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Abstract 
Generative syntax and a consistently ordered count routine are 
both understood to have central roles in learning a number 
system. However, there has been little experimental 
exploration of how the diversity of each of these features alters 
the inductive landscape of number learning, as most empirical 
work has been constrained to correlational studies. We present 
a causal manipulation both of syntactic structures and counting 
procedures, using an artificial language paradigm. Our findings 
suggest that (1) learners have a greater facility with conjunctive 
over multiplicative rules of composition, (2) counting 
procedures help learners to recall words independently of 
syntax, and (3) predictable syntax helps learners to use 
numerical concepts, independently of - and possibly despite - 
counting routines. 

Keywords: number; artificial languages; counting; syntax 

Introduction 
Humans are able to use concepts of large, precise magnitude, 
such as 2023, using culturally transmitted verbal number 
systems. However, these systems show a remarkable 
diversity in both (1) the syntactic structures that they exhibit 
(e.g., their base systems) and (2) the ways that they are used 
(e.g., their counting procedures), presenting learners with 
very different challenges as they acquire different number 
systems. For example, in a base-10 system like Mandarin, 
learners have to memorize a base set of ten lexical items (e.g., 
1-10), which are then composed using syntactic rules to 
represent larger numbers (e.g., 91). Most learners of base-10 
number systems, like Mandarin or English, also rehearse 
these number words in a counting procedure, which involves 
repeating numbers in an ordered sequence, such as “1, 2, 
3…”, and which is usually memorized by children long 
before they understand the meaning of any number words 
(Fuson, 1988). 
 Number systems feature a range of different base systems 
from base-2 to base-20 (Hammarström, 2010; Comrie, 2011), 
requiring learners to memorize a smaller or larger number of 
lexical primitives and rules of composition in order to 
represent the same set of cardinalities. Furthermore, people 
do not always engage in counting to learn them. For example, 
the Western Tribe of Torres Straits had a number system 
featuring the words urapun (1), okosa (2), okosa urapun (3), 
okosa okosa (4), okosa okosa urapun (5), and okosa okosa 

okosa (6) (Haddon, 1890). This system featured a clear base-
2 with one additive rule, and in this sense was a counting 
system, but was not learned via a counting procedure. 
Instead, these words were used to refer to quantities when 
they needed to be communicated, but they were not 
enumerated in a structured procedure; much like the non-
exact English quantifiers ‘a couple’ or ‘a few’. 
 How might such diversity in counting systems impact the 
acquisition of number words and their meanings? Accounts 
of how children acquire number vary with respect to the role 
they posit for syntactic structures and counting procedures. 
For example, according to Carey (2004, 2009), children learn 
the meanings of large number words based on an analogy to 
the linear order of the count list. By this account, children 
begin the learning process by associating the small number 
words “one”, “two”, and “three” with representations of 
small sets, but learn larger number word meanings by 
observing that for every item added to a set, it can be 
described by counting up one word in the count list (see also 
Gentner, 2010; Sarnecka & Carey, 2008; Carey & Barner, 
2019). Completing this analogy between the ordered set of 
cardinalities and the sequence of the count list then supports 
a broader inductive inference, that every number word, N, has 
a successor whose value is N+1, such that there exists an 
infinite number of numbers. However, on this account, the 
syntax of counting itself plays no significant role in how or 
when this inductive inference is made. 
 Other accounts also hypothesize that the linear structure of 
the count list plays a role in number word learning, but argue 
that the inductive inference posited by Carey does not occur 
until much later, and may depend on additional, more subtle, 
aspects of how counting is structured. For example, children 
learning Cantonese, which uses highly predictable base-10 
rules to generate numbers (e.g., 22 translates as 2-10-2) are 
faster to learn their verbal count list than children learning a 
very irregular counting system like Hindi, which features 
many irregular forms that are difficult to predict from rules 
(Ho & Fuson, 1998; Miller & Stigler, 1987; Miller et al., 
1995; Schneider et al., 2020). Critically, children learning 
predictable counting systems are quicker to learn that every 
number has a successor, and their knowledge of counting 
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rules is related to the belief that numbers are infinite (Cheung 
et al., 2017; Chu et al., 2020; Guerrero et al., 2020; Miller et 
al., 1995; Schneider et al., 2020; Miura et al., 1993; Okamoto 
et al., 1993; Miura & Okamoto, 2013; Song & Ginsburg, 
1987). Together, these studies suggest that children’s ability 
to extract the syntactic rules that govern counting may play a 
role in their discovery of how counting represents number.  
 Although past studies suggest that cross-cultural 
differences in counting practices may impact learning, these 
reports are almost exclusively correlational in nature, leaving 
open a range of alternative explanations for reported effects. 
Further, previous studies have been limited to examining 
variability across base-10 systems, which differ mainly in the 
relative regularity of their rule systems. Although some 
studies have probed children’s ability to notice and exploit 
the morphosyntactic composition of number words using 
experimental methods (Barrouillet et al., 2010; Cheung et al., 
2016), they did not contrast different counting systems to 
assess the role of variability, including the size of the 
memorized base, types of compositional rules (e.g., additive 
vs. multiplicative), and ways in which learners encounter 
number words (e.g., everyday language or counting). Further, 
past studies have not investigated whether learners are faster 
to acquire a counting system if it is presented to them as a 
rote, ordered, counting sequence, or if they can learn a system 
as easily if number words are presented haphazardly in 
speech, without a fixed routine or particular order. 
 In the present study, we took an experimental approach to 
test the role of syntactic structures and procedures in the 
acquisition of counting systems. To do so, we trained adult 
learners in two experiments on a range of different counting 
systems in an artificial language learning paradigm. In 
Experiment 1, participants were trained to count in a number 
system exhibiting one of six different numerical bases. We 
found that while base systems differed little, learners have a 
greater facility with conjunctive over multiplicative rules of 
composition. In Experiment 2, participants learned number 

systems that either were rehearsed in a consistently ordered 
count routine, exhibited a compositional semantics, or both. 
We found that rehearsed order and compositional rules 
facilitated word-recall and reasoning about number concepts, 
respectively. 

Experiment 1: Base Systems 
In Experiment 1, participants learned six artificial number 
systems that differed only in the size of their numerical base, 
requiring them to memorize a different number of lexical 
primitives and compositional rules (e.g., counting to 4 in a 
base-3 system requires three lexical primitives and one 
additive rule, whereas counting to 4 in a base-4 system 
requires memorizing four lexical primitives but no rules). 
 With this task, we asked (1) whether some numerical bases 
were more or less learnable than others due to this tradeoff 
between words and rules, and (2) how participants reason 
about novel numbers they had not been trained on. In 
Experiment 1a we tested bases 2, 3, 4, and 5, and in 
Experiment 1b we added the bases 8 and 10. 

Methods 
Participants Based on a pre-registered power analysis, 235 
adult participants were recruited online via Prolific. 53 were 
excluded due to our pre-registered criteria, e.g., low accuracy. 
In Experiment 1a, n=31, 30, 32, & 30 participants were 
recruited for base-2, 3, 4, & 5, respectively. In Experiment 
1b, 30 were recruited for base-8, and 29 for base-10. 
Compensation was targeted at $14/hour, though usually 
exceeded this with performance bonus (m = $1.90). 
 
Stimuli Artificial number systems for each game combined 
lexical atoms via a compositional syntax. Atoms were 
randomly generated from consonant-vowel bigrams (e.g., ka) 
such that no consonant or vowel was used in more than one 
atom per number system. Apart from the size of the base, all 
systems in Experiments 1a and 1b had identical syntactic 

A B
1 = do

Figure 1. A. An example artificial base-3 number system. B. In the Training Phase, participants saw an Arabic numeral equated with a novel 
number word, and typed it. Trials appeared in numerical order, and the sequence repeated with every novel word. C. In the Generalization Phase, 
participants had to recall the count list they had trained with, and infer the syntax to label the numbers 11-15 (Experiment 1a) or 11-20 (1b).

1 = no;  2 = ka;  3 = hi;  9 = se
1-10: no, ka, hi, hino, hika, kahi, kahino, kahika, se, seno

Lexical Primitives

4 is hi-no (3+1)

6 is ka-hi (2*3)
9 (32) is a primitive

Fifteen = 5 + 10

Twenty = 2 × 10
Thousand = 103

Add. +
Mult. ×
Exp. ^

Artificial Example English ExampleRule
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2 = re

3 = mi

= 7?
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1 = do
2 = re
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mi do+×
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…
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rules (Figure 1A): For each base, b, (1) atomic unit words 
denoted quantities up to b, (2) quantities larger than b but 
indivisible by it used addition, where unit atoms were added 
to the end of the word to express the remainder, (3) quantities 
of 2×b or greater used multiplication, where the largest 
compatible unit was placed before the b (like digit-multiplier 
constructions, such as six-dozen, 6*12, in English), and (4) 
quantities of b×b or greater used an exponential atom (like 
hundred, 102), composed like the unit terms. There were six 
bases: 2, 3, 4, 5, 8, and a base-10 (really, no base) system 
with 10 atoms and no rules. 
 
Training Phase After reading an instructions page and 
passing a comprehension quiz, participants entered the 
training phase, during which they rehearsed a count list, in 
ascending order, of 10 artificial number words (Figure 1B). 
Each participant learned number words belonging to one of 
the six base systems, depending on condition. The first time 
they encountered a number word, they were explicitly taught 
its meaning (e.g., the screen read “1 = ka”), and they were 
asked to type the number word in an input field below. 
Subsequently, every time they were cued with that 
cardinality, they had to recall the number word from memory 
(e.g., the screen read “1 = ?”). Before each new numeral was 
introduced, the participant was tested on all previously 
trained numbers: First, they were trained and tested on the 
words for 1 and 2, then they were trained on 3 and tested on 
1, 2, and 3, etc. until they reached 10. In this way, exposure 
to each number corresponded roughly to their frequency in 
natural language (e.g., BNC Consortium, 2007). At the end 
of this process, the participant rehearsed the count list one last 
last time, from 1-10. Responses for these 64 recall trials (all 
responses in the training phase except the first exposure) were 
used below to assess the relative learnability of the different 
base systems, in addition to data from the Generalization 
Phase. To motivate accurate responses, participants received 
a bonus for accuracy: $0.03 per correct guess on the first try, 
$0.02 if correct on the second try, and $0.01 correct on the 

third try. On submitting a correct or third try, they were 
advanced to the next word in the sequence. Participants were 
instructed to complete trials “as quickly and accurately as 
possible”, but were not timed. 
 
Generalization Phase After completing the Training Phase 
of the experiment, participants completed the Generalization 
Phase, wherein they were shown a chart with Arabic 
numerals from 1-15 (or 1-20, in Experiment 1b) in the left-
hand column, and empty text-entry fields on the right. 
Participants entered number words from the artificial 
language in the text entry fields, one at a time. Answers for 
each number could not be edited after being entered. The last 
five or ten numbers, from 10-15 or 20, were an opportunity 
for participants to generalize the number system to novel 
cardinalities that they had not yet encountered. 

Results 
Rule types may matter more than base size. To test 
whether base size impacted the learnability of a counting 
system, we created a measure of response time (consisting of 
reaction time until the first keystroke, plus the time interval 
during which participants were typing divided by the length 
of the text they entered) and also measured accuracy on quiz 
trials. Response time analyses were repeated on reaction 
time, to similar qualitative results. We constructed linear 
mixed effects regressions predicting each of these variables 
based on base-size, with random intercepts for each 
participant. We found no effect of base size on our normed 
response time measure in 1a or 1b (small bases: b = 22.29 ms, 
t = .307, p = .759; large bases: b = -26.61, t = -.741, p = .46). 
While we found a negative effect of base size on accuracy in 
Experiment 1b (large bases: b = -.223, z = -3.103, p = .002), 
this did not hold for Experiment 1a (small bases; b = -.005, z 
= -.046, p = .963), or Experiment 1 as a whole (b = -.012, z = 
-.315, p = .753; Figure 2A). These results are hard to interpet, 
however, as ceiling effects from overtraining may explain the 
lack of variability. 
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 While our analysis of base size per se was inconclusive, the 
different types of rules that learners of each base were 
exposed to may have had subtle and conflicting effects that 
did not correlate directly with base-size (e.g., multiplicative 
rules were common in base-4, but not base-2 or base-8). In 
an expanded regression, we coded each number word that 
participants had to learn as the composition of several distinct 
rules (Figure 1A), in addition to its membership in a base 
system and word-length, measured in syllables. These rules 
were (1) additive (2) multiplicative rules of composition, as 
well as (3) the presence of a lexical atom with exponential 
meaning (i.e., 4 in the base-2 condition and 9 in base-3). Any 
one cardinality might be composed from different rules, 
depending on the base: e.g., 3 in base-3 is composed only of 
a lexical primitive, whereas in base-2 it features an additive 
rule composing 2+1. We tested this model on the entire 
dataset of Experiment 1, and found that only multiplicative 
constructions were significantly related to both increased 
response time (b = 580.21, t = 3.89, p < .001), and lower 
accuracy (b = -.929, t = -1.966, p = 0.049; Figure 2B), 
suggesting that multiplicative compositions may be harder to 
learn than additive rules or than memorizing syllables. 
 
10-item count lists with different bases imply different 
compositional rules. While trials in the Training Phase 
tested participants’ ability to recall words they had just 
learned, they did not address how participants mentally 
represented the rules of each system. For example, although 
rules were available to be learned in most systems, learners 
could nevertheless ignore these rules and learn the number 
words by rote, or create an alternative set of rules to the ones 
we had used to generate the artificial languages. Indeed, we 
found that participants rarely learned the full set of additive, 
multiplicative, and exponential rules that had produced the 
counting system they learned. Their labels were identical to 
our predicted generalizations 38% of the time. For each base, 
these figures were 36% (base-2), 24% (3), 33% (4), 49% (5), 
42% (8), and 38% (10). We therefore also measured accuracy 
using more permissive additive or multiplicative parses. 
Additive parses summed the meanings of all syllables in a 
word, regardless of order. Multiplicative parses had this, and 
one extra grammatical rule: whenever a small number 
preceded a larger number, it was interpreted as a 
multiplicative digit-multiplier phrase, analogous to natural 
languages (e.g., English two-hundred, 2×100). In addition to 
these directly compositional strategies, either strategy might 
be employed to recursively generate each number based on 
its predecessor in the count list. For example, if a participant 
skipped one number in the count list but continued with labels 
that increased by +1 via additive or multiplicative grammars, 

then subsequent labels would be correct. Thus parsed, 
participants’ accuracy was higher, though still below the 
training phase (.793, 95%-CI: [.77, .815]; Figure 2A). Also, 
while multiplicative rules were used in base-4 and 5 
conditions to label the target number, additive rules were 
more common in others, accounting for 75% of correct labels. 
Participants used additive rules more frequently than our 
generative rule system predicted, (χ2(3, N = 2410 trials) = 
143.625, p < 0.001), suggesting again that multiplicative 
rules may be less intuitive, despite being observed and used 
by learners. 

Experiment 2: Count Procedures 
In Experiment 1, we investigated the learnability of different 
base systems, all of which were trained as part of a list, 
ordered in terms of magnitude. On some accounts, the 
presence of this ordering is important to learning the 
meanings of number words, since their meanings are defined 
by their ordinal relations to one another (Carey, 2004). On 
other accounts, exposure to an ordered sequence may be 
important because it provides exposure to the recursive 
syntax of number words, making the presence of 
compositional rules more obvious. Finally, it is possible that 
although children in the west are typically taught number 
words as part of an ordered procedure, this ordering is not 
actually essential to learning their meanings, or extracting 
rules for creating new numbers. Instead, learners may be able 
to learn these rules just as they acquire many other 
grammatical rules (e.g., via cross-situational learning that 
includes many distinct tokens of words across different 
utterances in their analysis) (Gleitman 1990; Pinker 1994). 
 In Experiment 2, we asked whether three groups of 
participants would learn a number system as effectively when 
presented with number systems featuring (1) compositional 
syntax and a consistently ordered count list, (2) 
compositional syntax but no consistent order of exposure, 
and (3) no compositional syntax, but a consistently ordered 
count list. Also, we included a magnitude comparison task to 
assess whether participants had mapped number words to 
conceptual content. 

Methods 
Participants 119 adult participants were recruited online via 
Prolific, of whom 28 were excluded due to our pre-registered 
criteria, e.g., low accuracy. Samples were N=30, 31, and 30 
in the rules+order, order-only, and rules-only conditions, 
respectively. Compensation was targeted at $14/hour + 
performance bonus (m = $2.36). 
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Stimuli Artificial number words were generated as in the 
base-5 condition of Experiment 1. In the order-only 
condition, the mapping between number words and meanings 
was randomly shuffled. 
 
Training Phase. Each participant was taught an artificial 
number system in a similar manner to Experiment 1. Two key 
features distinguish this experiment from the previous. First,  
all groups learned a base-5 system, selected because it 
exhibits combinatorial structure over half the count list, and 
requires only additive and multiplicative rules (no exponents) 
to label any number up to 20 (the highest cardinality 
appearing in the experiment). Second, in order to 
independently manipulate the presence of combinatorial rules 
and an ordered count procedure, we divided participants into 
three conditions. In Condition 1, (the “rules+order” 
condition) number words both featured compositional rules, 
and were trained as a consistent, ordered list, as in 
Experiment 1, which was rehearsed in a count list that grew 
by +1 with every iteration. In Condition 2 (“order-only”), 
words were trained in an ordered list, but the words generated 
via compositional rules were remapped to an arbitrary, 
different, cardinality within the count list. Thus, if the lexicon 
learned in the rules+order condition was {1 = do, 2 = re, 3 
= mi, 4 = mido, 5 = mire, etc.}, the lexicon learned in the 
order-only condition might be {1 = mire, 2 = mi, 3 = do, 4 = 
re, 5 = mido, etc.}. In Condition 3 (“rules-only”), the lexicon 
was identical to the rules+order condition, but the words 
were trained in a random order (i.e., not in order of 
magnitude). Critically, the frequency of each number word 
was matched with the synonymous word in the control 
condition, such that the word for 1 was most frequent, 
followed by the word meaning 2, then 3, etc. 
 
Generalization Phase. The generalization phase was 
identical to the one used in Experiment 1b. Novel number 
values to be filled in by the participant ranged from 11-20. 
 
Magnitude Comparison. In each trial, participants were 
presented with a pair of unequal number words from the 
count list they had just learned, and asked to click on the one 
that represented the ‘bigger’ value. Each trial had a time limit 
of 4 seconds, during which a progress bar at the top of the 
screen shrank to indicate remaining time. Over the task, all 
45 unequal combinations of number words were queried. 

Results 
Counting helps number word recall. To test the relative 
contributions of rules and order on recalling learned words, 
we constructed mixed effects linear regressions predicting 

accuracy and response time from task condition, target 
number, cumulative frequency of that number, an interaction 
between condition and frequency, and random intercepts per 
participant. Participants in the rules-only condition were 
significantly slower (b = 1404.78, t = 5.493, p < .001) and 
less accurate (b = -1.57, z = -3.238, p = .001) in recalling 
artificial number words than in the rules+order condition. 
Participants in the order-only condition were also slightly 
slower than rules+order (b = 688.78, t = 2.716, p = .008), 
but did not differ in accuracy (b = -.469, z = -.945, p = .345), 
(Figure 3, grey). The similarity between the rules+order and 
order-only conditions suggests that when learners benefit 
from learning number words in an ordered sequence, 
transparent rules within the system may not greatly facilitate 
word recall - and are much less likely to be sufficient by 
themselves. 
 
Compositional rules help learn number word meanings.  
To test the contributions of rules and order on learning the 
meanings of words, we constructed mixed effects regressions 
to predict accuracy and response time on the magnitude 
comparison task. These included terms for task condition, the 
sum of the compared numbers (a+b), the numerical distance 
between them (a-b), the difference in the length of the words 
(number of syllables), interactions between word-length & 
distance, word-length & condition, and as intercepts for each 
participant. Participants in the order-only condition were 

70 80 90 95 97.5

Accuracy (%)
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R
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s
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Performance by Rules & Order

Figure 3. Reaction time and accuracy, during recall 
(grey) and magnitude comparison (red) trials of 
Experiment 2, for each condition (R = rules-only; O = 
order-only; RO = rules+order). Means for each base in 
Experiment 1 for comparison (blue). Errors are 95-CIs.

Word Recall
Magnitude Comparison
Experiment 1
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significantly slower at selecting the greater of two number 
words (b = 392.01, t = 2.338, p = .021) and less accurate (b = 
-.884, z = -2.131, p = .033) than participants in other 
conditions. In contrast, participants in the rules-only 
condition showed comparable response latencies to the 
rules+order (b = -47.28, t = -.28, p = 0.78), but were 
significantly more accurate in their responses (b = 0.882, z = 
2.036, p = .042; Figure 3, red), suggesting that compositional 
rules are uniquely helpful for learning the meanings of 
number words. To test whether this advantage was due to a 
low-level word-length heuristic or specifically to numerical 
distance, we compared the full model to one with word-
length removed. We found that while distance was no longer 
significantly predictive of reaction time when word-length 
was added to the model (b = -3.15, t = -.233, p = .816), it 
remained significantly predictive of accuracy (b = 0.455, z = 
11.459, p < .001)1. These analyses found that exposure to 
compositional syntax facilitates learning the meaning of 
number words independently of rehearsing those number 
words in an ordered sequence, suggesting that the same 
mechanisms that allow humans to acquire non-numerical 
grammatical constructions, such as the past-tense, may be 
sufficient for learning a generative number system. Further, 
as the participants who learned a syntax with no consistent 
order (rules-only) outperformed those who learned a syntax 
in a consistent order (rules+order), learners may even be 
better motivated to detect and remember syntactic rules in the 
absence of a count routine. This stands in marked contrast to 
the Training Phase of the experiment, in which rehearsal of 
an ordered count list was important for success, while 
exposure to compositional syntax was not. 

Discussion 
We manipulated the syntactic structures and counting 
procedures available to learners of artificial number systems, 
and found several main results. First, in Experiment 1 we 
found that the size of a numerical base did not impact how 
easily different number systems were learned. Second, we 
found that although base size itself did not have an impact on 
learning, the nature of the rules that were implicated by 
different bases did. In particular, while additive rules of 
composition (e.g., 3+1 to represent 4) were relatively easy for 
participants to learn and generalize to untrained numbers, 
multiplicative rules posed a greater challenge. Third, in 
Experiment 2 we found that learning number words in a 
consistently ordered count list helped participants to recall 

 
1 This finding may be corroborated by a similar pattern in the 

Generalization phase, analyses of which are forthcoming in the 
Github repository. 

those words, but not to generalize the number system they 
had learned. Finally, learning a number system with a 
transparent, regular syntax helped participants learn the 
meanings of number words, even though it did not facilitate 
recall of words. 
 In this study, we trained numerate adults to probe the 
impacts of counting structures and procedures on learning. 
While there is a long tradition of training adult learners on 
artificial grammars to assess learnability, future studies 
should consider whether naive learners, who have not 
previously acquired a number system, might show different 
learning strategies. Studies now in progress are exploring this 
question, using methods adapted from the experiments 
presented here to study young semi-numerate children who 
are just learning to use English number words. In doing so, 
this work will build on recent studies investigating children’s 
understanding of numerical composition (Cheung et al., 
2016; Park et al., 2022), to explore questions of cognitive 
development that are difficult to assess using observation of 
naturalistic language. development  
 Also of interest is the role that communicative processes 
play in the transmission and evolution of counting systems. 
In our studies, learning occurred via a strict pedagogical 
process in which there was one teacher (the software) and one 
learner (the participant). However, in the wild counting 
systems have arisen via a multigenerational transmission 
process, in which each generation learns and transmits their 
practices resulting in irregularities, systems with mixed 
bases, and partial generalizations. Future studies should 
examine how multigeneration communicative transmission 
chains impact the form that counting systems take, and 
whether diachronic processes of change favor particular 
bases, rules, or procedures over others. Such work offers the 
possibility of uniting work on the learnability of counting 
systems with existing theories of efficient communication 
(e.g., Gibson et al., 2019; Xu, Liu, & Regier, 2020) while 
using methods previously deployed for studying the 
emergence and change of symbolic systems (Kirby et al., 
2014; Hawkins et al., 2021). 
 

OSF pre-registration: 
https://osf.io/rwqk7/ 

 
All code and materials available at: 

https://github.com/SebastianHolt/number_syntax 
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