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MULTIVARIATE ANALYSIS WITH OPTIMAL SCALING

JAN DE LEEUW

A. Suppose K1, · · · ,Km are convex cones in a Hilbert spaceH ,

with unit sphere S and inner product 〈. | .〉. For a particular choice of

quantifications, transformations, or representations of a variable x j in

K j ∩ S we can compute the correlation matrix R(x1, · · · , xm) by the rule

ri j(x1, · · · , xm) = (xi | x j). Now suppose φ is a real-valued objective

function, defined on the space of all correlation matrices. In this paper

we study the class of techniques that choose the x j in their feasible re-

gionsK j∩S in such a way that φ(R(x1, ..., xm)) is maximized. We discuss

typical cases, including linear and nonlinear principal component analy-

sis, canonical correlation analysis, regression analysis. It is shown that

correspondence analysis and the Breiman-Friedman ACE-methods are

both special cases of this class of techniques. We discuss some choices

for the cones K j, and we indicate that the results simplify greatly if all

bivariate regressions can be linearized. A class of iterative projection

techniques is suggested, that produces convergent algorithms of simple

structure.

This paper was originally presented at the International Conference on Ad-

vances in Multivariate Statistical Analysis which was held at the Indian

Statistical Institute in Calcutta, December 16-20, 1985. It was published

previously in S, Das Gupta and J.K. Ghosh (eds) Proceedings of the In-

ternational Conference on Advances in Multivariate Statistical Analysis,

Calcutta, Indian Statistical Institute, 1988, 127–160.

2000 Mathematics Subject Classification. 62H25.
Key words and phrases. Optimal scaling, correspondence analysis, transformation,

analysis of categorical variables.
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1. I

In this paper we shall be concerned with multivariate analysis (from now on

MVA) techniques that can be described as follows. We start with a number

of variables. A variable is a function on a space of objects. Sometimes, but

not always, the space of objects is a probability space, and the variables are

random variables. If there is only a finite number of objects, and probability

is defined by counting the number of elements, then random variables can

be identified simply with arbitrary vectors of real numbers of lenght equal

to the number of objects. We use the variables, whatever their nature and

origin, to compute correlations. With m variables this defines an m × m

correlation matrix. The next step in our MVA is to establish how ’good’ this

correlation matrix is, according to some criterion or aspect. There are many

possible definitions of ’good’, corresponding with many different aspects

that can be defined in terms of correlation matrices. Many of them will be

reviewed below.

Different MVA techniques are associated with different aspects of correla-

tion matrices. In multiple regression, for instance, in which we try to predict

one variable from the other variables, the aspect we are interested in is the

multiple correlation coefficient. In principal component analysis we are in-

terested in one or several of the eigenvalues of the correlation matrix, in

canonical correlation analysis we look at the canonical correlations, and in

many multinormal likelihood procedures we study the determinant of the

correlation matrix. Of course in computing these various criteria there can

be many interesting byproducts, such as component loadings, regression

coefficients, and so on, but they usually do not play the part of the criterion.
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Thus it is clear what an MVA technique consists of. We compute the in-

tercorrelations of the variables, and we evaluate the correlation matrix by

computing the aspect defining the technique. Thus we impose several very

stringent restrictions on the class of techniques we are studying. In the first

place we do not look at MVA techniques which use hogher order moments

than the second (or higher order marginals, for that matter). Means and

variances are also not relevant. Because we look at correlations our MVA

techniques only study aspects of the variables which are invariant under

separate linear transformations.

After defining the class of techniques we are interested in, we now come to

the non-classi cal part of the paper. Suppose there is missing information,

so that we cannot compute the elements of the correlation matrix, or at least

not all of them. Such missing information can, again, be of various types.

We can have uncorrelated measurement error, for instance, which has been

studied a great deal in psychometrics and econometrics. As a consequence

of this measurement error the diagonal elements of the correlation matrix

of the true parts of the variables is unknown, the off-diagonal elements are

equal to the observed correlations. It is clear that the aspects of the corre-

lation matrix we are studying with our MVA technique may vary with the

choice of diagonal element. For principal component analysis and regres-

sion analysis this particular type of variation has been studied extensively.

A recent review of the results that have been obtained is Bekker and De

Leeuw [1985].

There are other types of missing information, obviously. Some variables

may not have values for some objects, for whatever reason. Filling in these

missing values also influences the aspects. There is a very voluminous lit-

erature dealing with this particular type of variation. We mention only the



4 JAN DE LEEUW

recent review papers of Little [1982]; Little and Rubin [1983] and Titter-

ington and Jiang [1983], which are especially relevant.

The problem of uncorrelated measurement errors, mentioned above, is closely

related to the problem of latent variables, which is also familiar from psy-

chometrics, econometrics, and system theory. A latent variable is, in a

sense, a variable which is missing completely. We do not know anything

about it, we only know its location in the system of variables, i.e. we know

its role in the criterion we are computing. Related to latent variables is the

theory of optimal scaling, which deals with variables about which there is

partial knowledge. For instance, we may know how a variable orders the

objects, but we do not know the precise numerical values. The theory of la-

tent variables was reviewed recently by Aigner et al. [1983] and by Bentler

and Weeks [1982]. Optimal scaling theory is in Young [1981]; Gifi [1981];

De Leeuw [1984a].

In this paper we shall discuss a very general approach to optimal scaling

theory, in particular to algorithm construction. The work is inspired by the

Gifi-system, discussed in Gifi [1981]; De Leeuw [1984a], but the presen-

tation is much more in the tradition of classical multivariate analysis. Our

techniques have numerous special cases, some of them new but a lot of

them already quite old. Among the more interesting special cases we find

correspondence analysis [Greenacre, 1984] and ACE [Breiman and Fried-

man, 1985]. It is hoped that our presentation has a unifying effect on the

development of this class of techniques, comparable perhaps to the effect of

the Dempster et al. [1977] paper on the EM-algorithm.
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2. F, N

The variables are elements of a Hilbert spaceH . The inner product inH is

written as 〈x | y〉, and the norm as ‖x‖. The (correlation) between variables

x and y is ρ(x, y), defined by ρ(x, y) = 〈x|y〉
‖x‖‖y‖ . Thus we tacidly assume that

the variables are in “deviations from the mean”. If x1, · · · , xm are elements

of H , then R(x1, · · · , xm) is the correlation matrix. It has elements ri j =

r(xi, x j). It is clear that we can only compute a correlation between nonzero

variables. If x and y are in S, the unit ball inH , then r(x, y) is simply 〈x | y〉.

The two most obvious interpretations of our general symbolism are men-

tioned briefly here. For ordinary matrices, with n rows and m columns, the

space H is the (n − 1)-dimensional subspace of Rn of all centered vectors.

The columns of the data matrix are the elements of H . If x1, · · · , xm are

random variables, they are elements of L2(A, B, p), the space all random

variables on the probability space (A, B, p) with finite variances. Again we

suppose the variables are centered, i.e. they have zero expectation. In the

first example 〈x | y〉 is the usual inner product x′y, in the second example

〈x | y〉 is the covariance of x and y.

The aspect of the correlation matrix that we are studying is a real valued

function φ, defined on the space of all correlation matrices, which is a com-

pact convex subset of the space of all m × m matrices. More precisely it

is a subset of the
(

m
2

)
dimensional linear manifold of all symmetric m × m

matrices with unit diagonal. In fact it is the intersection of this manifold

and the closed convex cone of all m×m positive semidefinite matrices. It is

clear that we can study the variation of φ over all correlation matrices, but

this will usually not be very interesting. We usually have some information
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about our variables, and the information we have restricts the set of feasible

correlation matrices that we have to consider.

In this paper we suppose that the information we have is of the form that

variable x j is in a known closed convex cone K j. Thus in our MVA prob-

lems we know the cones K1, · · · ,Km, and we are interested in the vari-

ation of R(x1, · · · , xm) if x j varies in K j. Clearly continuity of φ is suf-

ficient to quarantee that φ attains its extreme values on R(K1, · · · ,Km),

which is a closed subset of a compact set, and is consequently compact.

We shall be particulary interested, in this paper, in the maximum of φ over

R(K1, · · · ,Km). Of course by changing φ to −φ this covers the minimum

as well. Looking for the maximum can be interpreted as looking for the

correlation matrix which is best in the aspect we are studying.

We have not said much about the conesK j so far. In many applications they

will be subspaces. If we have a variable with information on some objects

missing, then K is the subspace of all centered variables whose nonmiss-

ing part is linear with the observed nonmissing part. If we have a latent

variable, then K is the whole space. For polynominals and splines we use

low-dimensional subspaces. Monotone transformations define polyhedral

convex cones in Rn, and more general isotone cones in L2. General trans-

formations of a random variable define infinite dimensional subspaces of

L2. For variables which are not to be transformed at all the cones are rays

through the orign. And so on. We shall encounter various other possibilities

in our historical section.

As we have already indicated above choosing an x j inK j can sometimes be

interpreted as choosing a transformation of an observed numerical variable.
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In the case of missing data we often speak of imputation of the missing val-

ues. In the case of non-numerical (categorical) variables the term quantifi-

cation is more appropriate. For a variable with k possible values the space

of all quantifications is usually a k − 1 dimensional subspace of H , but it

can also be the cone of isotone functions in this subspace if the categories

of the variable are ordered.

3. S H

In this section we shall mention some of the more important examples of

the class of MVA techniques we study. We shall see that some of them

are already quite old. Clearly they can differ both in terms of the aspect

of the correlation matrix they are studying, and in the types of cones of

transformations and quantifications they admit.

For two variables there is only one correlation coefficient, which is then, al-

most unavoidably, the only aspect we can study. Variation of the correlation

coefficient under choice of category quantification was already studied by

Pearson, in the case of two categorical variables. References and discussion

are in De Leeuw [1983]. Further study of the case m = 2, with K1 and K2

finite dimensional subspaces of Rn, and with criterion r12, are in Hirschfeld

[1935], Fisher [1940], Maung [1941a,b]. Extensions to subspaces of L2 are

in Gebelein [1941], Sarmanov [1958a,b], Lancaster [1958], Renyi [1959],

Csáki and Fisher [1960, 5, 1963]. A much more complete biography of

maximal correlation is contained in Lancaster [1969]. The data analysis

technique known as canonical analysis of contingency tables and also as

correspondence (factor) analysis. It can be interpreted as a method which

finds systems of quantifications that give stationary values of r12. We do not

even try to review the literature connected with this technique, but we refer
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the reader to De Leeuw [1973], Nishisato [1980], Gifi [1981], Greenacre

[1984], Lebart et al. [1984], Benzécri [1973a,b, 1980a,b,c] and Benzécri

[1982].

A natural criterion in the case of one dependent and m−1 independent vari-

ables is the multiple correlation. In Rn, with categorical variables, the first

instance of this technique is perhaps example 46.2 in Fisher [1938]. He

suggests the use of ’appropriate’ scores for a categorical dependent variable

in a simple factorial ANOVA. In the ANOVA context this was generalized

to a dependent polyhedral cone by Bradley et al. [1962], Kruskal [1965],

Roskam [1968], De Leeuw et al. [1976] also allowed for cone transfor-

mations of the independent variables. Winsberg and Ramsay [1980] used

polyhedral cones defined by monotone splines. For the general multiple re-

gression problem Young et al. [1976] allowed for the choice of either the

isotone cone, the linear ray, or the quantification subspace for all of the

variables.

Theoretical results for L2 were obtained already by Sarmanov and Zacharov

[1960], but the L2 problem was first studied from the algorithmic point of

view by Breiman and Friedman [1985]. They set up their algorithm in terms

of the random variables and the subspaces consisting of measurable finite-

variance transformations. If translated into the practical Rn context, this

leaves far too much freedom. Thus the optimal transformations found by

the ACE algorithm are smoothed, which means in most cases transformed

linearly. The smoother is usually not defined explicitly in terms of condi-

tions that the optimal transformations must satisfy, which means that the

actual optimization problem is not always defined unambiguously.

If m variables enter symmetrically into the criterion, we often deal with a

form of principal component analysis. In such cases the aspect is usually



MULTIVARIATE ANALYSIS WITH OPTIMAL SCALING 9

defined in terms of the eigenvalues of the correlation matrix. The tech-

nique which maximizes the largest eigenvalue of R was introduced, in a

somewhat different way, by Guttman [1941]. If we look at the other sta-

tionary values of this optimization problem we are actually performing a

multiple correspondence analysis or homogeneity analysis. This technique

is discussed extensively in the correspondence analysis books mentioned

above, and also in Hill [1974]. Maximizing the sum of the first p eigenval-

ues was implemented by Roskam [1968] and Kruskal and Shepard [1974].

They used cones of isotone transformations in Rn. Young et al. [1976] used

mixed nominal, ordinal, and numerical variables in Rn. This was combined

with multiple correspondence analysis into a single principal component al-

gorithm by De Leeuw and Van Rijckevorsel [1980]. De Leeuw et al. [1981]

used subspaces defined by B- splines, and Winsberg and Ramsay [1983]

used cones of monotone integrated B-splines. Koyak [1985] extended the

Breiman-Friedman ACE-algorithm to maximization of the first p eigenval-

ues.

Criteria defined in terms of the first p canonical correlations or squared

canonical correlations were optimized by Young et al. [1976] for p = 1

and by for general p. Of course this has multiple regression, discriminant

analysis, and MANOVA Burg and De Leeuw [1983] as special cases. Gen-

eralization of this approach of K sets of variables, with K arbitrary large,

was proposed by Van der Burg et al. [1984]. In all these contributions the

problem was formulated in Rn, and the cones were of the mixed type we

have already discussed earlier in connection with the Young-De Leeuw-

Takane ALSOS series or the Gifi-series of programs. The multiple regres-

sion aspect was generalized in another direction by De Leeuw [1984b], who
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suggested maximizing the sum of the determination coefficients for a given

path model, possibly with latent variables.

The determinant of the correlation matrix, which is related to maximum

likelihood estimation for the multivariate normal, was maximized over quan-

tification subspaces in Saito [1973, 1974] and in Chan and Bargmann [1974].

This was extended to mixed ALSOS-type cones in Kuhfeld et al. [1985].

For completeness we also mention Takane et al. [1979], who find optimal

scalings and modify diagonal elements at the same time to fit the factor

model. Also compare Mooijaart [1984] in this context.

It is clear from this historical overview of the literature that many aspects

have been studied before. The results are scattered over the theoretical and

applied literature, and many more relevant references could indeed be given.

Gifi [1981] has a very complete bibliography. It is not entirely clear what

the relationship of the various techniques is, and how they are related to

classical statistical theory. The developments, expecially those in psycho-

metrics, are strongly algorithm oriented and are few theoretical results are

available. Thus the field is in a somewhat disorganized state, dominated by

ad hoc proposals and solutions. The ACE procedures of Breiman, Fried-

man, and their students are, in some respects at least, better imbedded in

mathematical theory. In other respects they are simply another parallel de-

velopment.

A superficial perusal of the references shows that there are various series

of programs involved. The Bell-system, created by Kruskal and Shepard in

the early sixties, was the first. Roskam created his own series of programs

in 1968. In the early seventies Young, De Leeuw, and Takane started their

ALSOS series; and in the late seventies the Gifi system got under way.

In the early eighties these series were joined by Winsberg and Ramsay,
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who used monotone s lines and likelihood-derived criteria, and by Breiman

and Friedman, who used conditional expectations and worked in L2. In

most of these series the developments are started with the linear model,

and very soon after that principal component analysis follows. This is not

a surprising or unfortunate way to proceed, but it does mean that history

seems to repeat itself many times in this field.

4. N C   E

The problem we study in this paper is to maximize φ(R(x1, · · · , xm)) over

x1 ∈ K1, · · · , xm ∈ Km. In case of infinite-dimensional H some care is

needed to establish the existence of the required maxima, but usually it is

not difficult to show existence. Compare Breiman and Friedman [1985], or

Koyak [1985], for instance, and the many references connected with maxi-

mal correlation theory. Even if we cannot show that a maximum exists, we

could still be interested in the supremum, or in the stationary values of the

criterion.

In this section we study necessary conditions for an optimusing assuming

that φ is differen tiable. We writeH? for the dual ofH . Moreover x?j is the

element ofH? for which x?j (x) = 〈x | x j〉 for all x ∈ H .

Let us write gi j for the partial devative of φ with respect to ri j. Let us now

evaluate the partials in a point (x1, · · · , xm) with x j ∈ S for all j. Then

∂φ

∂xk
=

m∑
i=1

m∑
j=1

∂φ

∂ri j

{
∂〈xi | x j〉

∂xk
− ri j

(
∂‖xi‖

∂xk
−
‖x j‖

∂xk

)}
=

=

m∑
i=1

m∑
j=1

gi j{(δ jkx?i + δ
ikx?j ) − ri j(δikx?i + δ

jkx?j )}.
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Define

z?k =
m∑

i=1

gikx?i ,

and

µk =

m∑
i=1

gikrik.

Then

∂φ

∂xk
= 2(z?k − µkx?k ).

It follows that the necessary condition for an extreme value is that z?j −µ jx
?
j

is in K?j , the cone dual to cK j, for all j. Or, to put it differently, that

〈z j | x〉 − µ j〈x j | x〉 ≤ 0

for all x ∈ K j. Here , of course, z j =
∑

gi jx j, i.e. z j is the unique element of

cH for which z?j (z) = 〈z j | z〉 for all z ∈ H . Observe that 〈z j | x j〉 − µ j〈x j |

x j〉 = 0 for all j.

There is a much more convenient way to write the necessary condition.

Suppose P j projects on K j, in the metric ‖.‖. Then it is well known that

µ jx j is the projection of z j on K j if and only if 〈z j − µ jx j | x〉 ≤ 0 for all

x ∈ K j. Consequently our necessary condition can be written as

P j(z j) = µ jx j.

Another way to write this equation is by defining

z̃ j =
∑
i, j

gi jxi,

µ̃ j =
∑
i, j

gi jri j.
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Then another necessary condition is

P j(z̃ j) = µ̃ jx j.

Of course we also have to remember that x j is in K j ∩ S.

5. A O A

A nice thing about the last set of necessary conditions is that they imme-

diately suggest an algorithm. The algorithm we mean starts with feasible

estimates x j, in K j ∩ S, and improves them one by one.

A1: compute z̃ j,

A2: compute x̃ j = P j(z̃ j),

A3: compute x j =
x̃ j

‖x̃ j‖
,

A4: if j < m then j← j + 1 and go to A1,

A5: if j = m then j← 1 and go to A1.

The algorithm is a bit peculiar, because it neither starts nor stops, but the

meaning is probably clear. There is, of course, no guarantee yet that the

algorithm converges. Its behaviour will probably depend on the aspect we

are maximizing and on the nature of the cones K j. It is clear, however,

that the algorithm is conceptually quite simple, because it only involves

projecting the targets z̃ j on the convex cones K j.

We shall now discuss some simple rules for computing targets, correspond-

ing with some of the more familiar criteria. The first one we study is the

multiple correlation, or rather its square. If r is the vector of correlations

between the first variable and the m − 1 remaining ones, and R1 is the cor-

relation matrix of the last m − 1 variables, then

1 − ρ2
mult = min

β
1 − 2β′r + β′R1β.
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This representation immediately shows two things. One minus the squared

multiple correlation (SMC) is a concave funtion of the correlation matrix,

because it is the minimum of a family of linear functions. Moreover the

matrix of partials G has the form

G =

 1 −β′

−β +ββ′

 .
with β = R−1

1 r. The SMC itself is convex, and its partials are −G. Thus,

giving β elements β2, · · · , βm,

z̃1 =

m∑
j=2

β jx j,

z̃ j = β j(x1 −

m∑
i, j

βixi) for j = 2, · · · .,m.

Algorithm A in this case extends the ACE-algorithm to cones of transfor-

mations, and it extends the ADDALS, MORALS, MONANOVA algorithms

of Young, Gifi, and Kruskal to Hilbert space.

Let us now look at the sum of the first p eigenvalues. In this case we write

λ1 + · · · + λp = max
K

tr K′RK,

where K varies of the n × p matrices satisfying K′K = I. Thus again the

aspect is convex, and the partials are simply G = KK′. If Z = XG =

XKK′, then Z is the best rank p approximation to X in the least squares

sense. Algorithm A in this case is similar to, but not identical with, the

algorithms PRINCIPALS, PRINQUAL, PRINCALS suggested by Young,

Gifi, and others.
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As a final example, in this round, we take the determinant. We know, for

example from multinormal maximum likelihood theory, that

log |R| = min
S>0

log |S | + tr S −1R − m.

Thus log |R| is concave, and its partials are G = R−1. Thus −log|R| is convex,

with partials −R−1. The target for variable 1 is, in out previous notation,

z̃1 =
1

1 − ρ2
mult

m∑
j=2

β jx j.

If we call, following Guttman, the best least squares prediction of a variable

from the remaining variables its image, then the target is equal to the image.

We modify a variable by projecting its image on the cone. This is identical

to the PRINQUAL minimum determinant algorithm proposed by Kuhfeld

et al. [1985].

Although our examples show that the general algorithm A specializes to

various known algortihms, they do not show in any sense that the algorithm

really works (i.e. converges). This question will be studied in the next

section.

6. C  C A

In the previous section we have demonstrated that some of the well-known

aspects, such as the SMC, the sum of the largest eigenvalues, and the nega-

tive algarithm of the determinant, are convex. In this section we study our

algorithm for the general class of convex aspects of the correlation matrix,

and we prove that for this class of aspects it is convergent.

Suppose φ is convex. For the moment we also assume that φ is continuously

differentiable, but we shall see that this assumption is not really necessary.
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If R and S are two correlation matrices, then convexity tell us that

φ(R) ≥ φ(S ) + tr GS (R − S ),

with GS the matrix of partials evaluated in S . Observe that if φ is not only

convex but also homogeneous, then this inequality simplifies to

φ(R) ≥ tr GS R.

Now identify S with the correlation matrix at the start of the iteration, and

suppose we want to modify x1. We do this by maximizing tr GS R over

x1 ∈ K1 ∩ S. This gives R+, which differs from S only in its first row and

column. Because of convexity

φ(R+) ≥ φ(S ) + tr GS (R+ − S ),

and because of the maximizing property of R+

tr GS R+ ≥ tr GS S .

Combining the two inequalities gives

φ(R+) ≥ φ(S ).

If φ is strictly convex, then the subdifferential inequality is strict, and the

algorithm increases φ, if it changes anything at all. Even if φ is simply

convex, this remains true, as we now prove.

Maximizing tr GS R over x1 ∈ K1 ∩ S can be done by observing that, if all

x j have unit lenght,

tr GS R =
m∑

i=1

m∑
j=1

gi j〈xi | x j〉 =

m∑
i=1

gii +

m∑
i=1

〈xi | z̃i〉.

Thus we must maximize 〈x1 | z̃1〉 over x1 ∈ K1 ∩ S . If z̃1 is in K?1 ,

then P1(z̃1) = 0. If we assume that this polar situation does not occur,

then the optimal x1 is computed simply by normalizing P1(z̃1). And this
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gives precisely algorithm A, discussed in the previous section. Because

cone projection is unique, it follows that the aspect increases strictly if the

algorithm changes x1. Thus it will certainly increase if we make a loop over

x j, and something is changed along the way. If nothing is changed, we have

found a stationary (x1, · · · , xm), satisfying the necessary conditions for an

extremum.

We have shown that if we are maximizing a convex aspect, and if z j is dur-

ing the course of the algorithm never in the polar K?j , then the algorithm

produces an increasing sequence of aspect values, which consequently con-

verges for an aspect which is bounded on the set of correlation matrices.

This convergence is global, i.e. it occurs from any initial point. We have

not proved, of course, that the sequence of transformed variables converges.

For this we need to consider the existence question. What we can easily

show, using general convergence theory as explained by Zangwill [1969]

for instance, is that each accumulation point of the sequence of transforma-

tions is a point satisfying the necessary conditions, and that all accumulation

points of the sequence have the same aspect value. Thus all correlation ma-

trices that are accumulation points have the same aspect value, and there

is at least one accumulation point in the sequence of correlation matrices

generated by the algorithm. We shall, however, not study the convergence

question in depth here, and neither will we discuss what should be done if

z j wanders into the polar cone. We still have to point out, however, that

our convergence proof also applies if the aspect is convex and not differ-

entiable, because the subgradient inequality continues to apply. Compare

Rockafellar [1970, Part V] for details.



18 JAN DE LEEUW

7. F S   A

Our convergence proof was based on the general idea of majorization or

minorization. In maximizing a function of a vector variable we construct an

auxilary function of two vector variables, which lies below the first function

and touches it if the two arguments are equal. A step of the algorithm

then consists in maximizing the auxilary function over its second argument,

with the first argument fixed at the current value. This is a very useful

class of algorithms, because they have the property of global convergence.

Majorization algorithms have been used earlier in multidimensional scaling

[De Leeuw, 1977; De Leeuw and Heiser, 1980] and in maximum likelihood

estimitation [Dempster et al., 1977].

Although the algorithm is simple, it may still involve a lot of computation

in each cycle. Remember that we first compute the target for variable 1,

then we modify variable 1 by projection, then we compute the target for

variable 2, and so on. Computing the target for the second variable involves

the new transformation of the first variable, which means that in general all

partial derivatives must be recomputed. In many situations it would be de-

sirable to have an algorithm which recomputes all m targets, then performs

all m projections, and so on. Developments in computing make it highly

desirable to have really simple algorithms, with a lot of highlevel matrix

manipulation, even if they converge perhaps a bit slower. Thus we suggest

another algorithm, which differs from A in its loop- structure.

B1: compute Z = XG,

B2: compute x̃ j = P j(z j),

B3: compute x j =
x̃ j

‖x̃ j‖
,

B4: if j < m then j← j + 1 and go to B2,
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B5: if j = m then j← 1 and go to B1.

Our previous results on convergence do not apply directly, but we can mod-

ify them in such a way that they do.

For this we first make the additional assumption that φ is monotone in the

sense that φ(R+S ) ≥ φ(R) for all S & 0, i.e. for all positive semi-definite S .

For the partials G this implies that G & 0. We now apply the minorization

method a second time. Remember that in our first use of minorization phi

was minorized by a function linear in R, which was the tangent line in S ,

the current solution. A function linear in R is quadratic in the normalized

x j. If G & 0, then this quadratic is convex, and it can be minorized by a

function linear in the x j, which is again the tangent in the current solution.

Thus tr GS R, which was the first auxilary function we constructed, is now

minorized by using

tr GS R =
m∑

i=1

m∑
j=1

gi j〈xi | x j〉

≥

m∑
i=1

m∑
j=1

gi j〈xi | x j〉 + 2
m∑

i=1

m∑
j=1

gi j〈xi | x j − x j〉 =

= 2
m∑

j=1

〈x j | z j)〉 − tr GS S .

Here x j are the current normalized tranformations, such that si j = 〈xi |

x j〉. We can write, slightly abusing matrix notation in the case of infinite-

dimensional H , Z = XG, and in this new minorization step we find that it

suffices to maximize tr X′Z over the X in their cones. This exactly defines

algorithm B, which is consequently globally convergent in the same sense

as A.
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We go back to our examples, and introduce some new ones. For the SMC

we have found that G . 0, and the same thing is true for the determi-

nant. Thus algorithm B cannot be used for these criteria. For the sum of

the p largest eigenvalues however, we have already seen that G = KK′,

and that Z = XG = XKK′ is the best rank-p approximation to X. In this

case algorithm B becomes identical to the usual nonlinear principal compo-

nent algorithms, which alternate cone projection and rank-p approximation.

Compare the references above.

We briefly discuss some other examples. If φ is the sum of the rs
i j, with s a

positive integer, then φ is convex if s is even, or of s = 1, and φ is monotone

by Schur’s theorem on Hadamard powers of positive semi-definite matrices

[Styan, 1973]. Obviously G = sRs−1, and thus Z can be taken as XRs−1.

For s = 1 this gives a very interesting algorithm. Then G = uu′, with u a

vector with m ones, and thus Z = Xuu′ is formed from X by replacing each

element by its row sum. All columns of Z are the same, but because they

are subsequently projected on different cones they will differ again in the

next X. This is perhaps the simplest algorithm in this class. It maximizes

the sum of the correlation coefficients. For s = 2 we maximize the sum of

squares of the correlation coefficients. This is equal to the sum of squares

of the eigenvalues of R, and consequently amounts to the same thing as

maximizing the variance of the eigenvalues of R. Here the target is Z =

2XR. A slightly different theory results if φ is the sum of |ri j|
s, which is

always convex, but need not be monotone.

It seems somewhat unfortunate that algorithm B cannot be applied to the

SMC and the determinant, which were convex but not monotone. There is a

simple adaptation of B, called algorithm C, which can be applied. It is based

on the fact that the diagonal of R is fixed, and that consequently maximizing
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tr GS R over R amounts to the same thing as maximizing tr (GS +Ω)R, with

Ω a diagonal matrix which can depend on G. Now it is obviously always

possible too chooseΩ in such a way that GS +Ω & 0, and thus the algorithm

works with Z = X(GS + Ω). The effect of using Ω is making the algorithm

more conservative and slow, and thus one really should try to choose Ω as

small as possible. For the determinant G = −R−1 we can take Ω = λI, with

λ ≥ λ−1
min(R). Especially for nearly singular R this may make the algorithm

hopelessly slow. For the SMC we can add 1 + β′β to the diagonal of G,

which is not such a major modification in general.

8. L

Algorithms A, B, and C are only guaranteed to work for convex functions

of the correlation matrix, and B only works for monotone convex functions.

We have seen that the class of aspects that are covered by these constraints

is quite large. It can be made larger by various arguments. Adding various

aspects, for instance, gives a new one which also satisfies the constraints.

This is important, for example, in path analysis, in which the aspect is the

sum of various SMC’s, one for each endogenous variable or equation. Other

combination rules for convex functions can also be used.

It remains true, however, that some criteria that have been proposed in the

optimal scaling literature, notable those based on canonical correlations,

are not convex. In such cases we can do various things. We can develop

special purpose algorithms, for instance by using the altenating least squares

method. We can also go ahead with algorithm VTA, possible with some

safe-guards or ad hoc step-size procedures build in, because we expect it to

converge at least locally. Tijssen [1985] applies algorithms similar to A in

such an ad hoc way, with quite satisfactory results.
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There are also cases, of course , in which we may want to optimize aspects

of the data which are not even functions of the correlation coefficients, or

which are not solely functions of the correlation coefficients. We may want

to minimize skewness, for example, or we may want to minimize the differ-

ence between correlation ratios and correlation coefficients [Bekker, 1982].

For such aspects we have to develop other algorithms, either by using mi-

norization or by using other techniques for algorithm construction.

Even in the cases in which the algorithm is globally convergent the conver-

gence may still be too slow for practical purposes. This sometimes happens

with the EM algorithm, and with the multidimensional scaling methods as

well. Convergence can be to a nonglobal maxi mum or to a stationary point

which is not even local minimum. And there is the possibility of noncon-

vergence of the transformations, either because there are no accumulation

points (which can happen in infinite dimensional cases) or because there is

a continuum of accumulation points (which can even happen in finite di-

mensional situations). Additional research is still needed to monitor the

progress of the algorithm, and to take care of various undesirable events

which may happen along the way. Comparison with alternative com puta-

tional methods is also needed.

For completeness we list one natural candidate for comparison. This is al-

gorithm D, the ACE-version of algorithm A. Between steps A2 and A3 we

insert the step x̃ j ← SMOOTH(x̃ j), where the choice of smoother is left

free. Often it will be linear, compare Breiman and Friedman [1985]. In

the usual ACE-implementations so far the cones K j are very large, and the

restrictions are imposed by smoothing. In the ALSOS and Gifi-series the

cones are much smaller, and this takes care of the smoothing. As a conse-

quence the ALSOS and Gifi-transformations tend to be more rigid, but the
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ACE-method in the finite dimensional case does not always solve a clearly

defined optimization problem, and may have difficulties with convergence.

9. T I  L R

Let us go back to the necessary conditions in section 4. Suppose that the

cones are linear subspaces, and that consequently the projectors P j are lin-

ear. The stationary equations are

m∑
i=1

gi jP j(xi) = µ jx j,

with x j in K j ∩ S. Now suppose (x1, · · · , xm) are such that all bivariate

regressions are linear. This means that for all i, j we have

P j(xi) = ti jx j.

If we substitute this in the stationary equations we find that these are satis-

fied with

µ j =

m∑
i=1

gi jti j.

This result is, of course, completely independent of G, and thus of the aspect

we are optimizing. For all aspects which are functions of the correlation

coefficients a system of transformations of quantifications that linearizes all

bivariate regressions gives a solution to the stationary equations. This does

not prove that a linearizing system always gives the maximum, in fact it

need not do this at all.

We illustrate this with an example which is quite important from the theoret-

ical point of view. Suppose we have an m-variate standard normal distribu-

tion, andK j are the separate transformations of the variables with finite vari-

ance. Take xi equal to the Hermite-polynomial of degree s in the subspace
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Ki. Then P j(xi) = ρs
i jx j, with ρi j the correlation parameter of the multi-

normal. Thus the stationary equations are satisfied. It has been shown by

Kolmogorov (personal communication in Sarmanov and Zacharov [1960]),

compare also Venter [1966], that linear transformations optimize the first

canonical correlation, and consequently also the SMC. Gifi [1990] shows

that the linear transformations optimize the determinant and the largest and

smallest eigenvalue. Koyak [1985] shows that they maximize the sum of the

p largest eigenvalues. By a familiar theorem of Fan [1951] this means that

they maximize all unitarily invariant matrix norms, compare Gifi [1981, p.

320].

We can extend the analysis of the multinormal example a bit, by supposing

that the first m1 variables are transformed linearly and the first m2 quadrat-

ically. Then R is the direct sum of two matrices. For many criteria such

as the determinant, the sum of squares, and the sum of the eigenvalues,

G is a direct sum too. Thus the gi j between sets are zero, and the sta-

tionary equations are still satisfied for these transformations. If all ρi j are

equal to ρ, for instance, then the sum of the two largest eigenvalues is

(mr + (1 − ρ)) + (1 − ρ) = 2 + (m − 2)ρ if all transformations are lin-

ear. If m − 1 transformations are linear, and the remaining one is quadratic

or otherwise orthogonal, then the sum of the two largest eigenvalues is

((m − 1)ρ + (1 − ρ)) + 1 = 2 + (m − 2)ρ as well. The maximum given

by the linear transformations need not be unique.

In general the results in this section indicate, that if a linearizing system of

transformations exists, then our algorithm is often able to find it. It is shown

by De Leeuw [1982] and Bekker [1982] that in many practical examples ap-

proximate linearizing systems exists, and that often optimal transformations

found by any one of these algorithms are not too far from linear.
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10. S S A

We are generally interested in the statistical stability of the transformations

and of the correlation matrix that is computed. Of course we can only inves-

tigate statistical stability by introducing some kind of probabilistic model.

We suppose that we are dealing with the case in which H is a space of

random variables. In this case all quantities we compute are functions of

the bivariate distributions or the bivariate marginals. The statistical prob-

lem arises if we do not know the (population) marginals, but we observe

empirical or sample marginals. Every quantity we compute is a function

of the sample bivariate marginals. If the quantity is sufficiently smooth we

can apply the delta method, or its analogon in infinite dimensional H . But

since actual computtions are always of discreticized and finite versions, we

are able, in many cases, to do the statistics in low- dimensional subspaces.

For ordinary correspondence analysis (m = 2, K1 and K2 are finite dimen-

sional indicator- or dummy subspaces) the stability results are well known.

For multiple correspondence analysis (m ≥ 2, K j dummy subspaces, max-

imize the largest eigenvalue of the correlation matrix) they are also quite

straightforward. De Leeuw [1984c] gives the necessary references. In more

complicated cases the derivatives needed for the delta method tend to be-

come unmanagable, and if the cones K j are polyhedral then projections

usually are not smooth enough. In such cases we follow Gifi [1981], and

we apply the Bootstrap and Jackknife. Computation-oriented methods to

test significance of various aspects have been discussed by De Leeuw and

Van der Burg [1985]

In the statistical context linearizebility of the regressions, discussed in the

prevous section, is also of great importance. It was shown in De Leeuw
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[1984c] that if the optimal transformation linearizes all bivariate regressions

then we can apply the delta method as if the transformations are actually

fixed and known instead of stochastic and unknown. Thus if regressions can

be linearized, it follows that we can compute the optimum transfor mations,

and then apply the delta method as in the classical linear MVA techniques.

In particular, for multivariate normal data, we can first scale them opti-

mally and then apply the usual MVA techniques. This will not differ greatly

from applying linear MVA directly. On the other hand if the data are, bor-

rowing a word from Yule, strained normal, i.e. normal except possible for

invertible transformations on each of the variables separately, then optimal

scaling plus classical normal techniques will still perform nicely. They give

consistent estimates of structural parameters, and valid chi square statis-

tics and confidence intervals. If the data come from a strongly non-normal

but strained-normal distribution, then directly applying classical techniques

may lead to rather serious distortions. There are already quite a number of

succesfull applications of the combination Optimal Scaling plus LISREL or

Optimal Sclaing plus Factor Analysis in the applied literature.

11. C  L T  M

The log-likelihood for a multivariate normal sample with covariance matrix

C is, except for irrelevant constants, equal to L = log |Σ| + tr Σ−1C.

Now let φ(C) be the minimum of L over a parametric manifold of matrices

Σ(θ), i.e. over some covariance structure model. Because φ is the minimum

of a family of linear functions it is concave. If Σ is allowed to vary over all

Σ & 0, then we already know that φ(C) = log |C|, but for restricted models

many other results can be obtained. Think of factor models, path models,

simultaneous equation models, LISREL models, and so on. For all models
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we have G = Σ−1, of course, which means that φ is concave and increasing.

It is now easy to think of a transformation technique for correlations. We

minimize φ(R), obtained in this way, over all correlation matrices R, using

algorithm A or C. Observe that we have changed from the dispersion matrix

C to the correlation matrix R here, in conformity with our earlier usage, but

somewhat opposite to statistical considerations.

Although the approach outlined above may be appealing to some, it is not a

maximum likelihood method, and it does not have the properties commonly

associated with maximum likelihood. The reason is simple. In likelihood

theory we maximize the likelihood of the observed data, not the likelihood

of the transformed data. If the model states that some transformation of the

observed variables is multivariate normal, with some structure imposed on

the covariance matrix, then the likelihood of the observed data involves the

usual multinormal component but also the Jacobian of the transformation.

Thus the log- likelihood is similar to our previous L, but we have to add a

term to it consisting of the logarithm of the derivatives of the transforma-

tions (which are supposed to be invertible and continuously differentiable).

This transformation likelihood, familiar in more simple cases from Box and

Cox [1964], is not a function of the correlations only any more, and our

theory does not apply directly. Nevertheless we can use minorization in

this context too, by minorizing the covariance part only. Observe that the

Jacobian part of the likelihood function does not involve any structural pa-

rameters. We are currently experimenting with an algorithm based on these

ideas, which can be used to imbed the optimal scaling approach (usually

described as exploratory of descriptive) in a more conventional statistical

framework.
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