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Teachers matter for student outcomes, and there are large differences in teacher quality even

within a single district (e.g., Hanushek, Kain and Rivkin (2004); Rockoff (2004); Chetty, Friedman

and Rockoff (2014a)). The allocation of teachers to schools matters for equity and efficiency.

For equity, it affects the achievement gap between advantaged and disadvantaged students. For

efficiency, it affects aggregate achievement through match effects and differential class size.

The structure of compensation, however, suggests that the current allocation might depart from

equity and efficiency goals. Within a district, wages are uniform across potential assignments (e.g.,

Biasi (2021)). Because teachers have preferences over school assignments and may choose not to

accept an unfavorable assignment (Rothstein, 2015), they may require compensation for differences

in amenities. In the absence of compensating differentials, teacher labor supply to a given school

is largely a function of amenities like student composition, which may threaten equity as teachers

may prefer schools with economically advantaged students. Uniform pay may also leave productive

matches unrealized, as teachers and principals are not compensated for output.

In this paper, we study the equity and efficiency of the current within-district allocation of teach-

ers to schools, and what policies would lead to better allocations. We find that our focal district’s

current allocation is surprisingly equitable—advantaged and disadvantaged students have equally

strong teachers—but that there are meaningful aggregate achievement gains from further reallo-

cation. To understand why wage uniformity leads to inefficiency but not inequity, we investigate

several channels and find that the allocation is equitable because principals hire noisily, tending not

to select their most effective applicants. Noisy principal hiring, though, does not lead to the most

productive teacher-school matches, which require differentiated wages that compensate teachers for

match output.

We begin by emphasizing a basic puzzle about the current allocation. Consistent with a long

literature (e.g., Antos and Rosen (1975)), simple cuts of the data suggest that on average teachers

prefer schools with advantaged students. Typically, we would expect that if an employer faces

higher labor supply then either it would pay lower wages or else hire higher quality workers. Since

a teacher’s wages are uniform within a district, we would expect schools with advantaged students to

hire better teachers. Instead, and consistent with a recent literature (e.g., Mansfield (2015), Angrist

et al. (2021)), we find that the current allocation of teachers to students is surprisingly equitable:

disadvantaged and advantaged students have teachers that are equally strong as measured by value-

added.1

We consider four types of explanations for the surprising parity of the allocation. First, there

might be something favorable about how the market clears. Second, there might be preference

heterogeneity among teachers such that the marginal teachers have very different preferences than

1This literature is slightly mixed, which hints that market institutions matter. See Isenberg et al. (2022), Chetty,
Friedman and Rockoff (2014b), and Sass et al. (2012) for papers finding no or small gaps. See, e.g., Goldhaber, Lavery
and Theobald (2015) and Goldhaber, Theobald and Fumia (2022) for papers using Washington state data that find larger
gaps. Angrist et al. (2021) find similar school value-added for advantaged and disadvantaged students.
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the average teachers. Third, it might be that principals do not take advantage of the extra supply

to hire better teachers. Finally, teachers might have significant comparative advantage with certain

students such that schools may be able to find similarly effective teachers.

To evaluate these explanations, we use rich data from the teacher transfer system in a single

district linked to test score and class assignment data in North Carolina to estimate an equilibrium

model of the teacher labor market. The data allow us to estimate each of the key inputs to the

model—market clearing, teacher preferences, principal hiring behavior, and match effects—with

relatively weak assumptions. The model allows us to quantify how these factors translate into

equilibrium allocations.

In our model, teachers and schools meet and form matches. Teachers can only match with school

openings that are active at the same time. Teachers have non-wage preferences over positions, and

principals serve as hiring intermediaries who rank teachers on behalf of the district. Each match

generates student achievement based on the teacher’s value-added at the school. To predict the

equilibrium matches, we use the concept of pair-wise stability (Roth and Sotomayor, 1992; Hitsch,

Hortaçsu and Ariely, 2010; Banerjee et al., 2013; Boyd et al., 2013).2

We specify a multi-dimensional value-added model where teachers may have absolute advan-

tage and comparative advantage in teaching specific student types (Condie, Lefgren and Sims, 2014;

Delgado, 2021; Bau, Forthcoming; Biasi, Fu and Stromme, 2021). We divide students based on

whether they are economically disadvantaged.

To identify teachers’ non-wage preferences over positions (Barbieri, Rossetti and Sestito, 2011;

Engel, Jacob and Curran, 2014; Bonhomme, Jolivet and Leuven, 2016; Fox, 2016; Johnston, 2021),

we argue based on institutional features and analysis of application behavior that teachers ap-

ply non-strategically to positions they prefer relative to their outside option. We specify a rich

characteristics-based model of teacher utility with observed and unobserved preference heterogene-

ity. Teachers on average prefer schools with more advantaged students, though we also find signifi-

cant cross-teacher heterogeneity.

We then estimate principals’ valuations of teachers (Ballou, 1996; Boyd et al., 2011; Jacob et al.,

2018; Jatusripitak, 2018; Hinrichs, 2021). Our data include principals’ ratings of candidates, which

allows us to infer valuations with minimal assumptions despite the possibility that principals act

strategically. Using the observed set of applications to each position, we model whether principals

give an application a positive rating.3 Principals value teachers based on observable characteristics

like having a graduate degree that poorly predict value-added. From the econometrician’s perspec-

tive, ratings and value-added are largely independent.

Finally, we estimate market timing based on applicants’ and vacancies’ periods of activity in

2Our model fits in a recent literature considering allocation problems with non-choice outcomes (Agarwal, Hodgson
and Somaini, 2020; Ba et al., 2021; Cowgill et al., 2021; Dahlstrand, 2021).

3Principals might interview or offer strategically by passing on preferred teachers who are unlikely to accept an offer.
As long as these teachers receive at least a positive rating, we can model positive outcomes as non-strategic choices.
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our administrative records.

Among the explanations we consider, only principal behavior explains the surprisingly equi-

table current allocation. While we find some match effects, there is minimal sorting in the current

equilibrium. While we find substantial heterogeneity in teacher preferences, it does not help achieve

an equitable allocation. In terms of market clearing institutions, we find that there is essentially a

unique stable equilibrium, so there is not favorable equilibrium selection. We also find that alle-

viating timing constraints is not favorable for disadvantaged students. In terms of principals, even

though principals place some weight on value-added, its ability to explain the rating decision is lim-

ited. This feature of behavior “pushes back” on teacher preferences to generate parity. To quantify

this point, we show that if principals were to only place weight on output, then the allocation would

be as inequitable as we might expect based on average teacher preferences. Thus, principal behavior

explains the surprisingly equitable allocation.

While the current allocation is equitable, policy-makers may prefer allocations that yield higher

total achievement or that further close baseline achievement gaps. We find that there are large po-

tential efficiency gains, 0.05 of a student standard deviation (σ), from reallocating teachers across

schools. This first-best allocation exploits two sources of efficiency: sorting on teachers’ com-

parative advantage with dis/advantaged students and placement of better teachers in larger classes.

Just under half of these gains are from sorting teachers based on comparative advantage (Delgado,

2021). These gains are equivalent to 39% of a standard deviation in teacher value-added or an ad-

ditional year of experience for a novice teacher, and are larger than the 0.012σ gains we estimate

from replacing the bottom 5% of teachers with the median teacher (Staiger and Rockoff, 2010; Neal,

2011).

If the district only valued closing baseline achievement gaps, then it could close about a seventh

of the gap between advantaged and disadvantaged students each year.

We use our equilibrium model to evaluate the effectiveness of commonly proposed policies. As

before, we find little role for equilibrium selection since there is nearly always a unique stable equi-

librium. Complete market coordination such that teachers can apply to any position in a cycle—not

just those concurrently active—has a somewhat larger effect, moving student achievement 15% of

the way from the status quo toward the first-best.

Policies that target principal behavior by, e.g., giving them information and/or incentives to only

rank teachers based on value-added, would have negative equity and efficiency consequences. This

result carries over the logic from principals’ effect on the current allocation: current principal behav-

ior is a second-best solution (Lipsey and Lancaster (1956)) to the problematic structure of uniform

wages amidst strong teacher preferences. Policies that align principal ratings with value-added lead

to more homogeneous rankings of teachers so that the highest absolute advantage teachers have

many options from which to choose. When teachers rank schools according to their estimated pref-

erences, in which output plays a small role relative to a school’s student body composition, increased
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choice leads to misallocation.

These findings leave the class of policies that varies teacher compensation with the assignment.

We compare policies tying teacher compensation to the value-added produced with policies that tie

teacher compensation to the fraction of disadvantaged students they teach. When principals hire as

in the status quo—i.e., noisily—compensation tied to value-added performs better for both equity

and efficiency goals. This occurs because expansions of labor supply to schools with disadvan-

taged students only closes achievement gaps if principals hire the best teachers, while expansions

of labor supply among only the high quality teachers changes the composition of labor supply. In

contrast, if principals hire based on value-added (with an information and incentives intervention),

then compensation tied to the fraction of disadvantaged students outperforms value-added compen-

sation on both efficiency and closing achievement gaps. Thus, changes in teacher compensation

are the primary way to move significantly toward the first-best allocations, but the optimal form of

compensation depends on principal behavior.

The final policy lesson is that there is a limit to how much of the efficiency gains can be achieved

by simply rewarding teachers and/or principals for value-added. The reason is that in the first-

best teachers are allocated based on comparative advantage, whereas value-added compensation

mean that principals rank in part on absolute advantage.4 Our estimates show that maximal value-

added compensation can only achieve about three-quarters of the efficiency gains, and the remaining

quarter requires flexible prices.

Literature: We are not the first paper to point out that principals do not perfectly select teachers

to maximize value-added of their students (Ballou (1996) might be the first). What is novel is

embedding this observation in an equilibrium framework and showing its consequences for the

allocation of teachers to schools.

This paper fits in an emerging literature that uses teacher labor market equilibrium models to

assess the gains in student achievement from various policies. These papers range in the alloca-

tion problem they consider from national (Combe, Tercieux and Terrier, Forthcoming; Bobba et al.,

2021; Combe et al., 2021) to state cross-district (Biasi, Fu and Stromme, 2021) to local within-

district (Boyd et al., 2013; Bates, 2020; Laverde et al., 2021) to sectoral (Tincani, 2021). Bau

(Forthcoming) studies an equilibrium model of school competition with school-student match ef-

fects.

Relative to this literature, our unique combination of detailed data on teacher applications, prin-

cipal ratings, and student-teacher classroom assignments allows us to identify two-sided heteroge-

4 To see why the stable and first best allocations can be different, suppose that teacher 1 has output {10,9} at schools
1 and 2, respectively, and teacher 2 has output {8,0} at schools 1 and 2. Then in any stable equilibrium where both
teachers and principals only value output, teacher 1 is assigned to school 1 and teacher 2 is assigned to school 2. In
contrast, in the first best, teacher 1 is assigned to school 2 and teacher 2 to school 1. This assignment reflects teachers’
comparative advantage. If the comparative advantage of teacher 2 is strong enough, say, her output is {11,0}, then the
decentralized and first-best allocations coincide.
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neous preferences and a multi-dimensional production model with straightforward assumptions on

behavior. Such data are necessary for our conclusions. To determine that the explanation for the

current allocation’s equity is that principals do not select teachers solely based on value-added, we

need to observe the applications that the principal receives as well as choices the principal makes.

In contrast, Boyd et al. (2013), Biasi, Fu and Stromme (2021), and Tincani (2021) do not have data

on applications and so assume that principals (school districts) hire the highest value-added teachers

subject to a budget constraint. We also note that when principals do rely on teacher observable char-

acteristics for hiring, these poorly predict value-added. In contrast, Combe, Tercieux and Terrier

(Forthcoming), (Tincani, 2021) and Bobba et al. (2021) lack student-teacher assignment data and

use teacher observable characteristics to infer teacher output. Further, our teacher application data

allow us to estimate significant preference heterogeneity and the joint distribution of teacher prefer-

ences and value-added. In contrast, Boyd et al. (2013), Biasi, Fu and Stromme (2021), Bates (2020),

and (Tincani, 2021) do not have such data and infer preferences based on equilibrium allocations.

While the model is tailored to our empirical setting, the case study carries important lessons for

broader analysis of labor markets. First, related to the literature on non-pay amenities (e.g., Rosen

(1986), and Sorkin (2018)), the fact that teachers express strong preferences over positions in the

absence of wage variation is clear evidence of the important role of amenities in shaping worker

choices. Second, as Oyer and Schaefer (2011) emphasize, labor economists should study how firms

hire workers. In this paper, we estimate an empirical model of the hiring decision and find that the

“mistakes” in hiring have desirable consequences for the overall allocation. Third, as Card et al.

(2018) emphasize, the empirical labor literature on imperfect competition would benefit from “IO-

style” case studies of particular markets. Here, we have a context where we are able to estimate

preferences of both sides of the market with rich data and link preferences directly to output.

1 An equilibrium model of the teacher labor market

In this section, we describe an equilibrium model of the teacher labor market within a school dis-

trict. The model clarifies the set of factors shaping the equilibrium, and thus the set of potential

explanations for the parity of the current allocation. Having specified the model, we then use it to

study counterfactuals.

We defer a full description of the empirical setting to Section 4, but we highlight a few features

that inform the model. First, the teacher labor market operates on a rolling basis from April to

August each year. This segments the market in time. Second, the market is decentralized such

that teachers choose which positions to apply to, and principals choose whom to interview and then

whom to offer jobs. Finally, a teacher’s wage does not vary based on the offer she accepts.
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1.1 Set-up

We begin with specialized notation that we generalize in the next section. Denote teachers by j,

and schools and principals by k. Teachers and principals both receive quasi-linear utility from an

assignment. Teacher j derives utility u jk from teaching at school k:

u jk = ũ jk +w jk, (1)

where w jk is the wage, and ũ jk is a match-specific amenity. School k (or the principal who runs it)

derives utility, v jk, from hiring teacher j. This utility is linear in a non-wage component less the

wage paid to teacher j:

v jk = ṽ jk−w jk. (2)

A teacher-school assignment produces student value-added VA jk. Below, we specify a func-

tional form for VA jk.

Finally, let J be the set of teachers, K be the set of schools, and assume for simplicity that the

number of teachers and schools is the same. An assignment of teachers to classrooms is a one-to-

one and onto function (bijection): φ : J → K so that φ( j) = k, the school k to which teacher j is

assigned. Denote by Φ the set of all possible assignments.

1.2 Decentralized equilibrium

To characterize the current equilibrium, we use a decentralized equilibrium concept derived from

the literature on matching. Schools meet with all teachers who are in the market at the same time.

The equilibrium concept is pair-wise stability. Under a stable allocation, no teacher and school pair

would prefer to jointly deviate and match (Roth and Sotomayor (1992), Definition 2.3).

To model the empirical status quo, we assume (1) teachers and principals have the preferences

we estimate for them and (2) the timing of the market follows that which we observed in the ad-

ministrative records, where not all matches are feasible. There is not necessarily a unique stable

equilibrium. We model the status quo using the teacher-proposing deferred-acceptance algorithm

(DA). For reasons that we explain in the next section, we use DA in order to find stable equilibria,

not because DA is actually used in this market.

1.3 Explanations for the current allocation

We are interested in understanding the parity of the current allocation, despite the average teacher

preferring schools with advantaged students (a fact we will establish in Sections 3 and 5). The

model embeds five potential explanations.
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The first explanation is that there are multiple possible equilibria and the current equilibrium is

favorable to disadvantaged students. We can quantify the possibility of this explanation by examin-

ing the range of stable equilibria. The teacher-proposing DA is the teacher-optimal stable allocation

(Roth and Sotomayor (1992), Corollary 2.14) meaning every teacher would (weakly) prefer their

assignment to that in every other stable allocation. In contrast, the school-proposing DA (where

schools only value output) is the best stable allocation in terms of student achievement. By exam-

ining these extremal equilibria, we are able to consider whether there are alternative equilibria with

different distributional consequences.

The second explanation is that the timing of when teachers and positions are active is favorable

to disadvantaged students. For example, positions with many disadvantaged students might be active

in a moment when only good teachers are active. As a way to quantify this possibility, we ask what

the allocation would look like if all positions and all teachers were active at the same time.

The third explanation is that average teacher preferences hide substantial heterogeneity. For

example, there is a subset of high quality teachers with strong preferences to teach at schools with

disadvantaged students. We allow for this possibility by estimating preference models allowing for

rich forms of heterogeneity across teachers that is potentially correlated with value-added. We can

then ask whether the allocation is different if we instead impose simpler teacher preference models.

The fourth explanation is that in generally attractive schools, principal hiring behavior does

not take advantage of the excess demand to hire better teachers. This behavior could reflect some

combination of lack of information (principals do not know who the high value-added teachers are)

and incentives (principals recognize the high value-added teachers, but have other priorities and so

choose not to hire them). We allow for this possibility by comparing equilibria where principals

behave according to our estimates, and those where they maximize value-added.

The fifth explanation is that teachers have significant comparative advantage with different stu-

dent types. If teachers who are effective with advantaged students are not effective with disadvan-

taged students, and vice versa, then all schools may be able to find teachers well-suited for teaching

their students. We incorporate this possibility by specifying production models with and without

match effects and comparing the predicted achievement in the respective status quo equilibria.

1.4 First-best problems

Beyond describing the properties of the current equilibrium, we are interested in policies that in-

crease aggregate achievement. Thus, as a benchmark, we consider a school district’s first-best

assignment problem. Here we take as given the set of teachers and positions the district has and

ask how to assign them. In Section 3, we consider just the teachers in the district. In Section 7, we

consider the set of teachers who apply in the transfer system and for whom we can estimate value-

added: this set includes teachers who have previously taught anywhere in the state. If we considered

all possible teachers in the single district’s problem (including potential teachers and those who do
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not apply to the district), then we would be ignoring how our focal district’s behavior affects the

allocation of teachers to and within other districts. The allocation problem then would no longer

map into a social planner’s problem.

The district values students’ outcomes and teachers’ preferences over assignment (non-wage

utility):

max
φ∈Φ

{ω ∑
j∈J

VA jφ( j)+ ∑
j∈J

ũ jφ( j)}. (3)

To understand this allocation problem, note that the the first term (∑ j∈J VA jφ( j)) is the output

achieved given an assignment φ. Here, the district weights the output of all students equally; below

we consider extensions where the district places different weight on different types of students (e.g.,

disadvantaged and advantaged students). The second term (∑ j∈J ũ jφ( j)) is the total amenity value

that teachers gain from this allocation. Finally, ω is the weight that the district places on student

achievement relative to teacher preferences. We will often evaluate allocations solely in terms of

student achievement (ω = ∞).

We exclude principal behavior from the district’s value of an allocation to focus on the essential

elements of the problem. Specifically, the district could plausibly bypass the intermediary of the

principal and directly hire for schools. In this sense, we do not commit to a utility interpretation of

principals’ preferences, and could instead interpret them simply as a hiring rule; hence, we tend to

use the language of principal behavior.

Because the paper’s goal is to study the allocation of teachers, and not how best to use existing

dollars, we do not include a budget constraint in the district’s problem. As cost is still a relevant

consideration in evaluating allocations, in Section 8 we compare the effectiveness of policies that

cost equal amounts.

We consider a range of district first-best problems where the relative weight on students varies.

We refer to the resulting set of optimal allocations as the production possibilities frontier. The slope

of the frontier captures the trade-off between student achievement and teacher utility.

1.5 Policies

We consider five policies that a district might pursue to attempt to reach a first-best allocation.

The first four policies parallel the first four factors generating equilibrium described above.

Notably, versions of these policies have all been proposed or implemented in different districts in

the United States. First, the district might wish to affect equilibrium selection.5 Second, the district

might try to change the timing of the market.6 Third, the district might provide incentives and/or

5Some districts have focused on changing the algorithm that clears the market (Davis, 2021).
6Some districts allow some schools to hire first Kraft et al. (2020), and others advocate for shifting the timing to
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information to teachers to make them value schools based on the teachers’ potential output at the

school.7 Fourth, the district might provide incentives and/or information to principals to make them

hire teachers on the basis of value-added.8

Finally, all four of these policies—even in combination—are not necessarily sufficient to achieve

the first-best allocations described in the previous section. The reason is that even when teachers

and principals only value output, the allocation sorts teachers based in part on absolute rather than

comparative advantage. To achieve the first-best allocations, it is sufficient to have the following

combination of policies: (1) districts inform principals and compensate them for output (so that

principals rank teachers by match-specific value-added, VA jk), (2) all teachers and schools are in

the market simultaneously, and (3) wages may vary with each teacher-school pair. This last policy

makes utility transferable. Whereas output bonuses only let wages vary depending on the output in

the assigned position, flexible wages would let wages depend on a teacher’s output in other assign-

ments, teacher preferences, and the distribution of other teachers’ potential output and preferences.

With full information, having this flexibility guarantees that the district can implement any first-best

allocation (Shapley and Shubik, 1971).

Other than for equilibrium selection, there is no theorem that the other policies in isolation

necessarily improve output. The theory of the second-best states that when we are away from the

first-best allocation because of multiple factors, then fixing any one factor can worsen outcomes.

1.6 Empirical plan

The model highlights the empirical objects we need to estimate to be able to simulate the impact

of the above policies and understand the current allocation. We start by estimating the potential

outcomes of teachers across schools, VA jk. We then estimate teachers’ amenity value across all

assignments, ũ jk, and principals’ non-wage utility from hiring each teacher, ṽ jk. Finally, we model

which positions were available to each teacher in the observed equilibrium.

2 Data

To estimate the objects of interest, we use rich data on the labor market for elementary school

teachers. The first type of data comes from the platform used to hire teachers in our focal district.

We use this data to estimate teacher and principal preferences. The second type of data comes

benefit certain types of schools (Levin and Quinn, 2003).
7Examples of teacher-level output bonuses include Indiana (Marcotte, 2015) and the ProComp policy in Denver

(Atteberry and LaCour, 2020). North Carolina implemented bonuses for teaching in hard-to-staff schools from 2001-
2004 (Clotfelter et al., 2008) while South Carolina provides high poverty districts with funding for teacher bonuses (Fox,
2017).

8Examples of principal-level bonuses or information treatments include North Carolina, which instituted principal
bonuses as a function of the growth in student test scores in 2017-2018 (Pridemore, 2017), and New York City, which
piloted a program giving principals information about their teachers’ performance in 2007-2008 (Rockoff et al., 2012).
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from staffing and achievement records from state accountability records. This data provides us

with student-level test score data that we link to teachers and use to estimate value-added models.

In addition, these records provide information about a variety of demographic characteristics of

teachers and students as well as teachers’ education and experience in the district. In this section, we

briefly describe the data. See Appendix A for further details and Appendix Table A1 for summary

statistics across samples.

2.1 Job application and vacancy data

We obtained application records from our focal district’s system, which spans 2010 through 2019

and records 346,663 job applications. In the system, schools post job vacancies, and applicants

apply for jobs. The system also records various actions that principals take.

For every posted position, the vacancy files indicate the school, position title, and whether the

position is full-time or part-time. We use the detail on the position title to isolate non-specialized

elementary school teacher jobs (i.e., we omit elementary school jobs such as “literary facilitator

elementary”).

We use two features of the teacher file. First, the file records which vacancies the candidate

applied to, and when she submitted the application. The timing information allows us to construct

choice sets, which we detail in Section 4. Second, the file records the city, zip code, and, in some

cases, exact address where the teacher lives. This feature allows us to construct the commute time

for each teacher-position combination.

We also have data in which principals record their assessments of teachers. Principals record

their interest in different applicants, the equivalent of a “good” and a “bad” pile. Principals also

often record which candidates they invited to interview, which candidates were offered the position,

and which candidates were hired.

2.2 Administrative data

We link the platform data to state administrative records on teachers and students. For teachers, we

have their experience, salary, licensing, certification scores, class assignments, and the school where

they work. For students, we have scores on standardized exams, grades, race, sex, and whether they

qualify as disadvantaged based on Federal programs. Records on class assignments allow us to link

teachers to students.

The North Carolina Education Research Data Center (NCERDC) matched the data from the

job-market platforms to the state’s administrative data. They performed an interactive fuzzy match

using names and birth year. For teachers who had a sufficiently good match (that is, a unique name-

birth-year combination), we have a de-identified ID that allows us to connect their platform data to

their staffing records and students’ achievement.
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3 Production of student achievement

In this section, we first specify the production model, which specifies teacher output at each school.

Second, we describe our three-step estimation procedure and discuss parameter estimates. Third,

we present a range of validation checks. Fourth, we describe important properties of the current

allocation. Finally, we use our estimates to show that reallocating teachers across schools can

produce meaningful gains in aggregate achievement and close baseline achievement gaps.

3.1 Model

We want to predict how teacher output would change depending on the teacher-school match.

While the teacher value-added literature usually estimates constant effects models, we follow the

quickly expanding literature documenting match effects and allow for comparative advantage (Dee,

2004, 2005; Jackson, 2013; Aucejo et al., 2021; Delgado, 2021; Graham et al., 2020; Biasi, Fu and

Stromme, 2021). This serves two purposes. First, substantial match effects could explain the parity

of the current allocation. Second, match effects would likely increase potential achievement gains

from reallocation.

We specify a model of match effects that is identified with our data and allows us to make output

predictions in unobserved matches. Since a teacher typically works in just a few schools during her

career, we cannot identify fully flexible match effects. Instead, we use low-dimensional match

effects where teachers have different value-added with students of different observable types; here,

we focus on a single student characteristic—economic disadvantage. Thus, a teacher’s school-level

match effect depends on the observed demographic composition of the school and the teacher’s

comparative advantage with each type of student.

We use notation that follows Chetty, Friedman and Rockoff (2014a) and Delgado (2021). Let i

index students and t index years, where t refers to the spring of the academic year, e.g., 2016 refers

to 2015-2016. Each student i has an exogenous type m(i, t) ∈ {0,1} in year t (whether the student

is economically disadvantaged). Student i attends school k = k(i, t) in year t and is assigned to

classroom c = c(i, t). Each classroom has a single teacher j = j(c(i, t)), though teachers may have

multiple classrooms.

Student achievement depends on observed student characteristics, teacher value-added, school

effects, time effects, classroom-student-type effects, and an error term. Formally, we model student

achievement A∗it as:

A∗it = βsXit +νit (4)

where Xit is a set of observed determinants of student achievement and

νit = f (Z jt ;α)+µ jmt +µk +µt +θcmt + ε̃it . (5)
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Here, Z jt is teacher experience (and f maps experience into output) and µ jmt is teacher j’s value-

added in year t for student type m, excluding the return to experience. As in Chetty, Friedman and

Rockoff (2014a), we allow a teacher’s effectiveness to “drift” over time. µk captures school factors,

such as an enthusiastic principal, while µt are time shocks. θcmt are classroom shocks specific to a

student type, and ε̃it is idiosyncratic student-level variation.

We make three assumptions, which are standard in the literature (see Appendix B for formal

statements of these assumptions). The first assumption is that classroom-student type shocks and

idiosyncratic student-level variation are orthogonal to teacher and school assignments and follow

a stationary process. We allow classroom shocks to be correlated across student types in the same

classroom, but restrict all cross-classroom or cross-year correlations in shocks to be zero.

The second assumption is that the non-experience part of teacher value-added for each student

type follows a stationary process that does not depend on the teacher’s school. We also assume that

the covariances between the teacher’s value-added across student types depend only on the number

of years elapsed.

The third assumption is that drift and school effects are independent. This assumption rules out

teacher mobility (or initial assignments) related to the drift of the teacher’s effect. We still permit

teacher-school assignments to be non-random, and quite possibly related to a teacher’s comparative

advantage in teaching different student types.

Our object of interest is a forecast of teacher j’s value-added from a hypothetical assignment to

a new classroom (or set of classrooms) in school k. Define pkmt as the proportion of type-m students

in school k in year t. Given our low-dimensional model of match effects, a teacher’s predicted mean

value-added at school k in year t is:

VAp
jkt = pk0tµ j0t + pk1tµ j1t + f (Z jt ;α), (6)

such that a teacher’s total value-added for n jkt students is VA jkt = n jktVAp
jkt . We use data through

t−1 from the whole state to forecast VAp
jkt for assignments we see in the data and for counterfactual

assignments. For the observed assignments, we forecast the teacher’s value-added were she to

receive a new draw of students and classrooms at that school. For the counterfactual assignments,

we predict a teacher’s value-added for schools at which she did not teach.

3.2 Estimation

We estimate our model in three steps using math scores.9 In the first step, we estimate the coefficient

on characteristics by regressing test scores (standardized at the state-level to have mean 0 and stan-

dard deviation 1 in each grade-year) on a set of student characteristics and classroom-student-type
9Focusing on a single subject allows us to rank all possible levels of output. We follow Biasi, Fu and Stromme (2021)

in choosing math because it is typically more responsive to treatment (e.g., Rivkin, Hanushek and Kain (2005), Kane and
Staiger (2008), and Chetty, Friedman and Rockoff (2014a) for evidence).
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fixed effects. In the second step, we project the residuals (Ait) onto teacher fixed effects, school

fixed effects, year fixed effects, and the teacher experience return function. In the final step, we

form our estimate of teacher j’s value-added in year t for type m (µ jmt) as the best linear predictor

based on the prior data in our sample (this prediction includes the experience function). Since in

this final step we shrink the estimates, we understate the dispersion in match effects relative to the

true dispersion. That said, using shrunken estimates and prior data means that we use the informa-

tion available to policy-makers. See Appendix B.2 for estimation details and a discussion of what

variation pins down parameters.

Alternative value-added models: We consider three alternative value-added models. The first is

a homogeneous effects model, where we assume that teachers’ effects on students and the classroom

shocks are type invariant. The second model estimates the school effects differently: rather than

including school fixed effects (as in, e.g., Jackson (2018)), we include school-level means of all

of the covariates (as in, e.g., Chetty, Friedman and Rockoff (2014b). Third, we include teacher-

year fixed effects in the residualization step, rather than teacher-class-student type effects as in our

baseline. See Appendix B.3 for details.

3.3 Validation of the match effects model

To test whether our estimates of teacher comparative advantage with different types of students

simply reflect statistical noise, we perform three tests of our multi-dimensional value-added model

versus a single-dimensional model. First, we estimate confidence intervals for the structural param-

eters in our production model. Second, we perform a likelihood-ratio test comparing our model

to a model with one-dimensional teacher value-added. Third, we test whether teachers who have

previously been stronger with disadvantaged students see increases in estimated value-added when

transferring to schools with greater shares of disadvantaged students. Similarly, we test the reverse

relationship. If our comparative advantage estimates only reflected spurious relationships, then they

would not predict changes in output upon transfer. All three of these tests allow us to reject homo-

geneity. See Appendix B.4 for further details on all three tests.

To validate our value-added model, we slightly modify Chetty, Friedman and Rockoff (2014a)’s

test for mean forecast unbiasedness. We predict a teacher j’s value-added in school k in year t (µ jkt)

using data from all years prior to t. We then regress the realized mean student residuals in year

t (Ā jt) and test whether the coefficient on our prediction equals 1. Column (1) of Table 1 shows

that the math value-added estimate is an unbiased predictor of residualized output, with a tight

confidence interval around 1.05. Figure 1 shows that the forecast unbiasedness holds throughout

the distribution of teacher value-added.

We conduct a similar test for the comparative advantage component of value-added, which will

be important for explaining the current allocation’s parity and potential efficiency and distributional
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reallocation gains. If teachers’ heterogeneous effects by student type vary with the environment—

for instance, teachers might target instruction toward the median student in the class—then our

model may poorly forecast a teacher’s comparative advantage. In column (2) we compare our fore-

cast of the difference in a teacher’s value-added across (economically) disadvantaged and advan-

taged students with the realized test score difference. Again, we find that our estimates are nearly

forecast unbiased. Appendix Figure A1 shows that the forecast unbiasedness holds throughout the

distribution.

We perform three tests of whether our measure of teacher value-added also forecasts output

across the types of teacher moves that we consider in counterfactuals. Our motivation in specifying

a low-dimensional model of match effects is that we do not observe a teacher’s potential outcomes at

all schools, and so we cannot directly assess the quality of our model across all potential outcomes.

What we can do, however, is look at the types of changes in the data that are closest to those that

we contemplate in counterfactuals. First, we consider moving teachers across schools. Second, we

consider moving teachers across classrooms (schools) with large changes in classroom composition

in terms of advantaged and disadvantaged students. Third, we consider moving teachers across

classrooms (schools) with different numbers of students.

In the spirit of Chetty, Friedman and Rockoff (2014a)’s quasi-experiment, how well do our mea-

sures predict output when teachers switch schools? In column (3) of Table 1 we find no systematic

change in value added after transferring schools.10 We also test how well our value-added esti-

mates predict transfer effects in column (4). We find that our value-added measure is mean forecast

unbiased.

How well do our measures predict output when there are large changes in student composition?

We split the data into three groups based on the size of the change between the estimation sample

(before year t) and the prediction sample (year t) in the share of disadvantaged students. To ex-

amine the validity of our prediction in extreme reassignments, we look at changes below the 10th

percentile, above the 90th percentile, and between the 10th to the 90th percentiles. For large nega-

tive changes (in Column (5) of Table 1), we find that our measure is forecast unbiased while we find

a small forecast bias for large positive changes.

How well do our measures predict output when there are large changes in class size? We per-

form a parallel analysis for class size as we did for student composition and find similar answers.

Specifically, in Column (6) of Table 1 we find that for large negative changes our measure is forecast

unbiased, while for large positive changes we find slight evidence of forecast bias.11

10In the same setting but in an earlier sample, Jackson (2013) estimates increases in output following transfers. In
our later sample, we see zero or negative effects when estimating Jackson (2013)’s event study specification (Appendix
Figure A2).

11The regressions assess forecast unbiasedness with a linear model. We show how our predictions perform nonpara-
metrically in Appendix Figures A3a and A3b for large decreases and increases in class size, respectively. We see that
our predictions are forecast unbiased throughout the quality distribution such that quality differences across teachers are
likely to remain across schools with different class sizes. Note that we are not ruling out class size effects, but rather that
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Our model’s ability to predict value-added across settings with minimal bias instills confidence

that we can predict the production effects from counterfactual allocations of teachers to schools.

3.4 Properties of the current allocation of teachers to schools

We highlight several features of the current allocation of teachers to schools in our focal district.

We also show that these patterns are similar in other districts in North Carolina and, for the subset

of the patterns that we can compute, that these are similar in a national dataset.

Table 2 suggests that on average teachers do not like teaching at schools with disadvantaged

students. Consistent with teachers moving away from such students over time, disadvantaged stu-

dents have less experienced teachers. More directly, attrition both from the school and the district

is higher for teachers of disadvantaged students. This finding holds outside our focal district.

Typically, if an employer is more desirable (i.e., schools with more advantaged students), then—

in the absence of varying prices—we would expect it to have better workers (i.e., teachers with

higher value-added). Advantaged schools do employ teachers who look better along many dimen-

sions that a naive observer would expect to predict higher test-score value-added: they are more

experienced, score higher on the Praxis exam, more likely to be licensed, have a graduate degree,

and to be NBPTS certified. While these observed variables correlate with value-added in the ex-

pected ways (and often with statistical significance), Appendix Table A2 shows that their explana-

tory power is very limited: the R2 for either an aggregated measure of value-added or a type-specific

measure of value-added is below 0.025.

Advantaged students do not have higher value-added teachers than disadvantaged students,

which is puzzling given the labor market facts we documented above. In levels, the achievement gap

is large: advantaged students score 0.86σ higher than disadvantaged students. In gains, however,

we find that disadvantaged students experience identical test score growth. More generally, con-

sistent with identical test score growth, Appendix Figure A4 shows that the level gaps are similar

across grades. Given that test score growth is used to estimate teacher value-added, it is perhaps

unsurprising that we find almost no difference in the quality of teachers of advantaged and disad-

vantaged students. This result holds for our baseline value-added measure when we measure quality

by ability with either advantaged or disadvantaged students, as well as our alternative value-added

measures.

That disadvantaged students do not have worse teachers is not unique to our district and is

consistent with others’ findings. Columns (3) and (4) of the Table show that we find similar patterns

of faster test score gains for disadvantaged students and better teachers outside of our focal district

as well. Like us, Sass et al. (2012, Table 2) shows that in both North Carolina and Florida schools

with greater share of disadvantaged students experience faster test score gains.12

these enter the school fixed effects, and we assume that class size effects do not interact with the teacher’s identity.
12In Appendix Table A3 we report summary statistics dividing schools by share disadvantaged, which is how Sass
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We can now address one of the potential explanations for the current allocation’s parity: sorting

on comparative advantage. In our estimated production model, a teacher’s effectiveness across

student types is highly correlated (0.86, Appendix Table A4), though there is still some room for

comparative advantage. In Table 2 we show a teacher’s type-specific value-added, split by the

student type taught. The average disadvantaged student has a teacher who is equivalently effective

with both student types (0.02) while the average advantaged student has a teacher who has slight

comparative advantage with disadvantaged students. Thus, we can rule out sorting on comparative

advantage as an explanation for the current allocation’s parity.

Figure 2 shows two properties of the current allocation that shape the gains from reallocation

and are not unique to our focal district. First, disadvantaged students are in schools with smaller

class sizes . The second is a more novel result, comparative advantage with disadvantaged students

is positively correlated with absolute advantage within the district and state as a whole. In terms

of the optimal allocation, these properties push in opposite directions. The first suggests sending

the stronger teachers to the advantaged students (in larger classes). The second suggests sending

such teachers to the disadvantaged students (where they have comparative advantage). In Appendix

Figure A5, we show that the fact that disadvantaged students are in smaller classes within each

district is true nationwide (because we use different data for this exercise, we reproduce the statistic

for our focal district in this alternative dataset). We also compute the two correlations discussed

previously in all the districts in North Carolina. The figure shows that our focal district is towards

the center of the distribution across districts along both dimensions.

3.5 Gains from alternate allocations

Efficiency objectives: We solve the district’s problem in Equation 3 where the district only values

student output. Table 3 shows that there are sizeable output gains from hypothetical re-allocations

of all teachers in our district in 2016. To focus solely on gains from reallocating teachers across

schools, we give each classroom within a school the same composition and number of students. The

top panel shows per-student gains or losses (column 1) from movements to the output-maximizing

(“best”) or output-minimizing (“worst”) allocations. The per-student gain of 0.054σ in the output-

maximizing allocation reflects improved sorting of teachers to schools without changing the set of

available teachers. The actual allocation is only slightly better than randomly assigning teachers to

schools (row 2 of Table 3), and the range of annual output between the best and worst allocations is

0.11σ (row 1 minus row 3 of Table 3).

Are these gains large or small? One way of contextualizing these gains is to compare them

with the cross-sectional standard deviation of predicted teacher value added in our district, which is

about 0.14σ (see Appendix Figure A6 for the distribution). The effect of the first-best reallocation

et al. (2012, Table 2) is structured. Unlike us, they find that the value-added of teachers in schools with many disadvan-
taged students is worse, which is slightly puzzling given they document a lack of differences in raw test score growth.
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is to increase teacher output by about a third of a standard deviation.

Another way of contextualizing the size of the gains is to compare them to the impacts of

two commonly-proposed policies or allocation rules. Reallocations within schools—i.e., matching

teachers based on within-school variation in classroom composition—would only achieve 28% of

the gains from the cross-school gains (row 4). These within-school gains reflect the fact that the

within-school assignment of teachers to classrooms exploits none of these gains and produces the

same output as random allocations (row 5). Replacing the bottom 5% of teachers, where we rank

teachers based on their forecasted value added in their actual assignment, with teachers of median

quality (as in Hanushek (2009) and Chetty, Friedman and Rockoff (2014a)), would achieve 22% of

the gains from better sorting of the existing teacher pool (row 5).

In our reallocation analysis, we move more than 5% of teachers, so this comparison to teacher

replacement policies might seem unbalanced. In Appendix Figure A7, we show that even replacing

all below median teachers would achieve per-student gains of less than 0.054σ. Going the other

way, in Appendix Figure A8 we show that reassigning just 10% of teachers delivers gains of over

0.02σ per student and full gains are nearly realized once 80% of teachers are reassigned.

In terms of distributional consequences, the first-best allocation entails larger gains for advan-

taged than for disadvantaged students. This finding is because (1) the current allocation slightly

favors disadvantaged students and (2) the negative correlation between economic disadvantage and

class sizes is more important than the positive correlation between comparative advantage in disad-

vantaged students and absolute advantage documented in Figure 2.

The overall gains come (1) from sorting teachers to schools based on comparative advantage and

(2) from placing high absolute advantage teachers in schools with larger class sizes (see Appendix

Figure A9). These assignments may be very different from the ones in the data, which introduces

two concerns. First, if our “reassignments” are farther away than the in-sample variation we use to

validate our value-added model, then we may be less confident in our output predictions. We find

that while some teachers end up in classrooms with different composition or sizes from the ones

where we observe them, this variation is still within the support of our data (see Appendix Figure

A10). Second, by moving teachers across different student types, we are relying on the cardinality

in the test score measures. As an alternative way to scale test scores, we express them in percentiles

and find that the predicted gains from reallocation are nearly identical (see Appendix Table A5).

We include sorting based on class size for three reasons. First, it is a feature of the environ-

ment: there is class size dispersion and we show in Appendix C that this variation is persistent.13

Second, teachers differ in their absolute advantage such that reassignments based on class size have

the potential to matter for student achievement. Third, our validation exercise found that our out-

put measures were mean forecast unbiased across class size changes. But because some readers

13In that Appendix, we also show that there are not systematic patterns of teachers “bargaining” over assignments
within schools: i.e., we show that newly hired and more experienced teachers are not assigned smaller classes or fewer
disadvantaged students within a school.
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may prefer reassignments based solely on comparative advantage, we present the potential gains

where we impose constant class sizes across all schools (see Appendix Table A6 for the full set

of constant class size results). We estimate gains of 0.021σ, which are nearly identical to Delgado

(2021)’s estimates using race-based match effects. These gains are 38% as large as the gains that

incorporate class size variation. Thus, the potential to sort solely on comparative advantage remains

economically meaningful.

How robust are our estimates of the efficiency gains to alternative value-added estimators? We

find that the overall picture is quite robust across our three alternative estimators. The reason we find

such large gains using the homogeneous value-added is that we are estimating fewer parameters: the

dispersion in the “true” value-added is essentially identical in the homogeneous value-added as in

the heterogeneous value-added, but there is less shrinkage and so the gains are larger.

Our specification likely misses some match effects.14 We find similar results when we allow

for match effects to vary with student race or prior academic achievement.15 In Section 7.5 we

show that our allocation conclusions are similar for these other forms of heterogeneity. Further, we

conduct a simulation exercise where we allow our modeled form of match effects to be incomplete.

We present the result in the top panel of Appendix Figure A11 and find that the potential gains only

increase, such that our results may be a lower bound. We also find that our results from Section 7

are qualitatively unchanged.

Closing achievement gaps: If the district cared only about disadvantaged students, then it could

achieve large gains for that type—specifically, it could close over a seventh of the achievement gap

in levels between advantaged and disadvantaged students in a single year. The bottom panel of

Table 3 shows that targeting non-disadvantaged students would yield a 0.075σ per-student gain,

while leading to a 0.05σ per-student reduction for advantaged students.

How robust are our estimates of the equity gains to restricting to constant class size or alternative

value-added estimators? The table shows that the gains to disadvantaged students and the losses to

advantaged students are larger in all of our alternative specifications than in the baseline. Thus, our

statements about the share of the achievement gap that could be closed are conservative.

4 The vacancy posting, application, and hiring process

We focus on the market for elementary-school classroom teachers for two reasons. First, teachers in

these positions are typically responsible for instruction in the tested subjects and thus we can infer

14A form of potential match effects we have not included are same-race (between teacher and student) match effects
(Dee, 2004, 2005; Gershenson et al., 2018), and same-gender match effects (Dee, 2005; Lim and Meer, 2017). In our
data, we find minimal evidence of same-race or same-gender effects (see Appendix Table A7). A form of match effects
we cannot test for in our data is that of teaching practices discussed in Aucejo et al. (2021) and Graham et al. (2020).

15See Appendix Table A8 for the structural parameters.
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their quality from systematic gains in their students’ test scores. Second, because these positions

also have common certification requirements, we can reliably classify which teachers are eligible

for the position.

4.1 Market overview

Our district organizes a decentralized hiring and transfer process in which teachers choose where

to apply and principals choose whom to hire. External and internal (transfer) applicants are pooled

into one market. Here we describe the basic market structure.

Market organization: The school district runs a centralized online hiring platform. Each school

posts its openings on the platform, and teachers choose whether to apply to each posting.

Timing: We examine the “on-cycle” part of the market, which dictates hiring and transfers be-

tween school years. It begins in the winter, when the district notifies each school of known and

expected attrition among the school’s work force and of how many positions that school may hire.

It ideally ends with filled positions by late August before the new school year. Similar to Papay and

Kraft (2016), some schools are unable to fill all positions by the start of the new school year.

Postings: The number of postings at a school reflects a combination of enrollment, budget, and

the number of teachers who leave. All three pieces of information are not necessarily known before

the main hiring season starts. This information delay generates variation within and across schools

in the timing of postings. For example, late information about enrollment or budget fluctuations

often necessitate late posting. Or if there is mid-year attrition, then the school would know long

before hiring season started that there would be a vacancy, which allows for early posting.

Applications: An application consists of a variety of documents including a teacher certification

and a brief diversity statement. The same set of documents applies to all positions. Thus, a prospec-

tive teacher faces a fixed cost of preparing materials.

Evaluation and hiring: When a teacher applies to a position, the hiring school receives her ap-

plication materials through the platform. The school’s principal may then rate the applications and

choose to interview applicants on a rolling basis. For known positions at the beginning of the hiring

period, there is a short window during which only transfers from within the district are able to apply.

Schools can either hire from this pool or wait and consider more applicants.

If the principal wants to hire the candidate, she extends a job offer. The candidate has 24 hours

to accept the offer, and if the teacher accepts, she commits to not accepting an alternate offer in the

same cycle.
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4.2 Empirical features and implications for modeling teacher applications

We document eight features of the market that inform how we model it.

The first set of features leads us to treat teacher applications as non-strategic. The natural alter-

natives to non-strategic applications would be a portfolio choice problem (Chade, Lewis and Smith,

2014), possibly involving a waiting strategy. A portfolio choice problem would arise through posi-

tive marginal costs of each application or other interactions across applications. The following two

features are inconsistent with these rationales:

Feature #1: The marginal cost of applications is essentially zero. Applying amounts to clicking

a button that sends the standardized materials to the particular position. Indeed, a teacher certifies

that she will not dis-intermediate the process. The website asks a teacher to sign the following state-

ment: “I understand that I should not send materials to individual hiring managers or principals.”

Feature #2: Principals do not see what other applications a teacher submits.

Some versions of waiting strategies amount to dynamic portfolio management, and so the pre-

vious two institutional features push against these being empirically relevant. More generally, a

waiting strategy would be sub-optimal in the sense that a teacher could miss many potentially de-

sirable vacancies because of the following feature:

Feature #3: Posting, applications, and hiring happen on a rolling basis throughout the hiring
season. From April to August, both sides of the market operate on a rolling basis (Appendix

Figure A12). The left columns in Table 4a show that the modal month for posting is June, with only

16% posting in April. The middle columns show that applications lag postings. The right columns

show that hiring occurs on a rolling basis and tends to lag posting by about a month. Over half of

hires are made by the end of June, even though over a quarter of positions have yet to be posted.

In practice, teacher application behavior appears inconsistent with a waiting strategy:

Feature #4: Teachers who are on the platform apply to vacancies very soon after they are
posted. To characterize the timing of applications, we construct a measure of a teacher’s wait

time to apply to a vacancy. The wait time is the time elapsed between the first day a teacher could

have applied to a vacancy and the day the teacher actually applied to the vacancy, where we assume

that the teacher only learns that a vacancy is available on days she logs into the system and applies.16

16More formally, let A jt denote the set of days where teacher j applied to at least one vacancy in year t, with a jt ∈A jt
measured in calendar days. Let bkt be the (calendar) day that position k’s vacancy is posted, and let c jkt be the day
that teacher j applies to position k. For every application j sent in year t, we define wait time w jkt as: w jkt ≡ c jkt −
mina jt∈A jt :a jt≥bkt a jt .
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Figure 3 shows that the wait time to apply for vacancies is typically very short. The top panel of

Figure 3 shows that the median wait time to apply to vacancies that were already posted on the first

day the teacher logged into the system (the “stock” of vacancies) is 0 days. Thus, the applicant’s first

day likely includes searching for older vacancies. Indeed, the mean vacancy an applicant applies

to on day one has been posted for 23 days (Appendix Table A9). The bottom panel shows that the

median wait time to apply to vacancies that were posted after the first day the teacher applies (the

“flow” of vacancies) is also 0 days.

Feature #5: Teachers’ application stopping behavior is hard to predict. In terms of applicants

ending their search, many applicants’ final applications come early enough in the cycle (9% in April

or before, 16% in May, 22% in June) that they are potentially forgoing many yet-to-be-posted va-

cancies (Appendix Table A9, panel C). While some teachers who stop searching may have accepted

a job, we see similar patterns among teachers who do not transfer that cycle. Thus, the end of search

might be driven by shocks unrelated to accepting a job.17

How we model teachers’ applications: These features lead us to treat applications as non-strategic

and teachers’ choice sets as all positions with postings active between a teacher’s first and last ap-

plication. In a full information environment, we would interpret the applications as revealing a

teacher’s preference for these vacancies. But if teachers were inattentive, then this inference would

be mistaken. One empirical implication of inattention would be that teachers wait to apply to va-

cancies because they only notice the vacancy on the second or third (or nth) time that they use the

platform. The absence of waiting is inconsistent with this implication of inattentiveness.

These assumptions imply very large applicant choice sets (Panel A of Figure 4), from which

applicants apply to many positions (Panel B of Figure 4). These large choice sets and application

sets allow us to precisely estimate heterogeneous preferences. For a case study of this heterogeneity,

in Appendix D we present descriptive evidence of significant amounts of cross-teacher heterogeneity

in application rates to Title I (high-poverty schools).

4.3 Empirical features and implications for modeling principal applications

We now turn to principals’ choice sets, which we define as all of the applications they receive.

Natural alternative assumptions include (1) due to rolling nature of the market, the position receives

a meaningful number of applications after the principal has made a decision, or (2) because those

teachers might still be in the market, the principal pays attention to the most recent applications.

17Teachers may continue searching after their final application day. The frequency of applications after the first
application day is low enough that statistically we cannot rule out long periods of search without making an application.
In Section 7.5, we report a robustness check of adding a seven day buffer to the end of the window.
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The following feature is inconsistent with both of these alternatives (and is evidence against another

strategic motive for teachers to time their applications):

Feature #6: The timing of applications that principals rate and do not rate is similar. We

view all applications to each position. Table 5 shows that we see a hire in 80% of the postings. In

12% of postings, we see a declined offer. In 18% of postings, we see further principal evaluations

and outcomes. We classify these into five groups: (1) interviews, (2) positive assessments, (3)

neutral assessments, (4) negative assessments, and (5) application withdrawals.

From the data on the subset of vacancies for which we have multiple outcomes, the applications

that receive ratings (i.e., a rating or an interview) have similar timing to those that principals do

not rate. Table 5 shows the day of application relative to the application date of the eventual hire.

Applications with principals’ ratings are received on average only 2.2 days earlier than applications

without ratings.

Our construction of choice sets implies that teachers and positions are not active for the whole

cycle. With respect to identifying preferences, the concern would be that there is some systematic

correlation between teacher and position characteristics and the timing of when they are active.

Naturally, we cannot rule out all forms of sorting. Fact #5 speaks against teachers stopping their

search strategically. We can also explore various forms of sorting based on observed characteristics.

The following shows that there is little evidence for such sorting:

Feature #7: The timing of postings is hard to predict based on school characteristics. Insti-

tutionally, we have already discussed why posting—even within a school—is likely spread out: the

arrival of relevant information is spread out.

One key source of heterogeneity in the timing of vacancies is that the the district has tradition-

ally allocated replacement positions only once it is aware that a teacher is leaving, rather than “in

expectation” of the number of vacancies. Since most teacher attrition occurs over the summer, this

policy necessarily generates spread out posting. There are many reasons why teachers would not

notify the school early enough for the school to post the job in April. For example, teachers may

not know that they will leave until they have secured another position, setting up a vacancy chain

in which schools that lose a transferring teacher must search later in the market. Or, teachers may

withhold the information, particularly if they fear their leaving could negatively affect them.

While some of these factors suggest that there could be a systematic relationship between post-

ing date and school type, we do not observe such patterns in the data. First, Table 4a shows that

the months with highest shares of Title I postings occur early in the cycle (in April (62%) and May

(52%)). This finding runs counter to a vacancy chain with Title I schools at the bottom. Second,

there is vast variation in the timing of job postings within the same school. Table 4c pools posting

dates across the years in our data and shows that 89% of schools that post jobs in July also post jobs
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in April. A similar pattern holds for schools with April postings.

Feature #8: The timing of applications is hard to predict based on teacher characteristics.
We focus on one characteristic: the value-added of a teacher. Table 4b shows that teachers with

above-median value-added scores apply slightly earlier in the cycle, but these differences are small.

How we model principals’ actions: Principals take three actions: rating applicants, interview-

ing applicants, and hiring applicants. While it is conceivable that the offer decision might reflect

strategic considerations (e.g., is this teacher likely to accept the offer?), such considerations are not

relevant in the principal rating. We therefore use the principal rating as our primary indicator of

principal preferences. (In our data, there is only a single field that records the principals’ actions. If

a positive assessment turns into an interview, then the field records an interview. Hence, we interpret

the entry “interview” or “hired” as being an application that received a positive rating.)

In terms of the principal choice set, we view Feature #6 (the timing of applications that princi-

pals do and do not rate is similar) as suggestive that principals consider all applications. But we do

not have additional evidence on the timing of principals’ actions that would allow a more precise

characterization of the process. In Section 7.5 we pursue a variety of robustness checks around this

assumption.

5 Teacher preferences

5.1 Applications Model

We now formalize the discussion of how to infer teacher utilities from application choices given

non-strategic applications. The district’s labor market consists of a finite set of potential teachers,

indexed by j, and a finite set of positions, indexed by p. Each position is associated with a specific

school, k = k(p), and may be assigned to at most one teacher. The exception is the outside option

(p = 0), which includes leaving the district or teaching and has unlimited capacity.

At the beginning of year t, each teacher has an assignment, denoted by c. For teachers new to the

district, this assignment is the outside option (c = 0), while for incumbent teachers, the assignment

is j’s position in the prior year, c = p( j, t−1). Teachers may always keep their initial assignment.

On an exogenous date r = r( j, t), teacher j enters the transfer system.18 If she enters, then she is

active in the transfer system until an exogenous end date, r′ = r′( j, t).

If the teacher enters the transfer system, then she may apply to any position p that is active at

some point between r and r′. There is no marginal cost to applying and there is no limit on the

18We treat the decision to enter the system as exogenous. We discuss selection into the system in Appendix E.
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number of applications she can submit. Let a jpt be an indicator for whether teacher j applied to

position p in year t. Teachers’ applications are known only to position p and teacher j.

These assumptions lead teachers to treat the application process non-strategically by applying to

any position with utility higher than her current position and the outside option.19 Slightly abusing

notation (since c = 0 for teachers outside the district), a teacher submits an application to position

p if:

a jpt = 1{u jpt > max{u jct ,u j0t}}, (7)

where u jpt is teacher j’s utility from working at position p in time t.

5.2 Parameterization

We adopt a characteristics-based representation of teacher utilities over positions. By summarizing

the position in terms of a lower-dimensional set of characteristics, we allow teachers to vary in their

valuations of schools with these characteristics. Teacher utilities over positions are:

u jpt =−γd jpt +π jVA jpt +β jXpt +η jt + ε jpt . (8)

d jpt is the one-way commute time (in minutes) between the teacher and the position and will serve

as a numeraire for exposition (Appendix Figure A13 shows a binscatter of application probabilities

against distance, revealing a strong downward slope until about 40 minutes). VA jpt is teacher j’s

total value added at position p in year t.

Value-added, VA jpt , combines absolute and comparative advantage. We define a teacher’s abso-

lute advantage to be her predicted value-added at a representative school: AA jt = n1t µ̂ j1t + n2t µ̂ j2t ,

where nmt is the average number of type m students in a classroom in the district. Comparative ad-

vantage, CA jpt , at a specific position is then the difference between predicted value-added at school

k(p) and absolute advantage: CA jpt = VA jpt −AA jt . Because we control for absolute advantage in

the person-time effects, η jt , the coefficient on VA jpt , π j, captures the strength of teachers’ pref-

erences for schools where their comparative advantage is high, reflecting the alignment between

teachers’ preferences and student output. We allow for preference heterogeneity by including a

random coefficient in π j:

π j = π̄+σ
VA

ν
VA
j , (9)

where νVA
j ∼iid N(0,1). Since π j varies across teachers but we do not have random coefficients

on absolute advantage, π j includes both the preference over comparative advantage and any cross-

19We assume that any post-application steps necessary to be assigned to a position – e.g., interviews – are costless.
In our data, teachers with multiple interviews are so rare that even if interviews are costly, they are rare enough that it is
unlikely teachers consider dependence across applications.
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teacher heterogeneity in preference over output.

Xpt is a vector of observed characteristics of positions: the fraction of a school’s students that

are economically disadvantaged (e), the fraction that are Black (b), the fraction that are Hispanic

(h), and the fraction with an above median prior year math test score (s). We allow teachers to have

heterogeneous preferences related to these school characteristics. Specifically,

β
e
j = β

e
j0 +β

e
j1AA jt +σ

e
ν

e
jt

β
b
j = β

b
j0 +β

b
j1AA jt +β

b
j2Black j +σ

b
ν

b
jt

β
h
j = β

h
j0 +β

h
j1AA jt +β

h
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h
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h
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β
s
j = β

s
j0 +β

s
j1AA jt +σ

s
ν

s
jt ,

(10)

where Black j and Hispanic j are indicators for teacher race categories and ν jt is a vector of indepen-

dent, standard normal random coefficients. Thus, the σ parameters capture the standard deviation

of idiosyncratic preferences related to each school characteristic.

We follow Mundlak (1978) and Chamberlain (1982) and model η jt using correlated random

effects. We model teacher-year unobserved heterogeneity in preferences for teaching in the district

as the sum of several components:

η jt = λZ jt +ρCM jt +σ
η
ν

η

jt . (11)

Z jt are teacher-year characteristics – whether the teacher is in the district, whether the teacher

is Black, whether the teacher is Hispanic, whether the teacher is female, the teacher’s predicted

value-added for economically disadvantaged students, the teacher’s predicted value-added for non-

economically disadvantaged students, and dummy variables for whether the teacher has 2-3 years

of prior experience, 4-6 years of prior experience, or more than 6 years of prior experience. CM jt

is a set of teacher-year averages of the variables that vary across the job postings within teacher-

year (value-added, commute time, interactions of teacher and school characteristics). Thus, through

CM jt , we allow unobserved heterogeneity to be correlated with CA jpt and Xpt . Finally, ν
η

jt is an

independent standard normal random effect.

ε jpt is an iid Type I extreme value error. Let Vjpt = u jpt − ε jpt be j’s representative value for

position p in year t. Then the distributional assumption on ε jpt implies that:

Pr(a jpt = 1) =
exp(Vjpt)

1+ exp(Vjct)+ exp(Vjpt)
and Pr(a jpt = 1) =

exp(Vjpt)

1+ exp(Vjpt)
, (12)

for teachers already in the district and teachers new to the district, respectively.

25



5.3 Estimation and Identification

We estimate the teacher preference parameters using the teachers’ applications to positions. We

define a teacher’s choice set, P jt , to be the set of vacancies active at the same time as the teacher.

A teacher’s start and end (search) date are the dates of her first and last application. Similarly, a

vacancy’s start and end (active) date are the dates it receives its first and last application.

We estimate teacher preferences via maximum simulated likelihood, where we simulate from

the normal distributions of the random coefficients. Let n index each simulation iteration and let

A jptn(θ) be the model-predicted probability that j applies to position p in year t in simulation

iteration n at parameter vector θ. For each teacher j in year t, we construct the simulated likelihood

as:

L jt =
1

100

100

∑
n=1

∏
p∈P jt

(a jptA jptn(θ)+(1−a jpt)(1−A jptn(θ))), (13)

where a jpt is an indicator for whether j applied to p in the data. Our full simulated log likelihood

function is:

l =
1
J ∑

j
logL jt . (14)

In Section 4 we argued that it is empirically plausible that teachers apply non-strategically.

Under this assumption, the choices that teachers make identify preferences and preference hetero-

geneity. Heuristically, if within her choice set a teacher is more likely to apply to positions with

a particular characteristic than a position without this characteristic, then we infer that the teacher

has a preference for schools with this characteristic. For mean coefficients, the relevant features

of the data are the mean application rates to schools with certain characteristics. For observable

preference heterogeneity, they are the variation in application rates across teacher characteristics.

Finally, for unobservable preference heterogeneity, they are correlations at the teacher-level in the

characteristics of the positions they apply to beyond what we would predict based on observables.

We seek to predict teachers’ valuations over positions rather than causal effects of changes in

position characteristics on choices. This still allows us to make counterfactual predictions. In Sec-

tion 7, we make predictions by directly changing teachers’ preferences. Mechanically, we assume

that teachers only value output, rather than using estimated preferences. Conceptually, this com-

bines a monetary bonus for output with information about output in each position, and thus only

assumes that teachers place non-zero value on money. In Section 8, we give teachers bonuses as

a function of school characteristics. Again, these counterfactuals do not require causal effects of

characteristics in teacher preferences. For example, even if teachers place zero value on output, it

is still possible to give bonuses for output by giving extra utility in proportion to the extra amount
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of output. We cannot consider counterfactuals where we change a particular characteristic. For

example, we cannot use our estimates to predict the effects of changing the share of disadvantaged

students in a school.

As a convenient way to interpret magnitudes, we sometimes convert utility to minutes of com-

mute time, which requires the stronger assumption that commute time is exogenous. But because

we primarily make relative comparisons of the costs of various policies, we do not rely on having

consistently estimated the causal effect of commute time, unless noted.

5.4 Teacher Preference Estimates

Table 6 presents the teacher preference model estimates. First, consistent with what we found

in simple summary statistics above, teachers prefer positions with greater shares of advantaged

students. Second, teachers dislike positions with longer commutes. Finally, teachers have only

slight preference toward positions where they have higher value-added.

Responsiveness to school and match characteristics varies with observable and unobservable

heterogeneity. For example, teachers with higher absolute advantage have more negative prefer-

ences over the school’s fraction of students that are disadvantaged. We also find a large positive

same-race premium for Black teachers and schools with large fractions of Black students. In terms

of unobservables, we typically find substantial dispersion in the random coefficients. For example, a

standard deviation of the random coefficients on comparative advantage and fraction disadvantaged

are each about 1.5 times the mean valuation.

To help interpret the strength of—and heterogeneity in—some of these relationships, Panels (a)

through (c) of Figure 5 show how the average rank of positions in teachers’ preferences change as

single characteristics change, as well as the 10th and 90th percentile of these positions in teachers’

rankings. We do not hold other characteristics fixed so that, for example, when we study com-

mute time, other characteristics of schools are potentially changing. The figure emphasizes that

commute time is a powerful predictor of rankings: changing commute time from 5 minutes to 25

minutes decreases the average rank of a position (for the average teacher) from about the 80th per-

centile to the 50th percentile. Similarly, the fraction of students that are disadvantaged is a powerful

predictor of ranking: across the support, the mean ranking moves by about 20 percentiles, and if

teachers were given their top choice there would be oversupply toward economically advantaged

students (Appendix Figure A14). In contrast, while teachers do pursue comparative advantage, this

relationship is quite weak: across the support of the data, varying teachers’ comparative advantage

only increases the rank of a position by a couple percentiles. The figures also emphasize that there

is substantial heterogeneity in teachers’ rankings of positions: across the support of most of these

characteristics, the range from the 10th percentile in the teacher distribution to the 90th is very large.

Teachers’ preferences are not particularly aligned with the first-best allocation that maximizes

student achievement or that maximizes the achievement of disadvantaged students. Panel (a) of

27



Figure 6 shows that the mean ranking of the first-best position in teachers’ preferences is the 48th

percentile (we use the same sample as in Section 7). Even if on average teacher preferences do not

align with the planner, stronger teachers having more aligned preferences could limit the misalloca-

tion resulting from teachers’ preferences. The figure shows that this possibility does not occur: for

the average strong teacher, the first-best position remains below her 50th percentile ranking. Panel

(b) of Figure 6 makes a similar point for the objective of reducing achievement gaps: the rank of the

allocation that minimizes the achievement gap hovers around the 50th percentile across the absolute

advantage distribution, and if anything the rank is slightly decreasing in absolute advantage. Thus,

giving teachers more choice might not produce efficiency or equity gains.

6 Principal behavior

6.1 Model and parameterization

Each position p is associated with a principal with the same index. Principal p derives non-wage

utility ṽ jpt from teacher j holding the position in year t. Because principals in our empirical context

do not have to pay teacher wages out of a school budget, we model a principal as giving teacher j a

positive rating (b jpt = 1) if the non-wage utility is positive: ṽ jpt > 0.

We adopt a characteristics-based model and parameterize ṽ jpt to be a linear function of position

and teacher characteristics, a random effect, and an idiosyncratic teacher-position error:

ṽ jpt = αpWjpt +σκκpt +υ jpt . (15)

To allow principal behavior to possibly align with output, Wjpt includes j’s total value-added at

school k(p). We further include common teacher characteristics: teacher prior experience (in bins

of 2-3 years, 4-6 years, and 7+ years), whether the teacher has a Masters degree, whether the teacher

is Black, whether the teacher is Hispanic, and whether the teacher is female.20 Finally, we include

a constant and interact whether the teacher is Black with the fraction of the school’s students that

are Black and whether the teacher is Hispanic with the fraction of the school’s students that are

Hispanic. We allow principals to have heterogeneous valuations over teachers based on Wjpt by

letting αp vary with whether the school has Title I status.

To capture principals’ heterogeneous outside options and variation in propensity to assign rat-

ings, κpt is a normally distributed random effect. Finally, υ jpt is i.i.d. Type I extreme value.

20We also include indicators for whether each demographic covariate is missing.
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6.2 Identification

As with teachers, the identification of principal behavior is straightforward given our characteriza-

tion of the process in Section 4. We observe the set of applications that a principal receives and we

observe whether or not a principal gives an application a positive rating. We interpret the decision

to give an application a positive rating as a non-strategic and costless action. This interpretation al-

lows us to infer principal behavior from their choices in a straightforward way: those that are rated

positively are preferred to those that are not. Because we observe the ratings, even if interviewing

is costly and so principals are strategic at this stage, then our identification approach is still valid.

One might also worry that assigning a rating is costly, and so it is done strategically. To alleviate

this concern, we show below that if we restrict attention to applications where a principal assigned

a rating (either positive or negative), then our results are quantitatively identical.

6.3 Estimates

To help understand the determinants of the principal ratings, Appendix Table A10 presents the

changes in pseudo-R2s from including different sets of observable teacher characteristics. The cen-

tral finding of the table is that the main set of characteristics that explain ratings decisions are the

combination of experience, licensing, certification and Praxis scores, which we showed in Table A2

poorly predict value-added. Value-added by itself or in addition to other characteristics generates

very small changes in model fit.21 More generally, observables have limited explanatory power for

the ratings decision—the most saturated model has a pseudo-R2 of less than 0.03.

Despite the small explanatory power of value-added in principal decisions, Table 7 shows that

principals favor teachers with higher value-added.22 Title I school principals rate Black and His-

panic teachers more positively than non-Title I teachers. Because Title I schools have a larger share

of Black students, schools with higher fractions of Black students assign higher total valuations to

Black teachers.

To help interpret the strength of the value-added relationship, Panel (d) of Figure 5, shows

that the mean percentile of teachers in principals’ ratings goes from the 25th percentile to the 60th

percentile across the support of projected value-added. How much of this relationship is about

value-added or the correlates of value-added? Consistent with the idea that observed characteristics

poorly predict value-added, Appendix Figure A15 shows that if we omit value-added from the

principal model then the relationship dramatically flattens.

How aligned are principals’ ratings with the allocation that maximizes student achievement or

that maximizes disadvantaged students’ achievement? Panel (c) of Figure 5 shows that the average

percentile of the output-maximizing teacher for a principal is the 52nd (compared to the 48th for

21EVAAS, the value-added measure computed by the state of North Carolina, has even less explanatory power.
22See Appendix F for the likelihood, which closely parallels the one for teachers.
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teachers). Panel (d) shows a fairly similar set of results. Thus, schools’ preferences are not very

aligned with planner’s preferred allocation, whether the planner has equity or efficiency objectives.

What do these relationships imply for the current allocation? Conceptually, we have shown that

value-added matters but so do many other factors. Further, the mean valuation of a teacher with a

characteristic (like high value-added) may not predict hiring choices well if schools can regularly

hire the teachers at the top of their rankings. Thus, the role of principal behavior in generating the

current allocation is non-obvious. The benefit of the equilibrium model is that we can precisely

quantify the consequences of the observed structure of principal behavior relative to counterfactual

structures.

7 Main results

We combine our estimated match-specific output from Section 3, our estimated teacher preferences

from Section 5, our estimated principal valuations from Section 6, and our estimated market timing

from Section 4 to simulate the market equilibrium. We first explore why there is parity in teacher

quality between student types in the current allocation. We then consider trade-offs a policy-maker

faces between teacher utility and student achievement when maximizing efficiency and the effects

of various policies.

7.1 Simulation details

We make several choices in how we simulate allocations.

Sample: As elsewhere in the paper, we look only at non-specialized elementary school teachers

and the equivalent positions.

We are interested in how to allocate the existing teacher workforce that is available to a district.

While in Section 3, we considered all teachers within the district, for this exercise we consider

allocating the set of teachers who apply for positions in the district in a given cycle, including

teachers who are not currently in the district.

Because we want to be able to compute the output associated with each match, we restrict

attention to the teachers for whom we can compute value-added, which includes teachers who have

previously taught anywhere in the state. This restriction drops a large number of teachers: in the

labor market for elementary school teachers in the 2015-2016 school year, we end up with 178

teachers and 296 positions.

Ashlagi, Kanoria and Leshno (2017) emphasize that imbalance in the sizes of the two sides of

the market can determine the surplus accruing to each side of the market. To avoid the possibility

of imbalance playing a role in our estimates, in each simulation run we randomly drop positions so
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that there are the same number of teachers and positions. In practice, we have also explored many

of our results without dropping positions and we found that our results are very similar.

Randomness: While we estimate a distribution of random coefficients, in simulations we use a

single draw of the random coefficients per teacher and principal. This draw is the one that maximizes

the likelihood for the teacher or principal. We draw the type I errors in the preferences in an i.i.d.

fashion.

Preferences: In using DA to find stable allocations, we have teachers and principals submit rank-

ings according to their true preferences. If there are multiple equilibria, then for one side of the

market it is not a dominant strategy to report truthfully. Below we show, however, that the equilib-

rium is essentially always unique and so truthful reporting is a dominant strategy.

Market clearing: We do not include an outside option when we run DA. Hence, given that we

impose balanced markets, in each simulation all teachers are hired and all positions are filled.

To average over the randomness in both the errors and the random dropping of vacancies, we

average over 200 simulation runs.

7.2 Model fit

We begin by considering the model’s fit under status quo policies. We model the status quo as the

teacher-propose equilibrium with restricted timing, and use estimated teacher and school prefer-

ences. Figure 7 shows that the model matches the basic qualitative patterns in the data: schools

with a larger share of disadvantaged students have teachers (a) with stronger absolute advantage,

(b) with comparative advantage in teaching economically disadvantaged students, (c) less likely to

be experienced, and (d) more likely to be Black. Quantitatively, the model almost exactly matches

the slope for teacher experience and whether teachers are Black. The model slightly underpredicts

the slope in absolute advantage and misses some of the intercepts. The intercept gap comes from

slight differences in the data and model samples (see Appendix E).

To assess whether our model fits better than alternate equilibrium assumptions, we examine the

fit of models where schools and teachers match according to serial dictatorships. We find that a

teacher serial dictatorship ordered by absolute advantage (Appendix Figure A16) and experience

(Appendix Figure A17) and a principal serial dictatorship ordered by fraction of students that are

economically disadvantaged (Appendix Figure A18) each produce a much worse fit than our model.
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7.3 Understanding the current allocation

The top panel of Figure 8 shows the mean achievement of economically advantaged and disad-

vantaged students in various allocations. In the status quo allocation, we find that disadvantaged

students have better teachers (the gap is slightly larger than 0.01 standard deviations).23 Thus, the

model reproduces the basic puzzle we have emphasized: the allocation is favorable towards dis-

advantaged students despite the fact that average teacher preferences are against working at such

schools.

In terms of explanations for why the allocation is favorable to disadvantaged students, we find

little role for market institution explanations. Changing the equilibrium from the teacher-proposing

equilibrium to the school-proposing equilibrium has no effect on the allocation. Changing timing

so that all vacancies and teachers are active at the same time increases output by a similar amount

for both types. Thus, the current timing is not especially favorable to disadvantaged students.

We do find a large role for principal behavior. When we give principals output maximizing

preferences, we end up in the allocation we might have expected based on average teacher prefer-

ences: now, advantaged students receive (quite dramatically) higher value-added teachers than dis-

advantaged students. Changing the principal preferences generates a change in the disadvantaged-

advantaged student gap of 0.09σ in the quality of their teachers.

We find little role for teacher preference heterogeneity. We show this finding in two ways.

First, we replace the estimated teacher preferences with homogeneous preferences by dropping all

of the random coefficients from the preference specification. Going from the status quo to these

homogeneous preferences barely changes the allocation. Second, if we have principals maximize

value-added and teachers maximize value-added, then we return to an allocation that is favorable to

disadvantaged students, which shows that it is teacher preferences that are the cause of the allocation

that is favorable to advantaged students when principals maximize value added. (Table 8 shows

that if teachers just maximized value-added and principals behaved according to their estimated

preferences then the allocation is similarly favorable to disadvantaged students).

Why does principal behavior generate a distributionally favorable allocation; or, put differently,

why does making principals rank according to output generate such unfavorable allocations? Figure

9 shows that in both the status quo and when principals only value output strong teachers end up

in their more preferred schools. But this relationship tightens when principals only value output

because it generates an allocation that is close to a serial dictatorship based on teacher absolute

advantage. As we have shown, (strong) teachers tend to prefer teaching at schools with advantaged

students. So the strongest teachers end up assigned to schools with advantaged students.

23The distribution in the status quo is slightly different than in the full sample. Like in the full sample, in the transfer
sample class size is negatively correlated with the fraction of economically disadvantaged students and teachers with
absolute advantage tend to have comparative advantage with economically disadvantaged students (Appendix Figure
A19). But in the transfer sample, these factors balance out such that the first-best allocation splits the strongest teachers
(Appendix Figure A20) and produces equal value-added across student types.
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7.4 Trade-offs and counterfactuals

7.4.1 Trade-offs

The bottom panel of Figure 8 presents our main efficiency results. The production possibilities

frontier (PPF) comes from solving a set of first-best problems (equation (3)) where we place dif-

ferent relative weight on students’ achievement and teachers’ utility. The top-left point shows the

allocation of teachers to schools that maximizes student achievement. The bottom-right point show

the allocation that maximizes teacher utility. There are two notable features of these points. First,

there is a large gap in student achievement between the teacher and school first-best: the difference

is 0.03 standard deviations of test scores. Second, there is a large gap in teacher utility between

these allocations: the difference is about 35 minutes of one-way commuting time a day. A sensible

valuation of an hour of commute time is about half of the hourly wage (Johnston, 2021). Hence, this

finding, plus a causal interpretation of the commute time coefficient, implies that the gap between

the teacher and school first-best is worth about one-sixteenth of a teachers’ annual earnings.

The PPF also shows very favorable trade-offs available between teacher utility and student

achievement. Concretely, if we start from the teacher-preferred allocation, then there are large

gains in student achievement that barely affect teacher utility.

7.4.2 Counterfactuals

Turning to stable allocations, we study counterfactual policies, which parallels some of the exercises

we previously saw. First, we find no role for equilibrium selection: changing from teacher-proposing

to school-proposing DA has essentially no effect on the allocation. Second, policies that complete

choice sets achieve 15% of the total allocative gains.

Third, making principals only value output—which combines an information intervention (telling

principals teacher value-added) and an incentive—slightly reduces student achievement. This find-

ing might appear counterintuitive as we are aligning principals’ preferences with those of the plan-

ner and in Panel (e) of Figure 5 we showed considerable misalignment. Instead, the result reflects

natural “theory of the second-best” reasoning and thus highlights important interactions between

teacher and principal preferences. As we emphasized above, in the current allocation both principal

and teacher preferences depart from the what the planner would want, and so fixing one in isolation

can make the allocation worse.

Fourth, making teachers also only value output in a way analagous to principals in the previous

paragraph has large effects on student achievement. If teachers only value output, then we achieve

74% of the total allocative gains available in this sample. We show below in Table 9 that there are

similar gains if we change teacher preferences but do not change principal preferences.

Finally, once we complete choice sets and make both teachers and principals only value output,

the remaining 26% of allocative gains is due exclusively to the absence of flexible prices. Prices
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play two roles in improving allocations. First, prices let the district change the agents’ value from

a match to align with that of the planner. Second, prices make utility transferable and allow the

district to incorporate comparative advantage into principal preferences. Principals who only value

output will rank teachers largely based on absolute advantage rather than comparative advantage.

Teacher utility in various allocations: Teacher utility increases as we move from the status quo

and first expand choice sets and then make principals only value output. Each of these steps in-

creases teacher utility on average by about 5 minutes of one way commute time. In contrast, if we

make teachers only value output, but still evaluate the utility of the assignment using our estimated

preferences, then we find that this change reduces teacher utility by about 20 minutes of one way

commute time relative to the status quo.

7.5 Robustness

In Tables 9 and 8, we consider robustness along many dimensions.

1. Year of analysis: use the other years in our data;

2. Split of students: instead by race (white and non-white) and lagged achievement;

3. Teacher choice sets: add a seven-day buffer at the end, focus only on vacancies that were

available on the first day the teacher applied;

4. Drop teachers who applied to only one vacancy;

5. Alternative preference models: various combinations of teacher and school fixed and random

effects, as well as a correlated random coefficient specification for teachers;

6. Principal choice sets: restrict to applications submitted within plus or minus two weeks of the

“hired” application; split the position-specific window when teachers were submitting in half

and estimate separately on each half;

7. Use information about principal behavior differently: estimate a rank order logit model where

we let, e.g., “hire” to be a better outcome than “positive assessment,” use only applications

where principals made an active choice (drop unrated applications), use a binary logit with

hired as the outcome;

8. Hold class size fixed, rather than exploiting class size differences;

9. Value-added model: use the three alternative models previously discussed (homogeneous

value-added, residualize differently, and use school means to compute fixed effects).

10. Principal model: add additional variables to the principal model.
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Looking across Table 9, the magnitude of the efficiency gains of moving to the first best is quite

robust across alternatives (if anything, our baseline tends to be conservative), and the basic pattern

that making principals only value output reduces output is also robust. The one configuration where

results are quantitatively, though not qualitatively, different is for constant class size where the gains

are substantially smaller, as we might anticipate from Table 3.

Table 8 shows that the main distributional result is extremely robust across specifications: having

principals maximize value-added has negative distributional consequences. Thus, the key explana-

tion for the current equal allocation is principals not trying to hire the strongest teachers.

8 Teacher bonus counterfactuals

In the last section, we performed a structural decomposition and the quantified effects of idealized

policies and found that the key change that would generate large increases in output is to align

teacher preferences over schools with the output they would produce. We also found that total

teacher utility drops considerably for the allocation that increases achievement, which suggests

that teachers might require large compensation to accept the assignments. We now consider the

effect of more realistic teacher bonus policies, similar to those that some districts have piloted. We

emphasize important interactions across policies: the effects of teacher bonus policies depend on

policies affecting principals.

8.1 Implementation details

We implement the bonuses as position-specific compensation, which importantly does not rely on

having estimated causal effects of school characteristics in Section 5. The district offers a two-part

bonus on the basis of a teacher-position characteristic, z jpt , where each teacher receives b0, a lump-

sum amount, and b1z jpt , a bonus b1 per unit of z jpt . Teacher j’s utility for teaching at position p in

year t thus becomes:

u jpt = ũ jpt + γ(b0 +b1z jpt), (16)

where we multiply by the commute time coefficient (γ) to express bonus spending in minutes of

commute time. We consider a range of b1 for each z jpt , which allows us to trace out the effects of

different bonus sizes. For each b1, we solve for the teacher-optimal stable equilibrium assignments,

where p∗( j) is j’s assigned position, given the bonus size and the object that generates the bonus.

Thus, because we give teachers utility directly for the characteristic, we do not use our estimated

coefficients on the characteristics. The only coefficient we use is the one on commute time, which
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allows us to place our estimates in the same units as we used in Section 7.24

To focus on policies that are likely to receive teachers’ support, we hold teachers harmless by

making each teacher weakly better off than in the status quo equilibrium. Let ∆ub1
jpt = (ũ jp∗( j)t −

ũ jpt) + γb1z jp∗( j)t be the change in teacher j’s utility (excluding the transfer) between the zero-

bonus and the b1 bonus equilibria. We set the transfer such that the teacher with the worst change is

indifferent:

b0 =−min
j

∆ub1
jpt . (17)

This lump-sum transfer can be either positive or negative, and so the district can pay teachers to

enter this policy. Thus, the district’s total cost to the bonus scheme is b0 +b1z jp∗( j)t , which depends

on both the choice of b1 and how it changes the allocation.

We examine bonus schemes over three objects (z jpt). We start with bonuses for predicted output

(∑m nk(p)mµ̂ jm). Then we look at bonuses based on the fraction of disadvantaged students the teacher

has (pk(p)1t). These bonuses mimic the hard-to-staff school bonuses that some districts have piloted.

Finally, we interact school and teacher characteristics by considering bonuses based on a teacher’s

absolute advantage times the fraction of disadvantaged students ((p0t µ̂ j0t +(1− p0t)µ̂ j1t)pk(p)1t).

8.2 Results

Panel (a) of Figure 10 shows the effect of these three bonus schemes on overall achievement relative

to the status quo. For reference, the top line shows the level of achievement in the the first-best

allocation, the middle line shows the “best case” for bonuses when teachers and schools only value

output, and the lower line shows the gains from simply changing market timing. To allow for

comparisons across bonus schemes, the horizontal axis is the total realized spending (normalized to

be in minutes of commute time per teacher).

The first notable aspect of this figure is that bonuses are more costly than the first-best policies

depicted in Figure 8. Even at 150 minutes of (one way) commute time per teacher, bonuses still do

not achieve the maximal student achievement, whereas we move from student to teacher-optimal

policies with about 20 minutes of commute time. This large difference in cost is driven by the

uniformity of the bonus scheme. Prices that implement the first best allocations take into account

preference variation in a way that keeps costs down. For example, if a school is trying to convince

a close-to-indifferent teacher to take a position, then the school only needs to increase the wage

offer slightly for the teacher to accept the offer. We demonstrate the savings from flexible prices

by allowing for separate lump sum payments to each teacher and plotting the gains in the dashed

black line. At the spending level where the full potential gains are realized, the uniform bonus

24Unless noted, we will compare the effectiveness of bonuses with equivalent utility costs. Because we use the same
conversion factor for all schemes, it does not affect the comparisons.
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schemes have barely increased achievement. Second, paying directly for predicted achievement is

the most efficient bonus scheme. In the status quo, disadvantaged students already have slightly

better (matched) teachers and so paying teachers to be at schools with more disadvantaged students

hardly increases output.

In Panel (b) we show the effects of the same bonus schemes on the difference in achievement be-

tween disadvantaged and advantaged students. We find that the predicted achievement bonuses and

the bonuses for teaching disadvantaged students both lead to a widening of the baseline achievement

gap, with the latter doing worse. This finding may be counter-intuitive, but the increased applicant

pool for schools with disadvantaged students does not help these schools if they hire noisily. The

bonuses targeted toward the best teachers teaching in disadvantaged schools lead to decreases in the

achievement gap.

Consistent with the broad theme of this paper, the bottom panels show important interactions

between principal preferences and the effectiveness of teacher bonuses. We conduct an identical

exercise except that we pair the teacher bonuses with a bonus to principals such that principals only

value output. As we have seen, when we pay principals for output, the distributional consequences

change dramatically. Now, the fact that teachers have strong preferences against teaching at schools

with larger shares of disadvantaged students means that there is a large range of spending where

policies that target this issue directly are the most cost effective (panel (c)), while also lowering

the achievement gap (panel (d)). As we saw in Section 7, achievement is higher when there is

some force pushing back on teachers’ preferences toward advantaged schools. In the absence of

principals’ heterogeneous valuations, bonuses targeted toward disadvantaged students serve this

purpose.

Thus, we find that conditional on principal behavior, there is no trade-off between efficiency and

equity (closing achievement gaps). But whether conditioning teacher compensation on predicted

output or teaching disadvantaged students is the better policy depends on whether principals hire

noisily or based on a teacher’s predicted value-added.

9 Discussion

In this paper, we study the equity and efficiency consequences of the within-district allocation of

teachers to schools. We find that the current allocation is equitable but not efficient. We investigate

several explanations for the equity and determine that it is driven by principals not selecting their

most effective applicants. Following the theory of the second best, this noisy principal hiring also

leads to more efficient allocations by pushing back on the ability of high quality teachers to sort to

advantaged schools. To capture most achievement gains, however, requires changing how teachers

rank schools. This suggests the use of teacher bonus policies, though we find that their optimal form

still depends on principal behavior.
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In terms of caveats, we have followed the dominant strand of the literature and assumed that the

only relevant measure of teacher quality is their value-added (in math). To the extent that there are

other dimensions of teacher quality, then the allocation might look less distributionally favorable.

In our counterfactual analysis, we have held fixed the assignment of students to schools (e.g., Ab-

dulkadiroğlu, Agarwal and Pathak (2017)) and the distribution of class sizes (e.g., Angrist and Lavy

(1999); Hoxby (2000); Leuven, Oosterbeek and Rønning (2008)). We have also held teacher and

principal non-wage utility fixed in counterfactuals. But changes in malleable school characteristics,

either under direct policy control (e.g., principal’s support of teachers (Dizon-Ross, 2020; Johnston,

2021)) or that change in equilibrium (e.g., teacher peer effects (Jackson and Bruegmann, 2009))

may be a substitute or complement to the policies we consider. Exploring these richer dimensions

is likely a useful area for future work.

More broadly, this paper has demonstrated the value of using rich data to study the functioning

of particular labor markets. Here, our data allows us to estimate the behavior of the main agents

in the market, rather than relying on strong assumptions to infer these from data on the observed

equilibrium. In so doing, we have arrived at surprising conclusions about the determinants of the

equilibrium and the design of policies. Presumably, other labor markets would also benefit from

such analysis.
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Table 1: Forecast Unbiasedness Tests for Value-Added Predictions

Mean Res Mean Diff Mean Res Mean Res Mean Res Mean Res

VA (Heterog) 1.052 1.060
(0.00650) (0.00681)

VA Diff 0.879
(0.0243)

Post Transfer -0.00243 0.00576
(0.00367) (0.00280)

VA * Post Transfer -0.0885
(0.0212)

VA – below 10th (disadv) 0.990
(0.0223)

VA – 10th-90th (disadv) 1.058
(0.00698)

VA – above 90th (disadv) 1.066
(0.0228)

VA – below 10th (size) 1.011
(0.0224)

VA – 10th-90th (size) 1.066
(0.00713)

VA – above 90th (size) 0.961
(0.0188)

Constant 0.00810 0.0477 0.00779 0.00745 0.00810 0.00800
(0.000835) (0.00101) (0.00174) (0.000883) (0.000835) (0.000843)

Subject Math Math Math Math Math Math
Mean DV 0.00764 0.0527 0.00754 0.00764 0.00764 0.00764
Clusters 21514 21514 21834 21514 21514 21514
N 74552 74552 75459 74552 74552 74552

The table includes tests of whether a value-added estimate is forecast unbiased. In the first and third through sixth columns, the outcome
(“Mean Res”) is the mean student math test score, residualized by student demographics including lagged scores, school fixed effects,
and teacher experience measures. The mean is taken over all students for a given teacher-year. In the second column, the outcome
(“Mean Diff”) is the difference in the mean residualized math scores between a teacher’s economically disadvantaged and advantaged
students. The “VA” measures allow for match effects (“Heterog”). The measures predict mean student residuals using data from all
prior years a teacher taught. “VA Diff” is the difference in predicted value-added between a teacher’s economically disadvantaged and
advantaged students (i.e., the predicted comparative advantage). “Post Transfer” refers to years after a teacher switched schools. The
interaction with “VA” multiplies the post-transfer indicator with the heterogeneous value-added measure. Column (4) splits the year t
observations into bins as a function of the change in share of disadvantaged students relative to the data observed for the teacher before
year t. The split is based on percentiles of the change. Column (5) splits the year t observations into bins as a function of the change in
classroom size relative to the data observed for the teacher before year t. The split is based on percentiles of the change. For columns
(4) and (5) the p-value comes from F-test that the three coefficients are equal. Standard errors are clustered at the teacher level.
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Table 2: Summary statistics for 2015-16, by economic disadvantage

Focal, Adv Focal, Disadv Other, Adv Other, Disadv

Students
Male (%) 50.58 51.07 51.17 51.36
White (%) 64.61 9.11 75.58 35.09
Black (%) 17.04 51.78 9.54 32.63
Hispanic (%) 6.77 32.58 6.00 23.90
Other minorities (%) 11.58 6.53 8.88 8.38
Student performance (level scores)
Math 0.70 -0.16 0.43 -0.30
Student performance (gain scores)
Math 0.07 0.07 -0.01 0.00
Teachers
Experience (% of teachers)

0 years 4.32 10.99 3.34 4.85
1-2 years 10.45 17.24 6.90 9.80
3-5 years 17.33 19.31 11.22 12.83
6-12 years 29.47 22.99 26.72 26.18
13-20 years 21.98 18.72 28.57 24.40
21-27 years 9.77 4.34 12.53 11.43
28 or more years 6.68 6.40 10.73 10.50

Graduate degree (%) 45.20 43.28 39.66 37.44
Regular license (%) 97.10 87.17 97.84 94.71
NBPTS certified (%) 16.08 6.81 14.27 9.95
Praxis score 0.37 0.03 0.29 0.13
Attrition rate (%)

From school 13.96 25.17 15.50 19.35
From district 8.44 13.62 10.21 13.09

Mean math value-added
Baseline, econ disadv 0.02 0.02 -0.01 -0.00
Baseline, econ adv 0.01 0.02 -0.02 -0.01
Homogeneous 0.02 0.01 -0.00 -0.01
Using school means 0.16 0.13 0.08 0.09
Using alternative FEs 0.05 0.05 0.02 0.03

The table shows mean student and teacher in our sample for the 2015-16 school year. We split the sample into whether the student is
in our focal district (“Focal”) or in the rest of North Carolina (“Other”) and whether he or she is economically advantaged (“Adv”) or
disadvantaged (“Disadv”). Math scores are standardized to have mean 0 and standard deviation 1 at the state-grade-year level. The
alternate VA estimators are a (a) homogeneous value-added model with constant effects across student types, (b) a model that uses
school mean characteristics rather than school fixed effects, and (c) a model that uses teacher-year fixed effects, rather than teacher-
class-student type fixed effects, in the first residualization step.
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Table 3: Potential Gains from Reassignment

Per-Student Gains (σ) As a Fraction of (Best-Actual) Non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.054 0.095 0.018
Random -0.003 -0.05 0.019 -0.023
Worst -0.057 -1.06 -0.053 -0.062
Alternate Policies
Best w/i School 0.013 0.28 0.015 0.010
Random w/i School -0.000 -0.00 -0.000 -0.000
Replace Bottom 5% of Teachers 0.012 0.22 0.015 0.009
Targeting Disadvantaged Students
Max Disadvantaged VA 0.016 0.30 -0.049 0.075
Best, Robustness
Constant Class Size 0.021 0.38 0.018 0.023
Homogeneous VA 0.044 0.094 0.009
Using School Means in VA 0.053 0.079 0.030
Using Alternative FEs in VA 0.050 0.087 0.016
Max Disadvantaged VA, Robustness
Constant Class Size 0.005 0.22 -0.111 0.096
Homogeneous VA 0.011 0.25 -0.081 0.076
Using School Means in VA 0.019 0.35 -0.056 0.084
Using Alternative FEs in VA 0.014 0.28 -0.055 0.076

The table shows the potential gains from reassignments of teachers to different schools. The sample is all teachers with non-missing value-added forecasts in 2016
(based on prior data), along with their corresponding 2016 assignments. Gains come from better matching of teachers to students, as teachers’ effectiveness may
differ across student types, and placing better teachers in schools with larger class sizes. The first column shows the per-student gains from various allocations
relative to the actual allocation. Gains are measured in student standard deviations (σ). The second column shows the gain as a fraction of the full difference
between the best (output-maximizing) and actual allocations. The third and fourth columns show the per-student gains, relative to the actual allocation, for
non-disadvantaged and disadvantaged students. The best and random within school allocations only change the teacher-classroom assignments within a school.
“Replacing Bottom 5% of Teachers” refers to replacing the bottom 5% of teachers according to realized per-student output with teachers with median value-added
for each student type. The allocations that target particular student types maximize per-student output for students of one type only. “Constant Class Size” imposes
an equal number of students (but possibly different composition) across all classes, in both the best and actual allocations. The alternate VA estimators are a (a)
homogeneous value-added model with constant effects across student types, (b) a model that uses school mean characteristics rather than school fixed effects,
and (c) a model that uses teacher-year fixed effects, rather than teacher-class-student type fixed effects, in the first residualization step. We assign classrooms the
mean student composition and class sizes in that school in 2016 in all allocations except the “Best w/i School,” “Random w/i School,” and “Constant Class Size”
allocations.
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Table 4: Timing of posting, applying, and hiring

(a) Monthly shares by position

Posting Applying Hiring
Vacs Share Share TI Apps Share Share TI Apps Share Share TI

April 295 16.24 0.62 24799 7.13 0.50 393 13.23 0.69

May 392 21.57 0.52 70248 20.21 0.50 585 19.70 0.63

June 502 27.63 0.52 108776 31.29 0.51 827 27.85 0.60

July 451 24.82 0.42 94171 27.09 0.50 755 25.42 0.50

August 167 9.19 0.46 44673 12.85 0.51 358 12.05 0.57

Total 1807 100 342667 100 2918 2918

(b) Monthly shares by teacher value-added

Has VA Above median VA Top decile VA
Apps Share Share TI Apps Share Share TI Apps Share Share TI

April 3050 6.23 0.44 1552 7.16 0.42 373 9.15 0.41

May 9662 19.75 0.44 4218 19.46 0.44 918 22.53 0.45

June 16832 34.40 0.46 8035 37.08 0.45 1396 34.26 0.47

July 13673 27.95 0.47 5600 25.84 0.46 944 23.17 0.46

August 5522 11.29 0.48 2189 10.10 0.47 434 10.65 0.52

Total 48739 100 21594 100 4065 100

(c) Early vs. late posting times by school

Posts in July

Posts in April No Yes Total

No 8 15 23

Yes 10 88 98

Total 18 103 121

This table shows the timing of posting, applying, and hiring during a cycle. Panel (a) shows the distribution of vacancy postings,
applications, and hires by month, where hires correspond to the timing of the applicant who was hired to the position. For each type of
action, we show the share that corresponds to Title I positions. Some of the vacancies produce multiple hires. In Panel (b) we show the
distribution of applications by month, where we split the sample of applicants into those with a value-added forecast (i.e., had taught
in tested grades and subjects in North Carolina prior to applying), those with above median value-added, and those in the top decile.
Panel (c) shows the cross-tabulation of whether a school posts a vacancy in April and whether that school posts a vacancy in July (in
the same cycle).
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Table 5: Application evaluations, outcomes, and timing

Hired Hired but Hired but Declined Interview Positive Middle Negative Withdrew No comment
successfully taught elsewhere not in district offer

mean 0.00051 0.00003 0.00017 0.00006 0.00000 0.00064 0.00029 0.00037 0.00002 0.07367
count 2,291 122 750 292 7 2,887 1,300 1,655 74 333,780

(a) Outcomes at the application level

Hired Declined offer Interview Positive Middle Negative Withdrew No comment Any Non-Hire Action

mean 0.799 0.117 0.001 0.101 0.023 0.075 0.037 0.985 0.179
count 1,457 213 2 184 42 136 67 1,797 327

(b) Outcomes at the position level

Obs Mean 10th 25th 50th 75th 90th Std. dev.

All applications 343,161 -0.0 -15.6 -5.8 -0.8 4.6 16.4 14.74
No notes 333,780 0.1 -15.2 -5.6 -0.7 4.5 16.1 14.38
Evaluated with notes 9,381 -2.0 -32.1 -15.0 -4.1 7.9 31.7 24.26

(c) Timing relative to hired applicant

This table shows the frequency and timing of application outcomes. The data record a single outcome per application; as an example, “Interview” implies not
hired as otherwise the “Interview” outcome would be replaced by “Hired.” The data record “Hired,” which we split into “Hired successfully” for teachers who
taught in the position’s school the following year, “Hired but taught elsewhere” for teachers hired who taught in district but not at that position’s school, and
“Hired but not in district” for teachers hired who did not appear in the district the following year. “Positive,” “Middle,” and “Negative” reflect the authors’ coding
of different text categories. “No comment” includes applications without an updated status. Panel (a) shows frequencies at the application level and panel (b)
shows frequencies at the position level for at least one outcome across all applications to that position (i.e., “Hired” indicates at least one application led to a
hire). “Any Non-Hire Action” is a positive, middle, or negative assessment or an application withdrawal. In panel (c) we calculate the difference in timing (in
days) between when an application was made and when the application that led to a hire was made. A value of 1 would indicate an application made 1 day after
the one that led to a hire. In the last two rows, we split the sample into those with no notes (“No comment”) and those with an outcome.
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Table 6: Teacher preference estimates

Estimate Standard Error

Constant 2.032 4.453
Commute Time -0.073 0.001
Commute Time Missing -1.660 0.223
Value Added 0.081 0.008
St Dev Value Added RC 0.128 0.007
School Characteristics and Interactions
Fraction Disadvantaged -1.188 0.136
Fraction Black -0.452 0.132
Fraction Hispanic 0.441 0.144
Fraction Above Median Achievement 0.163 0.149
Abs Adv x Fraction Disadvantaged -0.797 1.029
Abs Adv x Fraction Black -1.635 1.025
Abs Adv x Fraction Hispanic 2.487 1.074
Abs Adv x Fraction Above Median Achievement -1.997 1.185
Black x Fraction Black 1.072 0.130
Hispanic x Fraction Hispanic 0.491 0.771
St Dev Fraction Disadvantaged RC 1.591 0.034
St Dev Fraction Black RC 1.296 0.054
St Dev Fraction Hispanic RC 0.637 0.065
St Dev Fraction Above Median Achievement RC 1.397 0.045
Teacher Characteristics
VA Non-Disadvantaged Students 0.746 0.307
VA Disadvantaged Students 0.937 0.331
In District -0.509 0.061
Black -0.095 1.043
Hispanic 6.017 3.762
Female 0.284 0.064
Experience 2-3 0.070 0.083
Experience 4-6 -0.268 0.082
Experience 7+ -0.141 0.074
St Dev Random Effect 1.687 0.030
Chamberlain-Mundlak Device
Fraction Disadvantaged Mean -1.903 3.182
Commute Time Mean 0.032 0.004
Commute Time Missing Mean 1.231 0.249
Value Added Mean -0.489 0.295
Fraction Black Mean -2.786 2.707
Fraction Hispanic Mean 0.041 2.457
Fraction Above Median Achievement Mean -0.986 4.718
Abs Adv x Fraction Disadvantaged Mean -37.628 19.086
Abs Adv x Fraction Black Mean 36.183 18.362
Abs Adv x Fraction Hispanic Mean 15.838 19.942
Abs Adv x Fraction Above Median Achievement Mean -16.346 6.488
Black x Fraction Black Mean -2.200 2.412
Hispanic x Fraction Hispanic Mean -20.462 14.686
Number of Students Mean 0.009 0.023

The table shows teacher preference coefficients, estimated using maximum sim-
ulated likelihood. We model the probability that a teacher applies to a position
where the alternate options are not teaching in the district or keeping the current
position. Random coefficients (“RC”) are independent and simulated from the
standard normal distribution. We model unobserved teacher-year heterogene-
ity using a Mundlak (1978) and Chamberlain (1982) device, taking the mean
of each covariate across an applicant’s choices. Commute time is measured in
minutes, value added is total predicted output. Experience below 2 years is the
omitted category.
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Table 7: Principal preference estimates

Estimate Standard Error

Constant -4.363 0.127
St Dev Random Effect 1.531 0.022
Title I 0.521 0.156
Value-Added 0.092 0.026
Value-Added x Title I 0.038 0.034
Experience 2-3 0.351 0.128
Experience 2-3 x Title I -0.005 0.163
Experience 4-6 0.271 0.117
Experience 4-6 x Title I 0.035 0.160
Experience 7+ 0.097 0.089
Experience 7+ x Title I -0.344 0.120
Experience Missing -0.342 0.060
Experience Missing x Title I 0.371 0.086
Masters 0.188 0.098
Masters x Title I 0.124 0.125
Black -1.035 0.227
Black x Title I 1.722 0.453
Black x Fraction Black 0.396 0.267
Black x Fraction Black x Title I -0.253 0.511
Hispanic -0.690 0.454
Hispanic x Title I 0.450 0.561
Hispanic x Fraction Hispanic 2.259 2.219
Hispanic x Fraction Hispanic x Title I -1.833 2.345
Female 0.053 0.106
Female x Title I 0.031 0.129
Gender Missing -0.327 0.230
Gender Missing x Title I -0.197 0.277
Race Missing -0.530 0.210
Race Missing x Title I 0.374 0.247
VA Missing 0.490 0.089
VA Missing x Title I -0.230 0.124

The table shows principal preference coefficients, estimated using
maximum simulated likelihood. We model the probability that
a principal submits a positive outcome (hire, interview, positive
rating) for an application. Random effects are simulated from
the normal distribution. Experience below 2 years is the omitted
category. Value-added is total predicted output.
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Table 8: Robustness: disadvantaged minus advantaged achievement

Status quo All Options Principal Teach Both First Best
Max VA Max VA Max VA

Baseline 0.0204 0.0163 -0.0786 0.0088 0.0231 -0.0006
1. Vary year: baseline is 2016
2012 -0.0169 -0.0198 -0.0943 -0.0388 -0.0030 -0.0454
2013 0.0023 -0.0028 -0.0885 -0.0109 0.0206 -0.0100
2014 0.0157 0.0104 -0.0903 -0.0229 0.0112 -0.0303
2015 0.0224 0.0216 -0.0819 0.0029 0.0633 -0.0020
2017 0.0351 0.0356 -0.0641 0.0247 0.0556 0.0187
2. Vary student type split: baseline is economic disadvantage
Achievement -0.0166 -0.0272 -0.1384 -0.0310 0.0109 -0.0321
Race -0.0082 -0.0169 -0.1190 -0.0250 -0.0044 -0.0333
3. Vary choice set construction for teachers
7 day buffer 0.0163 0.0112 -0.0887 0.0088 0.0231 -0.0006
First day choice sets only 0.0157 0.0232 -0.0836 0.0088 0.0231 -0.0006
Drop single app. teachers 0.0197 0.0125 -0.0813 0.0113 0.0289 0.0043
4. Vary teacher preference specification to use binary logit
No REs or FEs 0.0178 0.0122 -0.0609 0.0105 0.0233 -0.0011
School FEs 0.0141 0.0098 -0.0042 0.0101 0.0261 -0.0006
School REs 0.0171 0.0116 -0.0660 0.0095 0.0260 -0.0005
Teacher FEs 0.0159 0.0119 -0.0679 0.0088 0.0231 -0.0006
Teacher REs 0.0187 0.0119 -0.0681 0.0089 0.0234 -0.0013
Teacher REs, School FEs 0.0179 0.0093 -0.0611 0.0097 0.0242 -0.0005
Teacher FEs, School FEs 0.0181 0.0096 -0.0604 0.0088 0.0245 -0.0006
5. Allow for correlated random coefficients in teacher preferences
Corr. R.C. 0.0188 0.0109 -0.0900 0.0088 0.0231 -0.0006
6. Vary window in which we estimate principal preferences: baseline is all applications
W/in 2 weeks of hire 0.0222 0.0182 -0.0786 0.0103 0.0231 -0.0006
First half 0.0239 0.0204 -0.0793 0.0096 0.0234 -0.0013
Second half 0.0224 0.0161 -0.0787 0.0077 0.0242 -0.0005
7. Estimate principal preferences using rank order logit: baseline is binary logit
All data 0.0201 0.0163 -0.0786 0.0064 0.0231 -0.0006
Active choices 0.0206 0.0191 -0.0793 0.0038 0.0234 -0.0013
Hire outcome only 0.0272 0.0233 -0.0787 0.0108 0.0242 -0.0005
8. Hold class sizes constant: baseline uses class size
Constant class size 0.0223 0.0136 -0.0883 0.0540 0.0197 0.0660
9. Alternative value-added models
Homogeneous 0.0210 0.0185 -0.0851 -0.0193 0.0053 -0.0271
Using school means 0.0156 0.0014 -0.0919 0.0319 -0.0056 0.0216
Using alternative FEs 0.0110 0.0054 -0.0805 -0.0176 0.0028 -0.0199
10. Add covariates to principal model

0.0206 0.0161 -0.0787 0.0094 0.0247 -0.0012

The table shows robustness checks for our main results. The columns show the difference in the predicted output for disadvantaged
students minus advantaged students (a positive number indicates that disadvantaged students have better teachers). The “status quo”
corresponds to the teacher-proposing DA with estimated teacher and principal preferences and restricted options based on timing. “All
Options” expands teachers’ choice sets to all positions, “Max VA” corresponds to ranking positions (or teachers) by predicted value-
added, and “First Best” is the output-maximizing allocation. See footnote to Table 9 for descriptions of each of the robustness exercises.



Table 9: Robustness: output relative to status quo

All Options Principal Max VA Teach Max VA Both Max VA First Best
Baseline 0.0044 -0.0002 0.0216 0.0228 0.0309
1. Vary year: baseline is 2016
2012 0.0025 0.0031 0.0238 0.0228 0.0328
2013 0.0028 0.0017 0.0234 0.0225 0.0313
2014 0.0015 0.0031 0.0217 0.0225 0.0312
2015 0.0031 -0.0091 0.0228 0.0243 0.0342
2017 0.0058 -0.0053 0.0244 0.0276 0.0363
2. Vary student type split: baseline is economic disadvantage
Achievement 0.0052 -0.0003 0.0243 0.0277 0.0359
Race 0.0032 0.0002 0.0232 0.0275 0.0356
3. Vary choice set construction for teachers
7 day buffer 0.0046 -0.0021 0.0215 0.0227 0.0309
First day choice sets only 0.0064 0.0011 0.0251 0.0263 0.0345
Drop single app. teachers 0.0032 -0.0026 0.0205 0.0221 0.0303
4. Vary teacher preference specification to use binary logit
No REs or FEs 0.0034 -0.0011 0.0219 0.0232 0.0315
School FEs 0.0021 -0.0026 0.0232 0.0249 0.0330
School REs 0.0031 -0.0019 0.0215 0.0232 0.0312
Teacher FEs 0.0045 -0.0001 0.0213 0.0225 0.0307
Teacher REs 0.0037 -0.0004 0.0209 0.0225 0.0307
Teacher REs, School FEs 0.0019 -0.0091 0.0239 0.0256 0.0337
Teacher FEs, School FEs 0.0014 -0.0110 0.0248 0.0261 0.0344
5. Allow for correlated random coefficients in teacher preferences
Corr. R.C. 0.0038 -0.0018 0.0230 0.0243 0.0324
6. Vary window in which we estimate principal preferences: baseline is all applications
W/in 2 weeks of hire 0.0046 0.0001 0.0219 0.0231 0.0312
First half 0.0041 -0.0002 0.0215 0.0233 0.0314
Second half 0.0044 0.0001 0.0214 0.0236 0.0316
7. Estimate principal preferences using rank order logit: baseline is binary logit
All data 0.0041 0.0004 0.0210 0.0233 0.0315
Active choices 0.0027 -0.0003 0.0194 0.0231 0.0313
Hire outcome only 0.0048 0.0006 0.0220 0.0241 0.0322
8. Hold class sizes constant: baseline uses class size
Constant class size -0.0005 -0.0029 0.0047 0.0045 0.0064
9. Alternative value-added models
Homogeneous 0.0028 0.0012 0.0231 0.0283 0.0346
Using school means -0.0034 -0.0041 0.0259 0.0395 0.0434
Using alternative FEs 0.0045 0.0039 0.0206 0.0238 0.0303
10. Add covariates to principal model

0.0041 -0.0005 0.0209 0.0227 0.0313

The table shows robustness checks for our main results. The columns correspond to the change in mean student achievement (in student
standard deviation units) between the considered counterfactual and the estimated status quo. “All Options” expands teachers’ choice
sets to all positions, “Max VA” corresponds to ranking positions (or teachers) by predicted value-added, and “First Best” is the output-
maximizing allocation. In the first section, we vary the year in which we implement our main exercise. In the second section, we
show results where teacher-school match effects depend on different student observable characteristics. In the third section we vary
the assumptions around teachers’ choice sets or drop teachers who make single applications. In the fourth section, we vary the level
of random or fixed effects in the teacher preference model, while in the fifth section we allow for correlated random coefficients on a
constant, total value-added, and fraction of students who are economically disadvantaged. In the sixth section we vary principals’ choice
sets while in the seventh we vary how we treat an application’s outcome in the principal preference model. In the eighth section we show
results where preference estimation and counterfactual analysis use constant class sizes across all positions in the district.



In the ninth section, we vary the value-added model: (a) a homogeneous value-added model with constant effects across student types, (b)
a model that uses school mean characteristics rather than school fixed effects, and (c) a model that uses teacher-year fixed effects, rather
than teacher-class-student type fixed effects, in the first residualization step. In the tenth section, we add additional teacher observables
from Table 2 to the principal model.
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Figure 1: Math Value-Added Forecast Unbiasedness

The figure is a binscatter, where an observation is a teacher-year and math value-added estimates are predictions using data from
prior years. Units are student standard deviations. The y-axis is the mean student math test score, residualized by student demo-
graphics including lagged scores, school fixed effects, and teacher experience measures. The mean is taken over all students for a
given teacher-year.
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Figure 2: Features of classes and teachers

(a) Class size and fraction disadvantaged

(b) Comparative advantage for disadvantaged students, and absolute advantage

The figures show binscatters related to classroom characteristics and teacher characteristics. The top panel
shows the relationship between a school’s (mean) disadvantaged share of students and a school’s (mean)
number of students per teacher. The right-most point of the binscatter, with 100% of a school’s students
economically disdavantaged, accounts for 36% of the sample. The bottom panel shows the relation-
ship between a teacher’s absolute advantage (x-axis) and comparative advantage in teaching economically
disadvantaged students (y-axis). For this figure, absolute advantage is the average value-added across
students types (rather than the value-added at a representative school) to avoid mechanical correlations
between absolute and comparative advantage.
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Figure 3: Wait time to apply to vacancies

(a) Stock of vacancies

(b) Flow of vacancies

The figures show the wait time for applicants to apply to vacancies. In Panel A, we look at vacancies that were “in stock” (already
posted) on the day the teacher first applied on the platform. We plot the “leave one out” wait time, where we omit one job the
teacher applied to on the first day. In Panel B we look at the wait time to apply to vacancies that were posted after the teacher
first applied on the platform. We measure wait time as the time from when the teacher first applied to another job (once the focal
position is posted) until they apply to the posted job. We place vertical dashed lines at the median wait time.
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Figure 4: Choice and application set sizes

(a) Choice sets

(b) Application sets

The figures are histograms of the number of positions a teacher has in her choice set (Panel A) and the number of positions a teacher
applies to (Panel B). An observation is an applicant-year. Choice sets comprise the set of vacancies that are active while at some
point between the teacher’s first and last application in a given cycle.
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Figure 5: Bivariate preference relationships

(a) Teachers: commute time (b) Teachers: fraction disadvantaged

(c) Teachers: output (d) Principals: output

This figure shows binscatters of bivariate relationships between characteristics and preferences. In Panels (a)-(c), we show the
bivariate relationship between characteristics in our teacher preference model and how teachers rank positions by estimating each
teacher’s ranking over positions and ordering positions from a teacher’s most preferred (100) to least preferred (0). In Panel (d), we
estimate show the bivariate relationship between characteristics in our principal model and principal rankings. We estimate each
principal’s ranking over teachers and order teachers from a principal’s most preferred (100) to least preferred (0). The middle set
of points (red circle) is the mean percentile, while the top (orange cross) and bottom (blue x) sets of points are the 10th and 90th
percentiles, respectively.



Figure 6: Rank of first-best for equity and efficiency in preferences

(a) Teachers: output maximizing (b) Teachers: disadvantaged maximizing

(c) Principals: output maximizing (d) Principals: disadvantaged maximizing

This figure shows how teachers and principals value the allocations associated with different first-best problems. In Panels (a) and
(c) we calculate the output-maximizing first-best allocation. In Panel (a) we show the binscatter of how teachers rank the position
they receive in the output-maximizing first-best allocation, by the teacher’s absolute advantage. In Panel (b) we show the binscatter
of how principals rank the teacher they receive in the output-maximizing first-best allocation, by the school’s fraction of students
that are economically disadvantaged. In Panels (b) and (d) we repeat the exercises for the first-best allocation that maximizes output
for economically disadvantaged students. We construct teacher ranks over positions from our teacher preference model, ordering
positions from a teacher’s most preferred (100) to least preferred (0). We construct principal ranks over teachers from our principal
model, ordering teachers from a principal’s most preferred (100) to least preferred (0).



Figure 7: Model fit

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This figure compares the allocations implied by the model to the allocations we observe in the data. The data refers to all teachers
in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores. Positions
are sorted on the x-axis by share of disadvantaged students.
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Figure 8: Production possibilities frontier

(a) Distributional consequences

Student optimalTeacher optimal

1. status quo 2. 1 + all options

3. 2 + principals max VA

4. 3 + teachers max VA

status quo w/homo. teach pref.

status quo w/school propose

(b) Production possibilities frontier

status quo w/school propose

1. status quo

2. 1 + all options

3. 2 + principals max VA

4. 3 + teachers max VA

PPF

Teacher optimal

Student optimal

This figure simulates the trade-off between student achievement for economically advantaged and disadvantaged students (Panel A)
and between teacher preferences and student achievement (Panel B). The “PPF” represents the solution to the social planner’s prob-
lem from placing different relative weights on teacher preferences and student achievement. The student-optimal point maximizes
student achievement and is when the planner only weights students. The teacher-optimal point maximizes teacher preferences and
is when the planner only weights teachers. The status quo (point 1) uses teacher and principal estimated preferences, restricted
choice sets, and solves for the teacher proposing stable allocation. The status quo with school proposing allocation is the same as
the status quo except it is the school-proposing solution. Point 2 takes the status quo and gives teachers and principals all options.
Point 3 takes point 2 and gives principals preferences to maximize value-added. Point 4 takes point 3 and also gives teachers pref-
erences to maximize value-added. “Status quo w/homo. teach pref.” shows the status quo where teacher preferences are estimated
with a model that does not include random coefficients. The Figure plots averages over 200 simulations.



Figure 9: Teacher choice rankings

(a) Estimated principal preferences

(b) Principals maximize value-added

This figure presents the preference percentile of the position to which the teacher is assigned in two equilibria. We estimate a
teacher’s ranking of all positions and express it in percentiles, where 100 is the teacher’s most preferred position. The top panel
shows the status quo (point 1 in Figure 8). The bottom panel shows the same outcomes in point 3 in Figure 8: the status quo
with the complete choice set, and principals maximize value-added. Teachers are ordered on the x-axis by their absolute advantage
(predicted value-added at the district’s representative school).
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Figure 10: Bonus schemes

(a) Relative to the status quo, aggregate achievement (b) Relative to the status quo, achievement gap

(c) With principal bonuses, aggregate achievement (d) With principal bonuses, achievement gap

This figure shows the effect of bonus schemes on achievement per student (Panels a and c) or the achievement gap
(Panels b and d). In all panels, the x-axis shows the cost of the policy per teacher, which we express in minutes of
commute time per teacher. The y-axis shows the benefits in terms of achievement per student or the difference in
achievement between disadvantaged and advantaged students. We consider three policies: subsidizing achievement
directly, subsidizing the position based on the fraction of disadvantaged students in the position, and subsidizing the
position based on fraction disadvantaged interacted with the teacher’s absolute advantage. In the top two panels,
we take as the baseline allocation the status quo, and the constant part of the bonus is chosen to make teachers
weakly better off relative to this allocation. In the bottom two panels we replace estimated principal preferences
with preferences that maximize output. The dashed line in the left panels is the cost of the first-best policy and
represents movements along the PPF. The three horizontal dashed lines correspond to the output in the first-best
(top), the output in the allocation where teachers and principals each maximize value-added and choice sets are
complete (point 4 in Figure 8) (middle), and the output in the allocation where teachers and principals each maximize
estimated preferences and choice sets are complete (point 2 in Figure 8 (bottom)).



A Data Appendix

A.1 Student-level data

We use student records from the NCERDC over the years of 2006-2007 through 2017-2018 to

measure multi-dimensional teacher productivity in raising math test scores. This provides 8,177,312

student-year observations. We focus on math teachers in grades 4 through 8 to capture the majority

of teachers with prior performance data who enter the applicant pool. We use third to seventh grade

math and reading scores as lagged achievement. Test score data as well as student demographics

such as ethnicity, gender, gifted designation, disability designation, whether the student is a migrant,

whether the student is learning English, whether the student is economically disadvantaged, test

accommodations, age, and grade come from the NCERDC master-build files. We use only data

from standard end-of-grade exams. This leaves us with 5,322,896 student-year observations.

Beginning in the 2006-2007 school year, the state began recording course membership files

linking students directly to courses and instructors. Prior to this change, teachers were linked to

students through data on the proctors of the end-of-course exams. The new course membership files

provide stronger teacher–subject-student links than the previous system, in which teachers were

more frequently linked to the wrong subject (Harris and Sass, 2011).

With the course membership files, we still must determine which teacher is most responsible for

teaching math. We use a tiered system. We use course codes (starting with “20”) and course names

(including text “math,” “alg,” “geom,” and “calc”) to do so. We also want to prioritize standard

classes as opposed to temporary or supplemental instruction (course names including text such as

“study,” “special,” “resource,” “pullout,” “remed,” “enrich,” “indiv,” and “except”). We assign stu-

dents to the teacher most likely to be the math teacher according to the following rules: (1) Students

are assigned first to a high-certainty math teacher (the course code and title indicate a standard math

class without mention of supplemental instruction). (2) Students with self-contained teachers are

assigned to that teacher if there is no high-certainty math teacher present. (3) Students with course

codes and course titles indicating math teachers but no self-contained teachers or high-certainty

math teachers are assigned to those middle-certainty math teachers. (4) Students with a teacher of a

course that either has a math code or a math course title but no other math course or self-contained

teacher are assigned to those low-certainty math teachers. (5) Students with a science course code

but no math course or self-contained courses are assigned to their science teachers to accommodate

recent trends of math and science block scheduling. We exclude classes in which more than half

the class requires special accommodations. Ultimately, our sample for constructing teacher value-

added measures is composed of 5,159,337 student-year observations providing measures for 38,566

teachers.
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A.2 Application and vacancy data

Our application and vacancy data cover the 2010-2019 cycles. We restrict our sample to applications

and vacancies for on-cycle, standard elementary school positions. We show how these restrictions

change the sample in Appendix Table A1.

We define on-cycle as positions that receive their first applications of a cycle between April 1

and August 15.

We select standard elementary school positions by filtering on the vacancy type (”instructional”)

and the vacancy title. Seventy percent of posted vacancies are for instructional positions. We require

that the position indicate elementary school grades by having at least one of the following text strings

in the title: “k-”, “3rd”, “4th”, “5th”, “-5”, “-6”, “4-6”, or ”elem”. 39% of vacancies include at least

one of these strings in the title.

We then exclude positions with specific subjects mentioned in the title or indications that the

position is non-standard (“specialized”, “end of year”, “interim”, “assistant”, “virtual”, “resource”,

“itinerant”, “exchange”, “extensions”, “immersion”, “academic support”, “temporary”, “continu-

ous”, “early end”, “interventionist”, or “substitute”). With all of the restrictions above, our final

sample consists of 20% of the full set of applications, 25% of the full set of applicants, and 7% of

the full set of vacancies.

We code the application’s outcome into whether the candidate is hired (“Accepted-Pending Li-

censure”, “Hired”, “Hiring Request in Process”, “Offer Accepted”), declines an offer (“Offer De-

clined”), offered an interview (“Completed BEI Interview”, “Contact for Interview”, “Interview

Scheduled”, “Invited to Complete Virtual Interview”, “Invited to Interview”, “Recommended for

Interview (By Request)”), or given a positive rating (“1st Choice”, “2nd Choice”, “Highly Recom-

mend for Interview”, “Recommend”, “Recommend for Interview”, “Recommendation Accepted”,

“Strong Candidate”). These categories are encodings of a single variable, so they are mutually

exclusive (i.e., if a candidate is hired, the prior outcome may be overwritten). For robustness analy-

sis, we also split up the remaining applications into middle ratings (“Attended Info Session/Class”,

“Hold for Later Consideration”, “Invited to Info Session/Class”, “Possible recommend for inter-

view”, “Recommend with Hesitation”), negative ratings (“Failed Job Questionnaire”, “Incomplete

Application”, “Ineligible Selection”, “Not Good Fit”, “Not Qualified”, “Pool - Ineligible”, “SS -

INELIGIBLE”, “Screened - Not Selected”), withdrawals (“Candidate Withdrew Interest”), or no

evaluation (“Eligible Selection”, “New”, “Pool - Eligible”, “Pool Candidate”).

A.3 Matching across datasets

For this project the North Carolina Education Research Data Center (NCERDC) combined records

held there on teacher work histories, school characteristics, and student achievement with data pro-

vided by a large urban school district containing further personnel files, open positions within the
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school district, and applications for those positions. They performed an interactive fuzzy match

using names and birth year. For teachers who had a sufficiently good match (that is, a unique name-

birth-year combination), we have a de-identified ID that allows us to connect their platform data to

their staffing records and students’ achievement.

The NCERDC reports that of the 74,395 applicants to positions, 29,008 are matched to NCERDC

records. Many of these applicants never teach in the state and thus would not be expected to match.

Of the 26,983 employees listed within the district, 20,966 are matched to NCERDC records. How-

ever, the match rate is much better among personnel who teach tested subjects. Of the 13,982

teachers with EVAAS scores in the district, 13,865 are matched to the NCERDC data.

A.4 Sample characteristics

Returning to Appendix Table A1, we see how the sample’s characteristics varies with sample re-

strictions. The “Elementary Sample” restricts to on-cycle elementary school instructional positions

without specialization, the “Value-Added Sample” further restricts to teachers with value-added

forecasts based on prior years, and the “2015 Sample” further restricts to the 2015 application cycle.

We use the “Elementary Sample” for estimating principal preferences, the “Value-Added Sample”

for estimating teacher preferences, and the “2015 Sample” for estimating counterfactual allocations.

We see a few expected patterns based on the sample restrictions. For the last two columns,

we require teachers to have value-added forecasts based on data from prior years. This restrictions

leads us to a more experienced sample of teachers. These teachers are more likely both to already

be in the district and to transfer to a new school (from a prior school or from out of district). We

also see these teachers have lower application rates, perhaps because many already have in-district

placements. We see little change in the teacher sample’s mean value-added (by student type or at

a representative school) or choice set size. The mean characteristics in the positions sample also

change minimally with the sample restrictions.

B Omitted details on value-added model: assumptions, results, and
validation

B.1 Formal statement of assumptions for value-added model

Here we formally state the assumptions that were informally discussed in Section 3.

Assumption 1 (Exogeneity and stationarity of classroom and student-level shocks). Classroom-

student-type shocks (θcmt) are independent across classrooms and independent from teachers and

schools. Classroom-student-type shocks follow a stationary process:

E [θc0t |t] = E [θc1t |t] = 0 (A1)
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Var (θc0t) = σ
2
θ0
, Var (θc1t) = σ

2
θ1
, Cov(θc0t ,θc1t) = σθ0θ1 (A2)

for all t.

Student-level idiosyncratic variation is independent across students and independent from teach-

ers and schools. Student-level shocks follow a stationary process depending on the student’s type:

E [ε̃it |t] = 0 (A3)

Var (ε̃it) = σ
2
εm for m = 0,1 (A4)

for all t.

Assumption 2 (Joint stationarity of teacher effects). The non-experience part of teacher value-

added for each student type follows a stationary process that does not depend on the teacher’s

school. The covariances between the teacher’s value-added across student types depend only on the

number of years elapsed:

E [µ j0t |t] = E [µ j1s|t] = 0 (A5)

Var (µ j0t) = σ
2
µ0
, Var (µ j1t) = σ

2
µ1
, Cov(µ j0t ,µ j1t) = σµ0µ1 (A6)

Cov(µ j0t ,µ j0,t+s) = σµ0s, Cov(µ j1t ,µ j1,t+s) = σµ1s (A7)

Cov(µ j0t ,µ j1,t+s) = σµ0µ1s (A8)

for all t.

Assumption 3 (Independence of drift and school effects). Let µ̄ jm be teacher j’s mean value-added

for student type m. Let k be j’s assigned school in year t. Then:

(µ jmt − µ̄ jm)⊥ µk for m = 0,1. (A9)

B.2 Additional details on estimation

In the first step, we estimate βl by regressing test scores (standardized to have mean 0 and standard

deviation 1 in each grade-year) on a set of student characteristics (Xit) and classroom-student-type

fixed effects:

A∗it = βsXit +λcmt +υit . (A10)

For characteristics, we include ethnicity, gender, gifted designation, disability designation, whether

the student is a migrant, whether the student is learning English, whether the student is economically

disadvantaged, test accommodations, age, and grade-specific cubic polynomials in lagged math and

lagged reading scores. We subtract the estimated effects of the student characteristics to form the
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first set of residuals, ν̂it :25

ν̂it = A∗it − β̂sXit . (A11)

These student-level residuals include teacher, school, and classroom components, as well as id-

iosyncratic student-level variation.

In the second step, we project the residuals onto teacher fixed effects, school fixed effects, and

the teacher experience return function. Following the literature, we specify the experience return

function as separate returns for every level of experience up to 6 years, and then a single category

of experience of at least 7 years:

ν̂it =
6

∑
e=1

α
e
1{Z jt = e}+α

7
1{Z jt ≥ 7}+µ jm +µk +µt + εit , (A12)

where εit = (µ jmt − µ jm)+θcmt + ε̃it . We then form a second set of student-level residuals by sub-

tracting off the estimated school and experience effects:

Ait = ν̂it −

(
6

∑
e=1

α̂
e
1{Z jt = e}+ α̂

7
1{Z jt ≥ 7}+ µ̂k + µ̂t

)
. (A13)

We aggregate these student-level residuals into teacher-year mean residuals for each student type:

Ā jmt . Let A−t
j be a vector of mean residuals for each student type-year that j teaches in the data,

prior to year t.

In the final step, we follow Delgado (2021) and form our estimate of teacher j’s value-added

(net of experience effects) in year t for type m as the best linear predictor based on the prior data in

our sample:

µ̂ jt ≡ E∗
[
µ jt |A−t

j

]
= ψ

′
A−t

j , (A14)

where µ jt is a (2x1) vector for the teacher’s output across the two student types and ψ is a 2(t −
1)x(t − 1) matrix of reliability weights where t − 1 is the number of years of prior data. These

weights minimize the mean squared error between the estimate of the teacher’s value-added and our

forecast based on prior data:

ψ̂
′
= argmin∑

j
(Ā jt −ψ

′
A−t

j )′(Ā jt −ψ
′
A−t

j ). (A15)

We estimate ψ following Delgado (2021). Here we describe how we estimate the structural pa-

rameters: σε0,σε1,σθ0,σθ1, cov(θc0t ,θc1t),σµ0,σµ1, cov(µ j0t ,µ j1t),cov(µ j0t ,µ j0s), cov(µ j1t ,µ j1s),cov(µ j0t ,µ j1s).

• σ̂εm = 1
Nc

∑
Nc
c=1

1
ncm−1 ∑

ncm
n=1(v̂it − 1

ncm
∑

ncm
n=1 v̂it)

25Here we deviate from the standard notation, by introducing ν̂it . Our procedure has two residualization steps because
we include classroom-student type fixed effects in the first step, which would subsume the teacher and school fixed effects.
We thus decompose student residuals into teacher and school components in a second step.

69



• σ̂θm =Var(Ā jmtc)− σ̂µm− 1
Ncm

∑
Ncm
i=1

σ̂εm
ncm

• ˆcov(θc0t ,θc1t) = cov(Ā j0tc, Ā j1tc)− ˆcov(µ j0t ,µ j1t)

• σ̂µm =
√

cov(Ā jmtc, Ā jmtc′ ), where c 6= c
′

• ˆcov(µ j0t ,µ j1t) = cov(Ā j0tc, Ā j1tc′ ), where c 6= c
′

• ˆcov(µ j0t ,µ j0s) = cov(Ā j0t , Ā j0s)

• ˆcov(µ j1t ,µ j1s) = cov(Ā j1t , Ā j1s)

• ˆcov(µ j0t ,µ j1s) = cov(Ā j0t , Ā j1s)

where Nc is the number of classes, Ncm is the number of classes times student types, and ncm is the

number of students in class c of type m,

Our estimate of teacher j’s composite value-added at school k in year t is:

V̂A jkt = pk0t µ̂ j0t + pk1t µ̂ j1t + f (Z jt ; α̂). (A16)

Variation in the data: We now discuss the variation in the data that pins down key parameters.

The coefficient on student characteristics uses how test scores vary with within-classroom-student

type variation in student characteristics.26 The school effects use the change in (student) output

when teachers switch schools, beyond what would be predicted by drift and by the change in student

type composition. Heuristically, if teachers’ output regularly increases when teachers transfer to a

certain school, then we would estimate a high school effect. The teacher mean effects for each

student type are pinned down by relative increases in students’ (residualized) test scores across

different teachers. We are able to rank teachers both within and across schools, provided teachers

and schools are in a set connected by transfers so that we can identify the school effects.

Finally, we identify the parameters of the teacher value-added distribution and the drift process

based on the stationarity assumptions and the observations of teachers across years, classrooms, and

student types. As an example, the variance of the teacher effects for student type m is identified by

the covariance between a teacher’s mean student residuals for student type m in two different class-

rooms in the same year.27 With our assumptions that classroom and student shocks are uncorrelated

across classrooms, the only reason a teacher’s students would have similar (residualized) outcomes

is the teacher’s value-added.
26Because we include classroom-student-type fixed effects, our model allows for an arbitrary correlation between

students’ characteristics and the quality of their assigned teachers. Allowing such correlation is important in a context
where teachers have some control over where they work.

27In our setting many elementary school teachers have students from multiple classes. The prevalence of multiple
classrooms is increasing over time (Appendix Table A11).
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The first key parameter estimate is the significant dispersion in value-added for both student

types of about 0.24σ. The second key parameter estimate is the strong correlation of 0.86 between

the teacher’s value added with the two types of students (Appendix Table A4). We find large returns

to experience in the first year, and then a profile that flattens out after about four years of experience

(Appendix Table A12). Appendix Figure A21 plots the drift parameters.

B.3 Alternative estimators

In our analysis, we explore the robustness of our results to elements of our value-added model. We

focus on three variations from our baseline model.

Homogeneous: We estimate a model where teachers have a homogeneous effect on students’

test scores and classroom shocks are not specific to student type:

µ j0t = µ j1t = µ jt

θc0t = θc1t = θct
(A17)

Using school means: In our baseline model, we include school fixed effects: µk. For robustness,

instead of including µk in Equation A12, we include school-level means for all of the variables in

Xit . Note that this will not deliver identical estimates because we do not include school-level means

of the teacher fixed effects.

Using alternative fixed effects: In our baseline model, we include teacher-class-student type

fixed effects (λcmt) in our first residualization step (Equation A13). For robustness, we include

teacher-year fixed effects (λ jt).

B.4 Testing for comparative advantage

Our measures forecast teachers’ future value-added without bias. Our high estimated correlation

between a teacher’s effectiveness with the two student types raises the question of whether our

estimates of comparative advantage simply reflect statistical noise. We perform three exercises to

test our multi-dimensional value-added model versus a single-dimensional model.

First, we estimate standard errors and confidence intervals for the structural parameters in our

production model. The estimated correlation in teacher value-added across student types is 0.86.

We can, however, decisively reject a correlation of 1 as the bootstrap standard error is 0.035, with a

95% confidence interval of (0.73,0.87) (Appendix Table A4).

Second, we perform a likelihood-ratio test comparing our model with a model with one-dimensional

teacher value-added. We take the mean residuals at the level of the teacher-classroom-student type,

Ā jcmt , and collect a teacher’s mean residuals across classrooms and student types, which come from
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a normal distribution:(
Ā jc1t

Ā jc′2t

)
∼N

(0

0

)
,

σ2
µ1
+σ2

θ1
+

σ2
ε1

N jc0t
σµ1µ2

σµ1µ2 σ2
µ2
+σ2

θ2
+

σ2
ε2

N jc2t

 . (A18)

We compare the likelihoods across our baseline model and an alternate model of homogeneous

value-added where σ2
µ1
= σ2

µ2
, σ2

θ1
= σ2

θ2
, σ2

ε1
= σ2

ε2
, and σµ1µ2 = 0. Our likelihood-ratio test has 4

degrees of freedom, and we reject the homogeneous value-added model in favor of the heteroge-

neous model, with a test statistic of 610, so the p-value is arbitrarily small (p < 0.0001).28

Third, we fix a teacher’s type according to whether she is above or below the median in com-

parative advantage in teaching economically disadvantaged students in pre-transfer schools. We

then test whether changes in the share of economically disadvantaged students differentially predict

changes in student test score residuals (ν̂it from equation A13) in post-transfer schools by teacher-

type. The logic of the test is as follows. Under a homogeneous value-added model, changes in the

share of economically disadvantaged students should have no bearing on changes in teacher pro-

ductivity across schools. If our estimated comparative advantage is meaningful, however, then as

the share of disadvantaged students rises, teachers with a comparative advantage in teaching disad-

vantaged students should see gains in average productivity relative to teachers with a comparative

advantage in teaching economically advantaged students. Accordingly, we regress across-transfer

changes in teacher-by-school average student residuals on across-transfer changes in the share of

disadvantaged students interacted with teachers’ type. The results appear in Appendix Table A13.

For teachers with a comparative advantage in teaching advantaged students in pre-transfer schools,

productivity falls as the share of disadvantaged students rises (p-value=0.043). In contrast, for

teachers with a comparative advantage in teaching disadvantaged students, productivity rises as the

share of disadvantaged students rises (p-value=0.014). These findings indicates that comparative

advantage is persistent across settings and predictive of match-specific productivity.

C Within-school assignments

Our analysis focuses on the allocation of teachers across schools in a district. Another margin

of allocation could be within-school assignment of teachers based on class size or composition.

Ignoring this margin could affect our results in two ways. First, we could understate the potential

allocation gains (or even focus on the less important margin). In Table 3 we show that the gains to

within-school reallocation are much smaller than the gains from reallocation across schools.

Second, if within-school position characteristics are endogenous, our preference model might

28We restrict the sample to one randomly-chosen vector of mean residuals per teacher so that the observations in our
likelihood are independent. We also find a similar test statistic when we use mean residuals, Ā jcmt , from a model where
the fixed effects in the residualizing steps are not separated by student type.
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be misspecified. For example, suppose that an experienced teacher can negotiate for the Honors

class at a school but the inexperienced teacher cannot. We assess this possibility in two ways.

C.1 Persistence of classroom characteristics

If within-school assignment characteristics were endogenous and a function of the teacher’s type, we

would expect persistence in these characteristics over time. In Appendix Tables A14 and A15, we

show the autocorrelations in number of students taught by a teacher and the fraction of students that

are economically disadvantaged. In each table’s top panel, we show the school-level autocorrelation.

We find that differences across schools – which we leverage in our analysis – are fairly persistent.

In each table’s bottom panel, we show the teacher-level autocorrelation where we residualize by

school-year fixed effects to isolate the within-school deviation. These within-school differences

across teachers – which we do not leverage in our analysis – are not persistent at all.

C.2 Do teachers bargain over student assignment on the job market?

Second, we examine how students are assigned to teachers within and across schools. This question

is of particular interest since we would like to know whether teachers bargain with principals over

their student assignments. Are sought-after teachers assigned “preferable” class compositions? The

primary teacher characteristic we use is experience, which principals value and is reliably measured

in our data. We first explore the relationship visually. Student attributes have a linear relationship

with log(experience), so we estimate models in which the outcome variables are student attributes

and the primary explanatory variable is a teacher’s log(experience). In regressions, standard errors

are clustered by teacher and by year.

Without controlling for school setting, there is a strong relationship between experience and

student attributes (see Appendix Table A16). More experienced teachers are assigned higher-scoring

students, fewer economically disdavantaged students, more students designated as gifted, and fewer

Black students.

Much sorting takes place across schools—as teachers gain experience, they sort to more subur-

ban schools where students are less economically disadvantaged and higher achieving. In the basic

cross section, we find that a 100 percent increase in experience reduces poverty shares by 0.037

percentage points (significant at the 0.001 level). When we control for year and school fixed effects,

the coefficient on (log) experience falls by over 80 percent to 0.006 (significant at the 0.001 level).

We examine the gradient among newly hired teachers. This group is of particular relevance because

applicants (as opposed to teachers not applying to new jobs) are the teachers we consider in our

counterfactual exercises. When looking at this group, we find no significant relationship between

experience and disadvantaged-student assignment, conditional on school-year fixed effects. This

suggests that principals do not sort students to teachers based on experience within a school, and

73



indicates that bargaining over student characteristics is unlikely.

The pattern of sorting Black students to teachers is quite similar. We find that doubling teacher

experience reduces the Black share of a teacher’s class by 0.033 percentage points (significant at

the 0.001 level). When looking within a school, the experience gradient falls by 97 percent—the

sorting of Black students to teachers is almost exclusively across schools. When we examine the

relationship among new hires, the relationship is even smaller and statistically insignificant. The

gradient between student test scores and teacher experience attenuates by 90 percent when account-

ing for school-year fixed effects. There still is a small, systematic difference in test scores which

appears to arise from hiring more experienced teachers to serve in gifted-and-talented classrooms.

We see very experienced teachers assigned somewhat less desirable class assignments than would

be predicted by the rest of the support. It may be that schools encourage older teachers to leave by

giving them more difficult class compositions.

In summary, among new teachers, experience does not significantly predict assignment to disad-

vantaged students or Black students within schools. There is a small experience gradient for higher

achieving students among new teachers. It seems teachers of gifted-and-talented classrooms tend to

be senior.

D Heterogeneity in application rate gap between Title I and non-Title
schools

To showcase unobservable preference heterogeneity, we focus on teacher preferences over a binary

characteristic: whether the school has Title I designation. Appendix Table A17 shows that on

average teachers are less likely to apply to Title I schools. The application rate to non-Title I

schools is almost 16% and to Title I schools is about 14%, and leaving an application gap of close

to 2 percentage points (or 10%).

The second and third columns of Appendix Table A17 show why we are able to estimate hetero-

geneity precisely: the median number of applications choices that each teacher makes is over 65 for

both Title I positions and non-Title I positions. Thus, teachers’ application sets have the potential to

include many or few Title I positions.

Appendix Figure A22 shows that the mean gap in application rates across school types masks

substantial heterogeneity. For each teacher, we calculate the gap in application rates (for positions

in the teacher’s choice set) between Title I and non-Title I schools, and then we plot the distribution

of the gap. Visually, the distribution almost appears centered on zero (the median is 0.003). But

there is substantial dispersion: the standard deviation of the raw gaps is 0.134.

Naturally, the standard deviation of the raw gap overstates the extent of dispersion because it

incorporates noise. We now describe and implement a simple minimum distance estimator for the

true standard deviation of the applicant gap. For each teacher j we observe a j1 applications sent to
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a Title I school and c j1 is the number of Title I vacancies in the teacher’s choice set. We can then

estimate

p̂ j1 =
a j1

c j1

or teacher j’s application probability to a Title I school.

Using the natural notation for a “not-Title I” school, we also have:

p̂ j0 =
a j0

c j0

We can then compute the “gap”, or Title I penalty, as

ĝ j = p̂ j1− p̂ j0.

We are then interested in the distribution of these gaps – e.g., the standard deviation (sd) of g j.

Naturally, taking sd(ĝ j) will result in an over-estimate of the amount of dispersion.

We fit the following model.

p j0 = ˆ̄p0

p j1 = N( ˆ̄p1,σ)

where ˆ̄p. are the population average application probabilities and σ is a parameter to estimate. We

estimate σ by simulated method of moments where the moment to match is sd(ĝ j) and we simulate

data from the model embedded in the previous two equation using the observed {c j0,c j1}.
We find that the estimated standard deviation is 0.114, so the visual depiction of noise is in line

with the underlying truth. If we take the minimum distance estimate at face value, while on average

teachers have higher application probabilities to non-Title I schools, about 44% of teachers have

higher application probabilities to Title I instead. Hence, this suggests that even though on average

teachers prefer non-Title I schools, there is a substantial amount of heterogeneity in the applicant

pool. Depending on how such preference heterogeneity maps into the existing allocation of teachers

to schools, policies that make Title I schools more attractive could have small or large effects on

teachers’ application rates.

E Selection into the transfer market

What explains the differences in student gains between Table 3 and the results depicted in Figure 8a?

Here, we compare the teacher transfer market to the broader sample of teachers and positions. We

first consider the representation of schools in the transfer market. Unsurprisingly, we see significant

over-representation for positions in schools with high proportions of economically disadvantaged

students. Appendix Table A18 shows that a 10 percentage point increase in the share of economi-
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cally disadvantaged students is associated with 0.15 more positions posted. Because the overrepre-

sented type of school is already the more common one (more than half of the students in our district

are economically disadvantaged) this means that gains from sorting on comparative advantage are

going to be understated in our transfer sample.

The pattern is less pronounced for the number of students a teacher instructs. Though the point

estimate implies that an additional 10 students per teacher lowers the number of positions a school

posts by 0.2, this relationship is largely driven by outliers, as shown in Appendix Figure A23.

To examine the selection of teachers into the transfer market, we first look at four cohorts, 2010-

2013, such that we can follow them for five years. We further restrict attention to those for whom

we can measure productivity, leaving us with 553 teachers who entered the state’s data during those

years. Of those, 207 applied to transfer at some point during the first five years. Only 124 remain

in their original school and have not applied to transfer within five years of entering the district.

The remaining 287 leave the district. Appendix Table A19 shows that there is very little difference

in comparative advantage between teachers who applied to transfer and the teachers who did not.

Teachers who apply for transfer have lower and less variable absolute advantage.

Accordingly, it is unlikely that the difference in per-student potential gains is due to teacher

selection into transferring, particularly with regard to comparative disadvantage (with disadvan-

taged students). It is possible that the small differences in absolute disadvantage interacted with the

under-representation of large classes accounts for some of the gap. The clearest selection into the

transferring market, however, comes from the over-representation of schools with a high concentra-

tion of disadvantaged students. With a limited distribution of schools, there is less room to realize

the gains from teachers’ comparative advantages.

F Principal preferences estimation

We estimate principal preferences via maximum simulated likelihood, where we simulate from

the normal distributions of the random effect at the level of the position-year. Let n index each

simulation iteration and let B jptn(θ) be the model-predicted probability that p rates j positively in

year t in simulation iteration n at parameter vector θ. For each position p in year t, we construct the

simulated likelihood as:

Lpt =
1

100

100

∑
n=1

∏
j∈Jpt

(b jptB jptn(θ)+(1−b jpt)(1−B jptn(θ))), (A19)
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where Jpt is the set of teachers who applied to a position p in year t and b jpt is an indicator for

whether p rated j positively in the data. Our full simulated log likelihood function is:

l =
1
P ∑

p
logLpt . (A20)
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Table A1: Applications: sample and summary statistics

Full Sample Elementary Sample Value-Added Sample 2015 Sample

Applications
N 2,163,711 337,754 13,819 2,702
On-Cycle 0.68 1.00 1.00 1.00
Instructional 0.70 1.00 1.00 1.00
Elementary 0.39 1.00 1.00 1.00
Applicants
N 104,795 14,864 867 178
Female 0.92 0.87 0.89
Black 0.24 0.30 0.25
Hispanic 0.03 0.01 0.03
In-District 0.12 0.43 0.44
Choice Set Size 159.10 151.14 151.35
Application Rate 0.18 0.11 0.10
Transferred 0.23 0.43 0.51
Mean Commute Time 17.78 22.57 22.50
Experience 5.81 9.22 9.89
VA Econ Adv -0.03 -0.03 -0.04
VA Econ Disadv -0.02 -0.02 -0.03
Abs Adv -0.03 -0.03 -0.03
Comp Adv in Econ Disadv 0.01 0.01 0.01
Positions
N 38,921 1,824 1,784 296
Choice Set Size 1,293.54 71.89 88.63
Application Rate 0.14 0.11 0.10
Mean Class Size 26.40 26.40 25.69
Frac Econ Disadv 0.65 0.65 0.68
Frac Black 0.43 0.43 0.45
Frac Hispanic 0.24 0.24 0.25

The table shows count or mean statistics across different samples. The “Full Sample” includes all of the raw data, the “Elementary
Sample” restricts to on-cycle elementary school instructional positions without specialization, the “Value-Added Sample” further re-
stricts to teachers with value-added forecasts based on prior years, and the “2015 Sample” further restricts to the 2015 application
cycle (for positions in the 2016 school year). We use the “Elementary Sample” for estimating principal preferences, the “Value-Added
Sample” for estimating teacher preferences, and the “2015 Sample” for estimating counterfactual allocations. We do not include mean
statistics for applicants and positions for the complete sample because we built the data on the subsample. Commute time is measured
in minutes, absolute advantage is value-added at the representative school in the district, and choice set size is the number of positions
in a teacher’s choice set (Applicants panel) or the number of teachers with the position in their choice set (Positions panel).
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Table A2: Relationship between Teacher Characteristics and Teacher Value-Added

VA Mean VA Adv VA Disadv

Experience 1-2 0.0797 0.0744 0.0816

(0.0326) (0.0315) (0.0334)

Experience 3-5 0.134 0.123 0.138

(0.0322) (0.0312) (0.0331)

Experience 6-12 0.139 0.126 0.144

(0.0320) (0.0310) (0.0329)

Experience 13-20 0.137 0.125 0.142

(0.0320) (0.0310) (0.0329)

Experience 21-27 0.149 0.138 0.155

(0.0322) (0.0312) (0.0331)

Experience 28+ 0.132 0.121 0.135

(0.0324) (0.0314) (0.0333)

Graduate degree 0.00263 0.00442 0.000950

(0.00364) (0.00352) (0.00373)

Regular license 0.0531 0.0443 0.0574

(0.0183) (0.0177) (0.0188)

NBPTS certified 0.0303 0.0303 0.0307

(0.00528) (0.00511) (0.00542)

Praxis 0.00414 0.00573 0.00323

(0.00241) (0.00233) (0.00247)

Mean DV -0.00366 -0.0130 0.000960

R squared 0.0228 0.0219 0.0232

N 7335 7335 7335
The table shows the relationship between teacher characteristics and value added across stu-
dent types (“Adv” and “Disadv”) or mean value added. The omitted experience category is
having no experience
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Table A3: Students and teachers: summary statistics for 2015-16

Focal, 0-70% Focal, 70-100% Other, 0-70% Other, 70-100%

Students
Male (%) 50.76 51.03 51.18 51.46
White (%) 52.08 6.10 63.39 30.11
Black (%) 25.12 53.44 15.08 37.74
Hispanic (%) 12.58 34.00 12.86 23.72
Other minorities (%) 10.22 6.46 8.66 8.43
Student performance (level scores)
Math 0.49 -0.18 0.17 -0.31
Student performance (gain scores)
Math 0.06 0.07 -0.01 0.01
Teachers
Experience (% of teachers)

0 years 4.50 12.30 3.71 5.89
1-2 years 9.89 18.63 7.73 11.53
3-5 years 16.73 20.43 11.75 14.02
6-12 years 30.58 20.43 27.61 26.79
13-20 years 21.58 17.54 26.91 21.09
21-27 years 9.71 3.25 11.99 9.56
28 or more years 7.01 7.41 10.30 11.12

Graduate degree (%) 47.03 41.82 38.44 37.79
Regular license (%) 96.40 88.97 97.96 93.07
NBPTS certified (%) 15.11 5.42 13.61 7.59
Praxis score 0.32 0.02 0.28 0.05
Attrition rate (%)

From school 14.03 27.31 16.50 23.69
From district 8.09 15.55 10.55 15.75

Schools
Economically disadvantaged (%) 31.23 99.50 45.05 94.23
Mean math value-added
Baseline 0.01 0.03 -0.01 0.00
Homogeneous 0.01 0.01 -0.01 -0.02
Using school means 0.17 0.17 0.11 0.13
Using alternative FEs 0.04 0.05 0.02 0.02

The table shows mean characteristics for students and teachers in our sample for the 2015-16 school year. Schools are split into
whether they are in our focal district (“Focal”) or in the rest of North Carolina (“Other”) and whether more than 70% of the students in
the school are economically disadvantaged. Math scores are standardized to have mean 0 and standard deviation 1 at the state-grade-
year level. The alternate VA estimators are a (a) homogeneous value-added model with constant effects across student types, (b) a
model that uses school mean characteristics rather than school fixed effects, and (c) a model that uses teacher-year fixed effects, rather
than teacher-class-student type fixed effects, in the first residualization step.
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Table A4: Teacher Value-Added Structural Parameters

Estimates Standard Errors 95% CI Lower Bound 95% CI Upper Bound

σε0 0.450 0.000 0.456 0.457

σε1 0.470 0.000 0.477 0.479

σθ0 0.110 0.007 0.108 0.137

σθ1 0.088 0.015 0.089 0.143

correlation(θc0t ,θc1t) 0.657 0.162 0.126 0.844

σµ0 0.249 0.007 0.262 0.284

σµ1 0.243 0.015 0.254 0.316

correlation(µ j0t ,µ j1t) 0.859 0.035 0.729 0.872

The table shows the estimates of a subset of the structural parameters of the production model – specifically the parameters
corresponding to contemporaneous output. Non-disadvantaged students have index 1 while disadvantaged students have index
2. ε is the student-year idiosyncratic component, θ captures classroom effects, and µ describes a teacher’s value-added. The
remaining structural parameters describe the drift process of teacher value-added over time. Standard errors and confidence
intervals are estimated with 100 bootstrap iterations.
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Table A5: Potential Gains from Reassignment – Test Score Percentiles

Per-Student Gains (σ) As a Fraction of (Best-Actual) Non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.050 0.089 0.016
Random -0.003 -0.19 0.017 -0.021
Worst -0.053 -3.63 -0.052 -0.054
Alternate Policies
Best w/i School 0.012 0.98 0.015 0.010
Replace Bottom 5% of Teachers 0.011 0.74 0.012 0.010
Targeting Student Types
Max Non-Disadvantaged VA 0.024 1.66 0.130 -0.072
Max Disadvantaged VA 0.016 1.12 -0.047 0.074

The table shows the potential gains from reassignments of teachers to different schools. Test scores are constructed as the raw score percentile (from 0 to 1), where
percentiles are calculated for each grade-year in the state. We then normalize the test scores to be in standard deviation units based on the standard deviation of the
uniform distribution. The sample is all teachers with non-missing value-added measures in 2016, along with their corresponding 2016 assignments. Gains come
from better matching of teachers to students, as teachers’ effectiveness may differ across student types. The first column shows the per-student gains from various
allocations relative to the actual allocation. The second column shows the gain as a fraction of the full difference between the best (output-maximizing) and actual
allocations. The third and fourth columns show the per-student gains, relative to the actual allocation, for non-disadvantaged and disadvantaged students. The
best within school allocation only changes the teacher-classroom assignments within a school. “Replacing Bottom 5% of Teachers” refers to replacing the bottom
5% of teachers according to realized per-student output with teachers with median value-added for each student type. The targeting student types allocations are
the ones that maximize per-student output for students of one type only. We assign classrooms the mean student composition and class sizes in that school in
2016 in all allocations except the “Best w/i School” and “Constant Class Size” allocations.
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Table A6: Potential Gains from Reassignment – Constant Class Size

Per-Student Gains (σ) As a Fraction of (Best-Actual) non-Disadvantaged Disadvantaged

Alternate Allocations
Best 0.021 0.018 0.023
Random 0.000 0.02 0.002 -0.001
Worst -0.020 -0.94 -0.015 -0.023
Alternate Policies
Best w/i School 0.003 0.16 0.007 0.000
Replace Bottom 5% of Teachers 0.017 0.82 0.023 0.012
Targeting Student Types
Max Non-Disadvantaged VA 0.003 0.17 0.123 -0.090
Max Disadvantaged VA 0.005 0.22 -0.111 0.096

The table shows the potential gains from reassignments of teachers to different schools where each school has the same number (but possibly different composi-
tion) of students per class. The sample is all teachers with non-missing value-added measures in 2016, along with their corresponding 2016 assignments. Gains
come from better matching of teachers to students, as teachers’ effectiveness may differ across student types. The first column shows the per-student gains from
various allocations relative to the actual allocation. Gains are measured in student standard deviations (σ). The second column shows the gain as a fraction of
the full difference between the best (output-maximizing) and actual allocations. The third and fourth columns show the per-student gains, relative to the actual
allocation, for non-disadvantaged and disadvantaged students. The best within school allocation only changes the teacher-classroom assignments within a school.
“Replacing Bottom 5% of Teachers” refers to replacing the bottom 5% of teachers according to realized per-student output with teachers with median value-added
for each student type. The targeting student types allocations are the ones that maximize per-student output for students of one type only. We assign classrooms
the mean student composition and class sizes in that school in 2016 in all allocations except the “Best w/i School” and “Constant Class Size” allocations.
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Table A7: Same-Race and Same-Gender Effects on Test Scores

Student Res

Black Teacher - Black Student 0.00225

(0.00164)

Hispanic Teacher - Hispanic Student -0.00556

(0.00549)

Female Teacher - Female Student 0.00478

(0.000550)

Fixed Effects Teacher, School

Mean DV 0.0000115

Clusters 37940

N 5158740

An observation is a student-year and the outcome is the student’s math
score residualized by student demographics including lagged scores,
school fixed effects, and teacher experience measures. The regressors
include measures of demographic match between student and teacher.
The regression includes school fixed effects and teacher fixed effects.
Standard errors are clustered at the teacher level.

84



Table A8: Teacher Value-Added Structural Parameters with Alternate Forms of Heterogeneity

Race Achievement

σε0 0.465 0.481

σε1 0.457 0.439

σθ0 0.091 0.099

σθ1 0.110 0.102

correlation(θc0t ,θc1t) 0.637 0.628

σµ0 0.233 0.240

σµ1 0.261 0.282

correlation(µ j0t ,µ j1t) 0.900 0.844

The table shows the estimates of a subset of the structural param-
eters of production models with alternate forms of heterogeneous
teacher effects – specifically by race and prior achievement. In
the first column, non-white students have index 1 while White
students have index 2. In the second column, students with be-
low median prior math achievement have index 1 while students
with above median prior math achievement have index 2. ε is
the student-year idiosyncratic component, θ captures classroom
effects, and µ describes a teacher’s value-added. The remaining
structural parameters describe the drift process of teacher value-
added over time.
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Table A9: Application timing

Obs Mean days Median days Share 0 days

Stock 196,779 3.6 0 0.72
Flow 146,382 2.1 0 0.75

(a) Wait times until applying

Obs Mean fraction of days Mean fraction of applications Mean days since posting

First day 14,864 0.61 0.65 23.47
Subsequent days 40,850 0.14 0.13 11.55

(b) First day versus subsequent days

Obs April or before May June July August

First day (all teachers) 14,864 0.20 0.25 0.22 0.18 0.15
Last day (all teachers) 14,864 0.09 0.15 0.21 0.26 0.29
First day (transfers) 2,547 0.27 0.30 0.24 0.14 0.05
Last day (transfers) 2,547 0.10 0.17 0.25 0.29 0.19

(c) Timing of first and last days

The tables show statistics related to application timing. Panel (a) shows how long it took an applicant to apply to positions
that were in “stock” (already posted) on the day the teacher first applied on the platform or in “flow” (posted after the
day the teacher first applied on the platform). Panel (b) shows application statistics for the first day a teacher applied on
the platform in a cycle versus subsequent days. “Mean days since posting” is the mean number of days a vacancy had
been posted at the time the teacher applied. Panel (c) shows the (monthly) timing of when an applicant’s first and last
application days of the cycle occurred. “All teachers” includes all applicants while “transfers” includes just teachers who
ended up in new schools.
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Table A10: Pseudo R-squareds for principal rating models

Non-Title I Title I

Demographics 0.008 0.004

Teacher Characteristics 0.031 0.018

Value Added 0.006 0.003

EVAAS 0.000 0.000

Demographics + Teacher Characteristics 0.039 0.023

Demographics + Value Added 0.016 0.006

Teacher Characteristics + Value Added 0.033 0.020

EVAAS + Value Added 0.007 0.003

Demographics + Teacher Characteristics + Value Added 0.041 0.025

Demographics + Teacher Characteristics + EVAAS + Value Added 0.041 0.025

The table shows pseudo R-squareds from logit models for whether a principal rates an application highly (a
positive rating, an interview, or an offer). Each model includes position fixed effects. The pseudo R-squared
is the percentage improvement in the likelihood relative to a model with only the fixed effects. Demograph-
ics are measures of the teacher’s race and gender, interacted with the school’s racial composition. Teacher
characteristics are experience, licensing, certification, and Praxis scores. Value Added is our model’s forecast
of the teacher’s causal effect on student test scores from the assignment. EVAAS is the measure of teacher
performance that the state uses and released to teachers.
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Table A11: Multi-classroom teacher prevalence

Year All Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

2012 0.264 0.109 0.187 0.618 0.621 0.631

2013 0.287 0.124 0.210 0.636 0.631 0.649

2014 0.300 0.152 0.227 0.633 0.625 0.644

2015 0.363 0.256 0.345 0.615 0.598 0.602

2016 0.391 0.305 0.392 0.595 0.591 0.595

2017 0.385 0.291 0.399 0.612 0.569 0.596

2018 0.393 0.307 0.425 0.596 0.586 0.578

Estimation sample 0.417

The table shows the prevalence of teachers having multiple classrooms, separately by teacher’s grade
and year. The sample includes teachers for whom we can calculate math value-added. Our estimation
sample consists of teachers, with value-added forecasts, who applied to elementary school positions.
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Table A12: Estimated Experience Returns to Teacher Value-Added

1 2 3 4 5 6 7+

Estimate 0.056 0.077 0.083 0.088 0.088 0.091 0.070

Standard Error 0.004 0.004 0.005 0.005 0.005 0.005 0.005

The table shows the estimated experience returns for math test scores, where the scores have
been normalized to have mean 0 and standard deviation 1 for students in a given grade-year.
Columns designate the number of prior years of experience. The omitted category is teachers
with no prior experience.
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Table A13: Predicting Student Residuals by Teacher Type

Student res Student res

Share disadvantaged -0.0549 -0.0409

(0.0251) (0.0202)

Share disadvantaged x CA in disadvantaged 0.0820 0.0697

(0.0356) (0.0283)

Num teachers 3214 3214

Num students 157671 157671

Mean CA -0.00805 -0.00805

SD CA 0.0624 0.0624

Controls No Yes

The table assesses whether changes in the share of economically disadvantaged students
predict changes in student test score residuals differently by teacher type across transfers.
Teacher type is defined by comparative advantage in pre-transfer schools, with “CA in dis-
advantaged” an indicator for whether the teacher is above median in comparative advantage
in teaching disadvantaged students. The outcome is changes in average teacher-by-school
student residuals across transfers. “Share disadvantaged” is the change in the average share
of economically disadvantaged students teacher j taught when moving from one school to
another. Controls include a cubic in average experience in the school, an indicator for expe-
rience missingness, and transfer year indicators. Standard errors are clustered at the teacher
level.
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Table A14: Autocorrelations in class size

Class size, school level

Variables Class Size t Class Size t-1 Class Size t-2 Class Size t-3 Class Size t-4
Class Size t 1.0000

Class Size t-1 0.7329 1.0000
(0.0000)

Class Size t-2 0.6248 0.6966 1.0000
(0.0000) (0.0000)

Class Size t-3 0.4093 0.5261 0.6598 1.0000
(0.0000) (0.0000) (0.0000)

Class Size t-4 0.3722 0.3746 0.4365 0.5796 1.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Nb. obs. : 247

Class size, teacher level

Variables (Res.) Size t (Res.) Size t-1 (Res.) Size t-2 (Res.) Size t-3 (Res.) Size t-4
(Res.) Size t 1.0000

(Res.) Size t-1 0.3668 1.0000
(0.0000)

(Res.) Size t-2 0.2688 0.3717 1.0000
(0.0000) (0.0000)

(Res.) Size t-3 0.2900 0.1272 0.2699 1.0000
(0.0000) (0.0186) (0.0000)

(Res.) Size t-4 0.1173 0.1438 0.0698 0.3098 1.0000
(0.0301) (0.0077) (0.1978) (0.0000)

Nb. obs. : 342

The table shows correlations (within unit) between class size in one year and class size in a prior year. In the top panel, a unit
of analysis is a school and class size is the mean across all of the school’s classrooms (that generate math test scores). In the
bottom panel, a unit of analysis is a teacher and class size is residualized by school-year fixed effects such that residual class
size compares how a teacher’s class size deviates from the school-year mean.
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Table A15: Autocorrelations in class composition

Class composition, school level

Variables Frac Disadv t Frac Disadv t-1 Frac Disadv t-2 Frac Disadv t-3 Frac Disadv t-4
Frac Disadv t 1.0000

Frac Disadv t-1 0.9602 1.0000
(0.0000)

Frac Disadv t-2 0.9430 0.9555 1.0000
(0.0000) (0.0000)

Frac Disadv t-3 0.9363 0.9370 0.9496 1.0000
(0.0000) (0.0000) (0.0000)

Frac Disadv t-4 0.9435 0.9467 0.9554 0.9775 1.0000
(0.0000) (0.0000) (0.0000) (0.0000)

Nb. obs. : 247

Class composition, teacher level

Variables (Res.) Dis t (Res.) Dis t-1 (Res.) Dis t-2 (Res.) Dis t-3 (Res.) Dis t-4
(Res.) Dis t 1.0000

(Res.) Dis t-1 0.3170 1.0000
(0.0000)

(Res.) Dis t-2 0.2898 0.3200 1.0000
(0.0000) (0.0000)

(Res.) Dis t-3 0.1524 0.2076 0.3723 1.0000
(0.0047) (0.0001) (0.0000)

(Res.) Dis t-4 0.0921 0.0512 0.2203 0.3925 1.0000
(0.0889) (0.3450) (0.0000) (0.0000)

Nb. obs. : 342

The table shows correlations (within unit) between class composition (fraction of students that are economically disadvantaged)
in one year and class composition in a prior year. In the top panel, a unit of analysis is a school and class composition is the
(weighted) mean across all of the school’s classrooms (that generate math test scores). In the bottom panel, a unit of analysis is
a teacher and class composition is residualized by school-year fixed effects such that residual class composition compares how
a teacher’s class composition deviates from the school-year mean.
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Table A16: Teacher experience and student assignment

(1) (2) (3) (4) (5)
Outcome Outcome Outcome Outcome Outcome

Outcome: Share economically disadvantaged students assigned

log(experience) -0.0369 -0.0311 -0.0063 -0.0029 -0.0021
(0.0013) (0.0028) (0.0005) (0.0011) (0.0011)

Outcome: Share Black students assigned

log(experience) -0.0331 -0.0195 -0.0010 -0.0008 -0.0005
(0.0010) (0.0023) (0.0004) (0.0008) (0.0010)

Outcome: Average student lagged math score

log(experience) 0.0887 0.0474 0.0461 0.0173 0.0115
(0.0023) (0.0049) (0.0016) (0.0033) (0.0041)

Outcome: Share gifted status

log(experience) 0.0231 0.0106 0.0161 0.0053 0.0074
(0.0007) (0.0014) (0.0006) (0.0012) (0.0016)

New only X X X
Year FE X X
School FE X X
School-year FE X

N 1,879,666 258,723 1,879,666 258,723 258,723
Standard errors in parentheses.

The table shows separate regression results for different outcomes on the log of a teacher’s prior
experience. Outcomes are mean characteristics of the students in a teacher’s classroom. “New
only” indicates that the sample only includes teachers new to the school; thus, the regression
compares outcomes across teachers new to the school depending on the teacher’s experience.
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Table A17: Applications to Title I and non-Title schools

Obs Mean choice set Median Mean prob. 25th 50th 75th Std. dev. Overall mean prob.

Title I 14,747 85.3 68 0.176 0.010 0.056 0.264 0.237 0.137

non-Title I 14,747 74.0 66 0.176 0.013 0.084 0.270 0.217 0.155

Gap 14,747 -0.001 -0.049 0.003 0.041 0.134 -0.018

The table shows application statistics to positions at Title I and non-Title I schools. Columns (2) and (3) show the mean and median choice set sizes for
an applicant. “Gap” shows the difference in statistics across the two school types.
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Table A18: Predicting posted positions

(1) (2)
Positions Positions

Class size -0.0199
(0.0125)

Fraction disadvantaged 1.503
(0.544)

N 116 116
An observation is a school-year. The outcome is the number
of positions posted in an application cycle and the regressors
are characteristics of the school’s mean class. Robust standard
errors are in parentheses.

Table A19: Transferring and non-transferring teachers’ value added

(1) (2)
Did not apply Applied to transfer

mean sd count mean sd count
Comparative advantage 0.0001 0.0351 528 -0.0002 0.0367 506
Absolute advantage 0.0034 0.1210 528 0.0219 0.1508 506
The table shows the means and standard deviations of absolute and comparative advantage for
teaching economically advantaged students by whether the teacher ever submits an application to
transfer. An observation is a teacher with a value-added forecast. These are pooled over years
2010 through 2018.
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Figure A1: Math Comparative Advantage Forecast Unbiasedness

The figure is a binscatter, where an observation is a teacher-year and “Difference in VA” is the difference
in a teacher’s math value-added between economically disadvantaged and advantaged students. Value-added
estimates are predictions using data from prior years. Units are student standard deviations. The y-axis is
the difference in mean student math test score, residualized by student demographics including lagged scores,
school fixed effects, and teacher experience measures. The mean is taken over all students (of a given type)
for a given teacher-year and the difference is between a teacher’s economically disadvantaged and advantaged
students.
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Figure A2: Transfer event study

The figure shows event study coefficient estimates and 95% confidence intervals. The outcome is residual-
ized math test score (residualized by student observables including lagged scores, school fixed effects, and
an experience function), in student standard deviation units. The event is the teacher’s first transfer from
one school to another school in the state, where non-transfers do not have an event. We include teacher
and year fixed effects and follow Sun and Abraham (2021) in constructing the estimates.
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Figure A3: Forecast Unbiasedness for Large Changes in Class Size

(a) Large decreases in class size

(b) Large increases in class size

The figure shows a binscatter of student residual test scores by value-added prediction where an obser-
vation is a teacher-year. For decreases, the sample consists of all teachers where the class size used for
prediction exceeds the class size in the target by more than 10 students. For increases, the sample consists
of all teachers where the class size used for prediction is less than the class size in the target by more than
10 students.



Figure A4: Test Scores by Student Type, across Grades

The figure plots mean student test scores in our focal district for economically advantaged and disadvantaged
students and the difference between the groups. Test scores are in student standard deviation units and are
plotted across elementary school grades.
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Figure A5: External validity of assignment features

The figures show how the features of our assignment problem extend to other districts. In the top row, we calculate the
correlation between absolute advantage and comparative advantage in teaching economically disadvantaged students (left)
and the correlation between class size and the economically disadvantaged share (right). An observation is a district in North
Carolina. The vertical line shows the correlation at our focal district. In the bottom row, we use national data from the Common
Core of Data and restrict to elementary schools in 2012-13. The two figures are binscatters of the within-district relationship
between a school’s fraction economically disadvantaged and its student-teacher ratio. The figure on the left is for our focal
district while the figure on the right includes all schools in the US, where an observation is a school and district fixed effects
are included.
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Figure A6: Value-Added Distribution

The figures show kernel density plots of our forecast of a teacher’s value-added in a given year at the school
they actually teach at (panel A), for economically advantaged students (panel B), and for economically
disadvantaged students (panel C). The forecast uses only data from prior years. The units are student
standard deviations.



Figure A7: Gains from teacher replacement

With class size variation

Constant class size

This Figure shows the results from policies that replace the X% of low-performing teachers with median value-added teachers,
where the x-axis shows different values of X. The sample is the 2016 teachers with value-added forecasts. We assess performance
based on realized value-added in the data (i.e., at the schools and classrooms a teacher is actually at in the data), and the median
value-added teacher has median values for both dimensions of value-added. The y-axis is per-student gains in achievement. The
top panel uses class size variation while the bottom panel imposes constant class sizes (at the district mean). The horizontal dashed
lines are the gains from the output-maximizing allocation of existing teachers across schools in the district.



Figure A8: Student Gains by Fraction of Teachers Reassigned

The figure plots the potential per-student math test score gains (in student standard deviation units) as a function
of the fraction of teachers that are assigned to a school different than their actual school. The sample consists
of the 2016 teachers with math value-added scores.
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Figure A9: Changes in a teacher’s classroom composition and size between the output-maximizing
and actual allocations

The figures show scatterplots and lines of best fit for the 2016 sample of teachers with value-added scores. In the top row,
the variable of interest is the difference in the number of students a teacher teaches between the output-maximizing and actual
allocations. Positive numbers are teachers who have more students in the output-maximizing allocation than in the actual. In
the bottom row, the variable of interest is the difference in the fraction of disadvantaged students a teacher teaches between
the output-maximizing and actual allocations. In the left column, teachers are ordered on the x-axis by absolute advantage
(value-added at a representative school). In the right column, the teachers are sorted by comparative advantage in teaching
economically disadvantaged students.
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Figure A10: Optimal teacher placement relative to placement that generated value-added

The figures show histograms for the 2016 sample of teachers with value-added scores. In the top panel, the variable of interest is the
difference in the number of students a teacher teaches between the output-maximizing allocation and the classrooms that generated the
teacher’s value-added forecast. Positive numbers are teachers who have more students in the output-maximizing allocation than in the
estimation data. In the bottom row, the variable of interest is the difference in the fraction of disadvantaged students a teacher teaches
between the output-maximizing allocation and the classrooms that generated the teacher’s value-added forecast. The vertical dashed
lines represent the 1st, 10th, 90th, and 99th percentiles of the distribution we use for validation of our value-added measures in Table 1.
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Figure A11: Simulations of two forms of misspecification

Unmodelled match effects

Attenuation in coefficient on output in teacher preferences

The figures show results from simulation exercises where we vary parameters related to match effects. In each figure the y-axis is
the mean student achievement relative to the status quo. The dashed red line is the achievement in the output-maximizing allocation
while the solid black line is the achievement in the equilibrium where principals and teachers each have preferences in order of
value-added produced. The top panel adds an iid unobserved component to match effects, where the x-axis is the standard deviation
of this component. The bottom panel varies the coefficient in teacher preferences on value-added. If our model misses match effects
that teachers are aware of, then the preference coefficient might be attenuated. The x-axis in the bottom panel shows by how much
we multiply our estimated coefficient on value-added.
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Figure A12: Market timing

The figure shows CDFs for postings, applications, and hires (the application date of the application that led to a hire).
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Figure A13: Application probabilities against commute time

This Figure plots the probability of applying against commute time (measured in one-way minutes). The Figure residualizes for
applicant fixed effects.
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Figure A14: Number of teachers by fraction economically disadvantaged

This Figure plots histograms of the number of teachers, by the fraction of students who are economically disadvantaged. The
histograms are for the actual positions in the data (in white) and the positions teachers would have if they could all have their top
choice (in red).
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Figure A15: Bivariate preference relationship – principal model without output

This figure shows a binscatter of the bivariate relationships between teacher output and principal preferences. We estimate each
principal’s ranking over teachers and order teachers from a principal’s most preferred (100) to least preferred (0). The estimated
model does not include value-added as a characteristic. The figure shows the bivariate relationship between the teacher’s total
value-added in the position and the mean preference percentile of the principal for the teacher in the principal preference model.
The middle set of points (red circle) is the mean percentile, while the top (orange cross) and bottom (blue x) sets of points are the
10th and 90th percentiles, respectively.
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Figure A16: Model fit: teacher serial dictatorship based on absolute advantage (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where
teachers go in descending order of their absolute advantage to the allocations we observe in the data. The data refers to all teachers
in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A17: Model fit: teacher serial dictatorship based on experience (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where
teachers go in descending order of their experience to the allocations we observe in the data. The data refers to all teachers in the
district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A18: Model fit: school serial dictatorship based on fraction disadvantaged (descending)

(a) Teacher absolute advantage (b) Teacher comparative advantage

(c) Teachers with 7+ years of experience (d) Teachers that are Black

This Figure compares the allocations implied by a model in which the allocation is determined by a serial dictatorship where schools
go in descending order of their fraction of disadvantaged students to the allocations we observe in the data. The data refers to all
teachers in the district. The model refers to the teachers who apply in the transfer system for whom we have value-added scores.
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Figure A19: Features of classes and teachers – transfer sample

(a) Class size and fraction disadvantaged

(b) Comparative advantage for disadvantaged students, and absolute advantage

The figures show binscatters related to classroom characteristics and teacher characteristics in the trans-
fer sample used for counterfactual analysis. The top panel shows the relationship between a school’s
(mean) disadvantaged share of students and a school’s (mean) number of students per teacher. The bottom
panel shows the relationship between a teacher’s absolute advantage (x-axis) and comparative advantage
in teaching economically disadvantaged students (y-axis). For this figure, absolute advantage is the av-
erage value-added across students types (rather than the value-added at a representative school) to avoid
mechanical correlations between absolute and comparative advantage.
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Figure A20: First-best allocation’s placement of teachers, by absolute advantage

This Figure plots the first-best allocation in our transfer sample, where we divide teachers by absolute advantage and positions by
fraction of students that are economically disadvantaged. Each point is an assignment of a teacher to a position.
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Figure A21: Value-Added Drift Parameters

The figure shows the estimated correlations between teacher value-added in different years. The x-axis
captures the year difference between the teacher’s value-added measures. The three lines reflect correla-
tions in teacher value-added within student type (1 for non-disadvantaged students, 2 for disadvantaged
students) or across student type.
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Figure A22: Title I Application Gap

This Figure plots the distribution of the individual-level Title I application rate minus the individual-level non-Title application
rate. Thus, the positive entries indicate that a teacher applies to a greater share of the Title I schools in their choice set than to the
non-Title I schools.
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Figure A23: Postings selection in the transfer market

(a) Positions and fraction of disadvantaged students

(b) Positions and class size

This figure shows the relationship between number of positions posted and (a) a school’s fraction of students that are economically
disadvantaged and (b) a school’s class size. An observation is a school.
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