitatory synapses and 1 inhibitory
synapse. In detail, neuron A ‘flips’ the state value of con-
nected neuron B, and then neuron B reciprocates by ‘flipping’
the state value of neuron A. This resembles the reciprocal
inhibition often found in a biological CPG (Bucher, Haspel,
Golowasch, & Nadim, n.d.).

As the neuron ensemble population increases, the motif
classes that can be formed also increase. Thus, the degree
of freedom in forming different types of signals also in-
creases. Based on empirical observation, neuron ensembles
with larger populations can form more complex oscillations
with more bands of frequency; But neuron ensembles with a
smaller population only generate high-frequency oscillations.
The self-oscillatory neuron ensembles acting as a subset of
the reservoir can couple with other non-oscillatory neuron en-
sembles and cause them to oscillate. Krauss, Zankl, Schilling,
Schulze, and Metzner conducted a review of analyses on net-
work motifs, specifically focusing on a three-neuron structure
identical to the one shown in Fig. 4B (Krauss et al., 2019).

In another experiment, we record the ratio of self-
oscillatory reservoirs successfully generated with respect to
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Figure 3: Ratio (%) of self-oscillatory reservoir generated by tuning leaking rate and spectral radius. The heatmap indicates
the ratio of self-oscillatory reservoirs (N = 100) generated when adjusting the leaking rate and spectral radius. (C, D) When the
spectral radius is close to or less than one (ρ < 1), the reservoir becomes less likely to self-oscillate. (A, B) Besides, a larger
spectral radius also creates a more chaotic oscillation than a smaller one (compare A, B with E). On the other hand, the leaking
rate does not affect the probability of generating a self-oscillatory reservoir; However, it can adjust the oscillation frequency.

Figure 4: Examples of self-oscillatory neuron ensembles.
Edges in green indicate excitatory synapses, and edges in red
indicate inhibitory synapses. (A) Two reservoir units form
the simplest form of a self-oscillatory neuron ensemble. The
plot on the right shows the state of the two neurons’ progress
over time. (B) An instance of a self-oscillatory neuron ensem-
ble composed of three reservoir units. (C) The ratio of self-
oscillatory reservoirs successfully generated with and without
predefined self-oscillatory neuron ensembles from (A).

the population (see Fig. 4D). Overall, the larger the popula-
tion, the greater the chances of producing a self-oscillatory
reservoir because there is a higher probability of having self-
oscillatory neuron ensembles. Further, we perform the same
experiment but replace the first two neurons of the randomly
initialized reservoir with the self-oscillatory neuron ensem-
bles from Fig. 4A. We find that the probability of success-
fully generating a self-oscillatory reservoir becomes signifi-
cantly higher. Hence, this indicates that the main component
needed to generate a self-oscillatory reservoir is to contain
a self-oscillatory neuron ensemble. Besides, the ratio grows
slower as it approaches a higher population, converging with
the result shown in the previous experiment. This is due to
the effect of the injected neuron ensemble becoming less sig-
nificant. Moreover, a small number of neurons added to a
predefined self-oscillatory neuron ensemble can decrease the
ratio of the self-oscillatory reservoirs generated, as a result of
these additional neurons counteracting the neuron ensemble.
These analyses justified the conclusion that, when viewed
from a network topological perspective, the interaction be-
tween reservoir units becomes an important building block
for producing network-based rhythmicity.

Weakly Coupled Sub-reservoirs Create Oscillation
with Large Variation
Up to this point, studies in the previous section only showed
fully connected reservoirs, which are only able to generate
phase-coupled oscillations. This created duplicate features
(highly similar oscillation patterns), which provided limited
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Figure 5: Weight matrix of the reservoirs with different topologies and the oscillation they generated. (A) A fully connected
reservoir is only capable of producing oscillations at a single frequency. (B) A sparse connectivity reservoir generates oscilla-
tions at the same frequency. Although sparse connectivity does not directly decrease the likelihood of self-oscillatory reservoirs,
the probability of generating low-frequency oscillations is limited by the population of reservoir units. (C) A reservoir com-
posed of sub-reservoirs creates oscillations with various frequencies. Some sub-reservoirs may generate damped oscillation,
which becomes a zero-variance feature for the readout layer. (D) Sub-reservoirs with weak coupling. Creating weak connec-
tions between sub-reservoirs increases the likelihood of the whole reservoir generating oscillations with various frequencies.

contributions to the training of the readout layer. Thus,
a topology producing diverse features in SO-ESN dynam-
ics is necessary. Here, we explored the topologies of (1)
sparse connectivity, (2) sub-reservoirs, and (3) sub-reservoirs
with weak coupling and their impact on SO-ESN dynamics
(Fig. 5).

Similar to the reservoir with full connectivity, a reservoir
with sparse connectivity generates oscillations with the same
frequency. Although sparse connectivity does not directly
contribute to the decrease in the probability of generating a
self-oscillatory reservoir as long as self-oscillatory neuron
ensembles exist. But it is worth noting that the probability
of generating low-frequency oscillations is bounded by the
population of reservoir units. Therefore, to generate a low-
frequency oscillation with sparse connectivity, the population
of the reservoir needs to be increased.

To generate oscillations with different frequencies, we can
divide the reservoir into several sub-reservoirs (see Fig. 5C).
The connectivity of such a reservoir can be described in the
following block matrix form:

W =


ω0 0 · · · 0
0 ω1 · · · 0
...

...
. . .

...
0 0 · · · ωM

 (5)

where the sub-reservoir is denoted as ω and M as the total
number of sub-reservoirs. To simplify, we defined the size
of all sub-reservoirs as being constant. These sub-reservoirs

can be assigned with different leaking rates to create a vari-
ance in frequencies. Instead of treating the leaking rate a
as a scalar in Eq. 3, it can be represented as a leaking rate
matrix a ∈ A where each element is a random variable sam-
pled from a Gaussian distribution. The elements of the A
can be represented by ai, j = N(µ,σ), for i = 0,1, ...,N and
j = 0,1, ...,N. Hence, the state update equation becomes
xt+1 = (1−A)xt +A× f (Wxt). This topology helps create di-
verse features for the readout layer by providing oscillations
with different frequencies. However, some sub-reservoirs can
generate damped oscillation, which becomes a zero-variance
feature (features that do not provide any useful information)
for the readout layer.

To make this better, sparse connections can be estab-
lished between the sub-reservoirs to form coupled oscilla-
tors. This approach allows sub-reservoirs that are capable
of self-oscillation to transfer their oscillatory behaviour to
sub-reservoirs that are not self-oscillatory. This way, the en-
tire reservoir dynamics can be decomposed into loosely cou-
pled subsystems that generate oscillation with large variations
among the sub-reservoirs. The connectivity of such a topol-
ogy can be described by:

W =


ω0 ω1,0 · · · ωM,0

ω0,1 ω1 · · · ωM,1
...

...
. . .

...
ω0,M ω1,M · · · ωM

 (6)

As a result, the weakly coupled sub-reservoir’s generated
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Figure 6: SO-ESN reproduces the trajectory of complex dynamical systems. (A, B) SO-ESN can reproduce the trajectories of
sinusoidal and square waves, and Lorenz chaotic time series with high precision, given oscillations with rich features produced
by the self-oscillatory reservoir. The boxplot showed the optimal number of sub-reservoirs for a fixed population for both
experiments.

oscillations provide a diverse set of features that aid in train-
ing the readout layer.

Reproducing Complex Dynamic Systems
To demonstrate that our model can perform basic CPG be-
haviour without any external input, we conduct experiments
reproducing the trajectory of complex dynamic systems using
SO-ESN. The goal of SO-ESN is to replicate the trajectories
by tuning the readout layer with the actual trajectory, utilizing
merely the state of reservoir units.

Firstly, we generate the ground truth sinusoidal and square
waves, defined as:

dx
dt

= 2(1+ cos(t)),y(t) = sgn(sin10πt) (7)

with sgn be the sign function. In the second experiment,
we increase the complexity of the problem to reproduce the
Lorenz attractor time series with SO-ESN:

dx
dt

= σ(y− x),
dy
dt

= x(α− z)− y,
dz
dt

= xy−βz (8)

with x(0) = 0, y(0) = 1, and z(0) = 1.05 as the initial state
variables and σ = 10, α = 28, and β = 2.667 as the system
parameters.

In both experiments, we set the population size of SO-ESN
to N = 2000 with the total time steps τ = 1000 for the sinu-
soidal and square waves problem and τ= 5000 for the Lorenz
attractor time series problem. The leaking rate matrix A is
drawn from a Gaussian distribution N(0.6,0.1) and we set
the spectral radius to ρ = 1.25. Different values of hyper-
parameters are tested heuristically, where the above setting
provides an optimum result with an ideal computational time.
Both experiments are performed with 1000 trials, and a new
reservoir is initiated for each new trial.

Fig 6 demonstrated that the SO-ESN effectively pro-
duced accurate reproduction of waveforms in both experi-
ments. However, if the reservoir is not oscillating or has

many duplicate features, the linear combination of the reser-
voir units’ states and output weights will not be able to repro-
duce the waveforms accurately. The boxplot in Fig 6 also
illustrates that an optimal number of sub-reservoirs is neces-
sary for a constant population, as too few sub-reservoirs will
not have the ability to generate oscillations with spatially dis-
tinct features. Similarly, when the population is distributed
among many sub-reservoirs, the sub-reservoirs will be too
small to generate oscillations.

Discussion
In this study, we developed a model capable of generating
spontaneous, self-sustaining rhythmic oscillations with di-
verse waveforms without external input or feedback. We dis-
covered that the key to this model’s ability to generate oscil-
lations is the presence of self-oscillatory neuron ensembles.

Currently, although we found a way to increase the like-
lihood of a self-oscillatory reservoir through random initial-
ization, a self-oscillatory reservoir cannot be guaranteed. An
important direction of future work should focus on finding a
method that ensures a self-oscillating reservoir with the de-
sired phase, frequency, and amplitude required. This could
potentially be achieved through the use of evolutionary algo-
rithms or other methods (Liu et al., 2021; Zhan, Li, & Zhang,
2022) to modify the reservoir’s weights and connections.

Another extended work is to further approximate the func-
tionality of a biological CPG. This includes being able to
control the gait transition or to activate, modify, and deac-
tivate the CPG circuit through the use of neuromodulators
(Harris-Warrick, 2011). In this context, the SO-ESN could
function as a circuit that receives high-level commands to
respond to environmental perturbations (Gay, Santos-Victor,
& Ijspeert, 2013; Sartoretti et al., 2018). Such commands
should modulate the characteristics of the generated oscilla-
tions that change the output adaptively.

To sum up, our model demonstrated the ability to repro-
duce motor patterns akin to simple CPG behaviours and its
simplicity might offer a promising path to developing biolog-
ically inspired robotic controllers.
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