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Evaluating Visual Number Discrimination in Deep Neural Networks
Ivana Kajić (kivana@deepmind.com)

DeepMind, Montréal, QC, Canada

Aida Nematzadeh (nematzadeh@deepmind.com)
DeepMind, London, United Kingdom

Abstract

The ability to discriminate between large and small quantities
is a core aspect of basic numerical competence in both humans
and animals. In this work, we examine the extent to which the
state-of-the-art neural networks designed for vision exhibit this
basic ability. Motivated by studies in animal and infant numer-
ical cognition, we use the numerical bisection procedure to test
number discrimination in different families of neural architec-
tures. Our results suggest that vision-specific inductive biases
are helpful in numerosity discrimination, as models with such
biases have lowest test errors on the task, and often have psy-
chometric curves that qualitatively resemble those of humans
and animals performing the task. However, even the strongest
models, as measured on standard metrics of performance, fail
to discriminate quantities in transfer experiments with differ-
ing training and testing conditions, indicating that such induc-
tive biases might not be sufficient.

Basic Numerical Competence
The ability to represent abstract numbers and compare nu-
merical quantities is a basic numerical competence observed
in both animals and humans (Dehaene, Dehaene-Lambertz,
& Cohen, 1998). It helps animals in foraging, navigation,
hunting, and reproduction (Nieder, 2020), and is also corre-
lated with the later mathematical ability in prelinguistic in-
fants (Gilmore, McCarthy, & Spelke, 2007; Halberda, Maz-
zocco, & Feigenson, 2008). While such a skill is shared
across species and is independent of explicit feedback or for-
mal education (Dehaene, 1997; Gallistel & Gelman, 1992),
the degree to which more advanced numerical skills, such as
counting and symbolic representation of number, are present
across species remains a debated topic (O’Shaughnessy, Gib-
son, & Piantadosi, 2021; Revkin, Piazza, Izard, Cohen, &
Dehaene, 2008; Anobile, Cicchini, & Burr, 2016; Gallistel &
Gelman, 1992).

To investigate number representation and processing, dif-
ferent neural networks have been used as cognitive mod-
els of various numerical skills such as magnitude compar-
ison (Verguts & Fias, 2004; Dehaene & Changeux, 1993;
Zorzi & Butterworth, 1999), subitizing (Peterson & Simon,
2000) and counting (Rodriguez, Wiles, & Elman, 1999; Fang,
Zhou, Chen, & McClelland, 2018). Neural networks are able
to encode exact magnitudes (Creatore, Sabathiel, & Solstad,
2021) and develop basic numerical abilities such as numeros-
ity comparison (Testolin, Dolfi, Rochus, & Zorzi, 2020).

While such networks have been used successfully to ex-
plain different phenomena in numerical cognition, their archi-

tecture is often designed for a task targeting specific cognitive
function. In contrast to such specialized networks, in recent
years we have witnessed a radical improvement in both the
performance, and the quality of representations learned by
deep neural networks that are trained end-to-end across vi-
sion (Simonyan & Zisserman, 2014; He, Zhang, Ren, & Sun,
2016), language (Vaswani et al., 2017; Devlin, Chang, Lee,
& Toutanova, 2018; Brown et al., 2020), and multimodal (Lu,
Batra, Parikh, & Lee, 2019; Radford et al., 2021; Alayrac et
al., 2022) domains.

Here, we investigate whether state-of-the-art models de-
signed for visual processing, also referred to as vision en-
coders, can exhibit basic numerical competence as observed
in humans and animals. Specifically, we evaluate number
discrimination in vision encoders, defined as the ability to
make broad relative numerical judgements such as many ver-
sus few, which is imprecise and not as advanced as count-
ing, but within the normal ability of many animals (Davis &
Memmott, 1982). We draw inspiration from studies in animal
and child cognition and use a simple discrimination paradigm
known as the bisection task to examine if recent vision en-
coders can learn to discriminate stimuli on the basis of num-
ber.

We consider three vision encoders with varying degrees
of explicit inductive biases: RESNET (He et al., 2016),
VIT (Dosovitskiy et al., 2020), and SWIN (Liu et al., 2021),
as well a simple, comparatively small, multi-layer perception
(MLP) not designed for vision tasks as a baseline. Across all
conditions, SWIN and RESNET with image-specific inductive
biases are the most successful models in number discrim-
ination; moreover, SWIN matches the empirical data from
humans and animals in more conditions than RESNET sug-
gesting that its additional hierarchical bias results in a better
abstract number representation. Even the strongest models,
however, often fail in conditions that test for the transfer of
numerical skill to a new condition; for example, when mod-
els are trained on a stimulus with solid shapes but tested on
a stimulus where shapes are not filled. Although models fail
in such transfer conditions, we find that they do learn struc-
tured number representations, forming clusters that are or-
dered based on the number identity. This suggests that, unlike
humans and animals whose numerical skills generalize across
different ecological contexts, vision encoders might require
additional modeling innovations or a greater quantity and va-
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riety of data to use their learned knowledge in new situations.

The Numerical Bisection Task
The numerical bisection task is used to assess perception of
numerical quantitites in both animals and humans. First, a
participant is trained to discriminate small and large sam-
ple numerosities by associating them with different responses
(labels such as few and many). For example, Emmerton,
Lohmann, and Niemann (1997) train pigeons to respond to
images with 1 or 2 shapes by pecking to the left (correspond-
ing to few), and to the right for images with 6 or 7 shapes
(corresponding to many). In Almeida, Arantes, and Machado
(2007), children learn to pick a green cup for 2 drumbeats, or
a blue cup for 8 drumbeats in one experiment, and raise a red
glove on their left hand after 2 drumbeats and a yellow glove
on their right hand after 8 drumbeats in another experiment.
The numerosities used for training (i.e., 1, 2, or 8) are often
referred to as anchor numerosities.

Then, to probe number discrimination, participants are
subsequently tested on intermediate numbers that are not seen
during training (e.g., 3 in the previous experiment). A par-
ticipant is more likely to select the response associated with
the larger anchor value (e.g., many), resulting in an s-shaped
psychometric curve. Such s-shaped psychometric curves
have been used to characterize basic numerical competence
in rats (Meck & Church, 1983), pigeons (Honig & Stewart,
1989; Emmerton et al., 1997), rhesus macaques (Jordan &
Brannon, 2006), as well as children and adults (Droit-Volet,
Clément, & Fayol, 2003; Almeida et al., 2007; Jordan &
Brannon, 2006). Qualitatively, psychometric curves docu-
mented in the literature have the following characteristics:
(1) the initial segment with smaller numerosities is mostly
labeled with few, (2) intermediate segment with a gradually
increasing slope reflecting an increase in many responses, (3)
final segment with the largest numerosities mostly labeled
with many. Although these properties characterize the ma-
jority of psychometric responses documented in the literature,
between- and within-subject variability has been observed de-
pending on the task and numerosity ranges (Almeida et al.,
2007).

Experimental Stimuli
We automatically generate images with black background
and white circles varying the number of circles from 1 to 7.
Similar to Emmerton et al. (1997), we use images with 1, 2,
6, or 7 circles as anchor numerosities for training. When de-
signing stimuli, previous work has identified and controlled
for potential perceptual confounds such as the size of the
constituent elements (i.e.,, circles in our case), total white
area, or total perimeter (Honig & Stewart, 1989; Testolin
et al., 2020; Emmerton et al., 1997); processing these non-
numerical features—which may be a confound in the ob-
served numerical discrimination behavior—can develop inde-
pendently of number processing, as has indeed been observed
in children’s developmental trajectory (Odic, 2018). To con-
trol for such potential confounds, we generate six different
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Size

Const.
Area

Const.
Area (C)

Const.
Circ.

Const.
Circ. (C)

Figure 1: Sample visual stimuli used in the numerical bisection
task. Rows are different numerosities and columns different stim-
uli types. "(C)" denotes "contours", as opposed to shapes with solid
white background.

stimulus categories shown in Figure 1:

1. Vary Size. This is our most general setting, where for each
image, we draw circles with radii drawn randomly from a
set of 3 values (r = {10,35,55}).

2. Constant Size. We control for the size of circles—all cir-
cles have the same radius (r = 20); this enables us to exam-
ine whether models can discriminate numbers better when
circles are identical compared to varied in size.

3. Constant Area. In the previous condition (Constant Size),
the white area (covered by circles) increases as the number
of circles increases. We control for this potential confound
by fixing the total white area to be constant across stimuli.
This results in smaller circles in images that depicts larger
numbers.

4. Constant Area (contour). We also examine if solid shape
background has an impact on models’ behavior; we con-
sider a condition the same as Constant Area, but using con-
tours instead of shapes with white background.

5. Constant Circumference. While the total area is controlled
for in the Constant Size condition, the total circumference
of circles increases with numerosity. Here, we control for
the total circumference by keeping it constant across stim-
uli.
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6. Constant Circumference (contour). It is the same as Con-
stant Circumference, but using contours instead of shapes
with white background.

We generate the stimuli on-the-fly for both the training and
testing and store them in-memory to be used during training
and testing, with 100 images generated for each numerosity
category of one stimulus type, resulting in overall 400 images
for training, and 1,100 images for testing for each stimulus
type. The images are of dimensionality expected by models,
i.e., 224×224×3.

Experimental Setup
In this section, we examine a few recent families of deep neu-
ral networks designed for computer vision (henceforth, vision
encoders); all these models have achieved impressive results
on computer vision tasks (such as image classification), but
differ with respect to inductive biases that their architecture
encode. We first describe these models briefly, and then dis-
cuss the details of our experimental setup.

Models. We consider three types of vision encoders:
ResNet (He et al., 2016), VIT (Dosovitskiy et al., 2020), and
Swin (Liu et al., 2021). The ResNet model includes a stack
of convolutional neural network (CNN) blocks that process
images using convolution kernels. These kernels introduce
an explicit locality bias—pixels (or features depending on
the layer) that are close spatially are combined; as a result, a
model with CNN blocks typically learns to encode low-level
features (such as edges) in its first layers, and more high-level
ones (such as parts) in its last layers.

Both VIT and SWIN use Transformer blocks (Vaswani
et al., 2017) consisting of feed-forward layers and a self-
attention mechanism; self-attention introduces a weaker and
less explicit locality bias (compared to CNNs) as a model
can learn to group neighboring image patches.1 SWIN builds
on VIT and introduces an explicit hierarchical bias by mod-
ifying how self-attention is applied across different layers;
more specifically, local image patches are merged at at var-
ious stages as the depth of the model increases, resulting in a
hierarchical representation.

We use specific variants of RESNET, VIT, and SWIN en-
coders: the ResNet-50 variant with 25.6M parameters (He et
al., 2016), VIT-B (Dosovitskiy et al., 2020) with 86M param-
eters, and “tiny” Swin, SWIN-T (Liu et al., 2021), with 29M
parameters. We picked the smallest VIT and SWIN variants,
and a RESNET model that has a similar number of parameters
to SWIN.

Finally, as a simple baseline, we consider a generic feed-
forward multi-layer perceptron (MLP) that does not include
any inductive biases such as convolutions or attention which
are known to be helpful for processing of real-world images.
We use an MLP consisting of 2 hidden layers with 256 units

1Self-attention is designed for sequential data such as language;
thus, it is less suitable for modelling the two-dimensional spatial
relations among image patches.

each, separated by ReLU non-linearities, and a final linear
layer with 2 units. With 0.13M parameters and no “bells and
whistles”, this makes it a substantially smaller, yet less com-
putationally inexpensive baseline model.

Training. For each stimulus type (e.g., Constant Area), we
train RESNET, VIT, SWIN and MLP models on data gener-
ated for that stimulus, i.e., images and their labels (few and
many). More specifically, we add a classification head to
these models, to predict the label few for images with 1 and
2 circles, and many for images with 6 and 7 circles, where
labels are encoded as one-hot vectors. All models are trained
with a cross-entropy loss and L2 regularization. To get an
estimate of variability in model responses for each stimulus
category, we train 10 networks by choosing a different seed
that randomly initializes network weights.

We perform a hyper-parameter search on the batch size,
number of steps, learning rate, and optimizer type to find
combinations where training loss has converged on the val-
idation set, and where a network is achieving close to 100%
accuracy on the training set. Accuracy is defined as a percent-
age of correctly classified labels.2

Testing. We test the models on new images of anchor nu-
merosities (i.e., not seen during training), as well as images
of novel interpolated numerosities: 3, 4 and 5. We use 100
images for each numerosity category and each stimulus type.

Experimental Results
In Experiment 1, we investigate models’ behavior when
trained and tested on the same stimulus type. In Experiment
2, we investigate transfer of the number discrimination skill
by testing models on images from a stimulus category that is
not used in training (i.e., train on Constant Size, and test on
Constant Area).

Experiment 1: Number Discrimination
In this experiment, we test number discrimination using im-
ages from the same stimulus category that is used during
training (e.g., train on Constant Size, and test on Constant
Size). We evaluate models based on the accuracy of the stimu-
lus test set, and the quantitative and qualitative characteristics
of psychometric curves in relation to the empirical data.

Performance on seen numbers. We first examine the per-
formance of the four architectures when tested on novel im-
ages of the anchor numerosities (seen during training): 1, 2,
6, 7. An error occurs when an image with a small numerosity

2We find that the batch size of 16, and 5,000 steps worked
well for all models, although losses in some models (e.g., SWIN
and RESNET) converged much faster. We use the Adam opti-
mizer (Kingma & Ba, 2014) for MLP, VIT, and SWIN models, with
learning rates of 1e-04, 5e-04, and 5e-05, respectively. We use the
SGD optimizer with a learning rate of 1e-2 for RESNET. The mod-
els are trained using a NVidia Tesla V100 GPU.
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Few (1, 2) Many (6, 7) Total Error (Few+Many)
RESNET VIT SWIN MLP RESNET VIT SWIN MLP RESNET VIT SWIN MLP

Vary Size 3.0 11.8 0.2 17.4 3.6 11.9 0.6 7.8 3.3 11.8 0.4 12.6
Const. Size 0.0 35.5 0.0 32.1 0.0 0.3 0.1 5.0 0.0 17.9 0.0 18.6
Const. Area 1.1 33.0 0.0 7.5 0.8 7.2 0.1 2.8 0.9 20.1 0.1 5.1
Const. Area (C) 0.4 8.0 0.0 63.2 1.5 12.8 0.3 10.1 0.9 10.4 0.1 36.6
Const. Circ. 0.6 0.4 0.0 3.5 0.0 3.5 0.0 51.8 0.3 1.9 0.0 27.6
Const. Circ. (C) 8.7 40.8 0.7 31.1 9.9 35.0 12.8 44.6 9.3 37.9 6.8 37.9

Table 1: Error rates (%) in classifying anchor numerosities as either “few” or “many” on respective test sets. Highest error rates for each
stimulus type and each anchor numerosity are highlighted. Highest total error rates across stimuli for each model are underlined.

(i.e., 1 or 2 circles) is classified as many, or when an im-
age with a large numerosity (i.e., 6 or 7) is classified as few.
Average error rates for each network and each stimulus type
are shown in Table 1. Overall, we observe that RESNET and
SWIN, with image-specific inductive biases, have smallest
mean error rates of less than 1% in 6/12 and 11/12 conditions,
respectively. VIT has mean error rates that are in some cases
comparable to or even exceed errors of the MLP baseline.
When averaged across all 4 numerosities, we find that high-
est error rates are consistently observed with the Constant
Circumference (contour) stimulus category (See Table 1, col-
umn “Total error”); suggesting that this combination of visual
features represented the most challenging dataset for number
abstraction. Meanwhile, no such consistent pattern exists for
datasets resulting in smallest errors—the smallest error for
RESNET is observed with Constant Size, for VIT and SWIN
with Constant Circumference, and for the MLP with Con-
stant Area. This observation is not surprising given that these
models encode different inductive biases.

Performance on new numbers. Next, we examine how
different models perform on numbers not seen at the train-
ing time (i.e., 3, 4, and 5). We plot the psychometric curves
for selected stimuli, showing percentages of many responses
across numerosities for models trained on that stimuli in Fig-
ure 2. We selected these stimulus categories as representative
of the easiest (Constant Size, Constant Circumference) and
hardest (Constant Circumference (contour)) conditions based
on the average error rates in Table 1. Different from Table 1,
each value on the y-axis represents a proportion of many re-
sponses for a certain numerosity (x-axis).

Overall, some curves in Fig. 2 exhibit characteristics of
typical psychometric functions as discussed in Sec. Experi-
mental Setup—specifically, for small numerosities 1, 2, and
sometimes 3, we observe a slowly accelerating initial seg-
ments, followed by gradual increase with intermediate num-
bers, and a slowly decelerating final segment for larger nu-
merosities (6, 7). Examples of such curve profiles are SWIN
and RESNET responses to Constant Size, and Constant Cir-
cumference stimulus categories. However, there are also
curves that have atypical flat shapes indicative of failure to
learn this task, i.e., those not found in the literature. Out of
all 24 curves we analyzed, 4 in total exhibit such a shape with
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Figure 2: Psychometric functions for each model trained and tested
on one stimulus type on the numerical bisection task. Vertical bars
are 95% bootstrapped CIs.

3 shown in Fig. 2 (i.e., MLP with Constant Circumference
and MLP with Constant Circumference (contour), VIT with
Constant Circumference (contour)). Such curves either do
not start at, or do not end at expected values indicating lack
of sensitivity to number categories, some of which is also ev-
ident based on large error values in Table 1.

Experiment 2: Transfer to Novel Stimuli
The previous experiment demonstrates that SWIN and
RESNET architectures to a great degree appear to be able to
differentiate number of items in an image when trained and
tested on the same stimulus type (e.g., constant total area or
circumference). To understand whether our models have in-
deed developed a notion of a number category as opposed to
learning a given stimuli, we draw a parallel with research in
animal cognition and examine if the models “base their be-
haviour on the numerosity of a set, independent of its other
attributes” (Gallistel & Gelman, 1992). In other words, if
models learn an abstract representation of a number category,
we would expect this representation to be agnostic to percep-
tual features of the stimulus. To test this, we examine mod-
els in a cross-stimulus transfer setting: we train a model on
one set of stimuli, but test it on other types of stimuli (i.e.,
train on Constant Size, test on Constant Circumference). The
test stimuli are out of distibution (OOD) with respect to the
model’s training distribution. Compared to the in distribu-
tion setting where training and test are drawn from the same
distribution, the OOD setting is known to be challenging for
neural networks (Geirhos et al., 2020).3

3The degree to which a stimulus category is OOD depends on the
target distribution, as some stimulus categories are correlated across
different dimensions; e.g.,, total cumulative white area increases on
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Figure 3: Psychometric curves in transfer experiments. Bars are
standard errors of the mean. Models are represented across rows,
and selected training datasets in columns. Shades of blue indicate
the test stimulus, orange curves denote train and test on the same
stimulus type.

Figures 3A) and 3B) show a selected subset of psychomet-
ric curves evaluated using such a cross-stimulus protocol, for
models trained on Vary Size and Constant Circumference. Or-
ange curves denote cases where a model is trained and tested
on the same stimulus category (i.e., the protocol from Exp.
1), and are included for reference, while blue curves are ob-
tained when models are tested on datasets different from the
ones they are trained on. We report results on Vary Size and
Constant Circumference since they exhibit the most success-
ful (Vary Size) and least successful (Constant Circumference)
transfer cases, as defined by the expected qualititative char-
acteristics of psychometric curves in Sec. The Numerical Bi-
section Task. Even for the best matching condition Vary Size
(Fig. 3A), we observe a number of transfer failures, where
a trained model shows poor transfer of number discrimina-
tion ability to a novel stimulus category, revealing a failure to
abstract the number category.

An interesting case of transfer failures is evident in all-or-
none responses, where models unanimously assign either few
or many response to all numerosities. This has been observed
across all models, and is particularly prominent with models
trained on Constant Circumference (Fig. 3 B). In some cases,

average with numerosity for both Constant Size and Vary Size.

most notably with MLP and to a smaller extent with VIT, we
also observe flatter curves with smaller slopes, resulting from
frequent misclassification of many responses as few and vice
versa. Finally, we also observe a new response pattern, an
inverted psychometric curve, where small numerosities are
overwhelmingly assigned label many, and the opposite for
large numerosities. Fig. 3B) showcases that this pattern is
consistent across models trained on Constant Circumference.
We conjecture that this is due to models latching onto total
white area during training, which is inversely correlated with
numerosity in Constant Circumference.

Next, we consider an easier case of transfer, and exam-
ine if exposing models to more a diverse set of stimuli (as
opposed to one type of stimulus) can help in learning a bet-
ter representation of number categories; we train models on
all but one stimulus type, and evaluate them on the hold-out
stimulus type. Instead of 100 images per number category,
a model is seeing 500 images per number category (i.e., 100
images for a number for each of the 5 training stimulus types).
As shown in Fig. 3C), we see that increasing data variability
results in more curves that resemble the expected s-shaped
curve, especially for RESNET and SWIN. However, even
then, models failed to generalize to Constant Circumference
(contour), confirming again the difficulty of this stimulus cat-
egory. Overall, we find that SWIN and RESNET produce rep-
resentations that better match observed empirical data even
in the more challenging transfer setting. We also observe that
the training models on a variety of stimulus types help in gen-
eralising to new stimulus.

Finally, we examine if learned number representations
form meaningful clusters; to answer this question, we do a
forward pass on images from a given stimulus category for
two models with lowest error rates (i.e., RESNET and SWIN).
For each image, we extract embeddings from the last dense
layer of the model, prior to the 2-unit classification head. We
use PCA followed by the t-SNE (Van der Maaten & Hin-
ton, 2008) dimensionality reduction method to project high-
dimensional embedding vectors (2,048 for RESNET and 768
for SWIN) into 2D space. In Fig. 4A) we show one selected
example of such a projection, where individual points have
been color-coded based on the numerosity of the stimulus
image. First, we observe that embeddings cluster in groups
based on number, with a greater cluster overlap for subse-
quent numbers. Second, we observe an ordering of clusters
based on numerosities. This type of pattern is observed more
often with embeddings from SWIN, compared to RESNET
embeddings which generally result in less discernible clus-
ters (with the exception of clusters for numerosities 1 and 2).
Interestingly, based on visual inspection of the data, we do
not find that more distinct projections suggest better perfor-
mance on the task. For example, while clusters in Fig. 4A)
seem to be discernible based on number, the model performs
poorly when tested on Constant Size, possibly because the
classifier does not discriminate based on the dimensions that
are discriminable in the embeddings.
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Discriminability of Small vs. Large Numbers
Empirical data from humans and animals shows that in the
numerical bisection task, it is consistently more difficult to
distinguish larger numerosities from each other, compared to
smaller ones (Almeida et al., 2007; Emmerton et al., 1997).
This observation is likely to be related to a more general find-
ing in numerical cognition that small numbers are processed
differently than larger numbers (Dehaene, 1997; Revkin et
al., 2008).

We examine whether similar observations can be made for
our models’ responses, using a measure of discriminability
for different pairs of numbers. As an example, for a given
model and a pair of numbers (such as 5 and 6), we statisti-
cally test if the mean percentage of many responses for im-
ages of one number (5) is the same as that of images of the
other number (6). Intuitively, the two numbers are harder
to discriminate if their mean percentage of many responses
are the same. We consider models with smallest test error
rates in Experiment 1 (i.e., RESNET and SWIN). For a given
model and each stimulus type, we consider all possible num-
ber pairs (i.e., all points on average psychometric curves) and
perform the Tukey’s HSD test for multiple pair-wise compar-
ison of means (with family-wise error rate FWER=.05). This
approach is based on the similar statistical tests used with pi-
geon responses in Emmerton et al. (1997).

In Fig. 4B), we show the breakdown of 18 cases (out of
total 228 comparisons) where we failed to reject the null hy-
pothesis across number pairs; intuitively, the models find it
difficult to discriminate between these number pairs.4 The
figure shows that pairs at the higher end of the numerical
range, such as (5, 7) and (5, 6) are frequently indistinguish-
able which is in contrast to the pairs on the lower end of the
numerical scale. We conclude that similar to the empirical
data, SWIN and RESNET better distinguish numerosities at
the lower end of the number range compared to those of the
higher end of number ranges. Moreover, this effect is stronger
among SWIN responses compared to RESNET, suggesting

4From this plot we excluded 24 comparisons for number pairs
(1, 2) and (6, 7) since means within these pairs are the same by the
design of networks’ training objective.

that number representations learned by SWIN are more dis-
cernible.

Discussion
Number discrimination is a core aspect of basic numerical
competence in humans and animals. We investigate if recent,
state-of-the-art neural networks used in computer vision ex-
hibit the capacity of discriminating between small and large
quantities. We evaluate these models on the numerical bi-
section task where models learn to categorize numerosity of
sets of items, and we investigate their performance on novel
stimuli and novel numerosities.

We find that RESNET and SWIN, the two models with
vision-specific inductive biases, achieve the smallest errors
when categorizing novel stimuli as few or many. Psycho-
metric curves of models trained on a wide range of stimuli,
as well as those of models trained and tested on the same
type of stimuli, often resemble the response curves of animals
and humans on the same task. In addition, SWIN responses
are more discernible for smaller numbers compared to larger
numbers, and its internal representations are structured in a
way that reflects number category and order. SWIN’s pre-
decessor, VIT, which is also a transformer-based model, al-
beit with a weak image-specific inductive bias, has errors on
the task that are comparable to or even higher than the ba-
sic, substantially smaller MLP baseline. This is surprising
considering that performance of VIT is within a few percent-
age points of SWIN performance on different computer vision
benchmarks (Liu et al., 2021).

Finally, when controlled for perceptual attributes (e.g.,
keeping the total white area constant during training, but
varying area during testing), most of these models show
poor transfer of the number discrimination skill. This might
mean that models latch onto features that, while correlated
with number, are considered non-numerical in the litera-
ture (Honig & Stewart, 1989; Testolin et al., 2020). When
analyzing the internal representations of number in SWIN,
we find that often, despite poor transfer, number represen-
tations are structured in an interpretable way. In other words,
although these representations could in theory support num-
ber discrimination, we do not observe this in practice. One
possible reason for poor transfer might be that the models are
trained in a limited data regime, in contrast to humans and an-
imals whose numerical cognition develops gradually in a rich
environmental context, and who might be biologically predis-
posed to represent and process numerical quantities (Dehaene
et al., 1998). Future work should explore whether pretraining
models on larger and more diverse sets of images would re-
sult in a more transferable skill. Finally, we only investigate
one specific task—the numerical bisection, and it remains to
be explored whether our findings generalize across other per-
ceptual domains.
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