
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Common and distinct neural bases for rule- and similarity-based category learning

Permalink
https://escholarship.org/uc/item/3mr8g9bz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
LI, Christy
Sun, Yinghao
Deng, Sophia W

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3mr8g9bz
https://escholarship.org
http://www.cdlib.org/


 

 

Common and distinct neural bases for rule- and similarity-based category learning 

Jianhua Li (yb97301@um.edu.mo) 
Department of Psychology, Faculty of Social Sciences, University of Macau 

Center for Cognitive and Brain Sciences, University of Macau 

Taipa, Macau S.A.R. 999078 China 

Yinghao Sun (bc00511@um.edu.mo) 
Faculty of Business Administration, University of Macau 

Taipa, Macau S.A.R. 999078 China 

Sophia W. Deng* (wdeng@um.edu.mo) 
Department of Psychology, Faculty of Social Sciences, University of Macau 

Center for Cognitive and Brain Sciences, University of Macau 

Taipa, Macau S.A.R. 999078 China 

 

 

Abstract 

Category learning is a core competence for minimizing 
cognitive load and optimizing decision-making. An identical 
problem can be solved by employing a rule-based or a 
similarity-based strategy. This work examined whether the use 
of the two strategies was supported by common or distinct 
neural substrates. We conducted a category learning 
experiment with rule-plus-similarity stimuli using EEG-fNIRS 
fusion methodology. Participants learned two artificial 
categories using either a rule-based or similarity-based 
strategy. The results showed a common visual-perceptual-
analysis process and distinct decision-making processes 
between the uses of the two strategies. Larger P300 and N400 
amplitudes and Wernicke's area activation indicated that 
hypotheses testing and verbal rule abstraction processes were 
critical for rule-based categorization. In contrast, increased 
frontopolar cortex activity indicated that integration of multiple 
dimensions was critical for similarity-based categorization. 
These results were consistent with COVIS theory, implying an 
explicit system in rule-based category learning whereas an 
implicit system in similarity-based learning.  

Keywords: EEG-fNIRS fusion; rule-based category learning; 
similarity-based category learning; COVIS 

Introduction 

Categorization is a core component in human cognition that 

organizes things into equivalent classes. It reduces cognitive 

load and promotes decision making. For example, when 

giving a diagnosis report, a physician may classify a patient 

into a known disease category based on a diagnostic rule or 

based on multiple specific symptoms similar to those 

previously seen in other patients. While applying a rule is a 

verbal process that involves semantic analysis and relies on 

working memory, assessing the similarity of symptoms to 

previous patients is a nonverbal process that requires access 

to the connections between multiple exemplars. It seems a 

categorization problem can be solved with two critical types 

of strategies: the rule-based strategy and the similarity-based 

strategy. Using different strategies implies that there may be 

variety in neural substrates for different category boundaries 

in human categorization (Ashby et al., 1998), but the same 

kind of decision output could also indicate that different 

strategies may be supported by a common neural system.  

Correspondingly, while some evidence points to the 

possibility of multiple learning systems (Ashby et al., 1998; 

Ashby & Maddox, 2011), others claim that it can be explain 

by a single system (Edmunds et al., 2015). As a result, there 

is currently no clear consensus on this issue: whether dual-

learning systems support the rule-based and similarity-based 

learning strategies with separate neural substrates or if there 

is any overlap. Since semantic processing, working memory, 

and cognitive control processes can be characterized by 

cortex activation and brain potentials (Morrison et al., 2015), 

in the current work, we investigated the common and distinct 

neural substrates between rule-based and similarity-based 

category learning strategies by assessing electrophysiological 

and hemodynamic responses.  

Single versus Multiple System 

Several models of human category learning have been 

developed, suggesting that single or multiple learning 

systems are possible. Specifically, rule-based models (e.g., 

RULEX—rule-plus-exception model, Nosofsky et al., 1994) 

posit that people classify items by developing logical rules 

and occasional exceptions to those rules, while exemplar-

based models (e.g., GCM—generalized context model, 

Nosofsky, 1986) suggest that categorization decisions are 

dependent on the similarity of stimuli to the stored exemplars. 

There is also evidence consistent with multi-process models. 

For example, the Competition between Verbal and Implicit 

Systems (COVIS; Ashby et al., 1998; Ashby & Maddox, 

2004, 2011) indicates that the explicit system dominates the 

learning of verbalizable, rule-based category structures and 

the implicit system dominates the learning of non-

verbalizable, information-integration category structures. 

There is no consensus on this issue. A complementary 

approach is to use the brain dynamic method to investigate 

whether there are neurally dissociable processes, since 

single-system accounts fail to explain the evidence that 

separable neural systems are engaged during different types 

of category learning (Carpenter et al., 2016). 
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COVIS claims that human category learning requires at 

least two systems (Ashby et al., 1998; Ashby & Maddox, 

2004, 2011). The explicit/verbal system posits that rule-based 

strategy depended on a hypothesis-testing approach, in which 

executive attention, working memory, and semantic 

processing were crucial for choosing, testing, and switching 

different hypotheses. The implicit/procedural-learning 

system is mediated by an implicit system that is difficult to 

describe verbally and requires integration across multiple 

input dimensions (Ashby & Maddox, 2004, 2011). Such non-

declarative system was employed implicitly in similarity-

based category learning, especially for category structure 

defined by the overall similarity to category examples or 

prototypes (Koenig et al., 2005; Milton et al., 2017).  

Neural Distinction between Rule-Based and 

Similarity-Based Category Learning 

To the best of our knowledge, no research has directly 

compared the neural responses to rule-based and similarity-

based category learning using the same stimuli sets with 

identical category structure. Looking into the research using 

different stimuli, there is still debate over whether dual-

learning systems supported the rule-based and similarity-

based learning strategies with different neural substrates 

(Ashby & Maddox, 2004, 2011; Carpenter et al., 2016). Some 

research suggested that the rule-based and similarity-based 

category learning may share brain substrates (Carpenter et al., 

2016; Milton et al., 2017). However, some studies revealed 

different neural correlates (Koenig et al., 2005). These 

disagreements could be attributed to the different sets of 

stimuli to encode, hence in the present study, we applied the 

rule-plus-similarity structure (Deng & Sloutsky, 2015, 2016) 

to directly compare the neural responses to rule-based and 

similarity-based category learning. 

Event-related potentials (ERPs) are directly associated to 

neuronal-electrical-activity and provide excellent temporal 

resolution for identifying cognitive processes including 

attention, working memory, and semantic processing (Kayser 

& Tenke, 2015). As such, based on the cognitive processes 

revealed by the theoretical frameworks of category learning 

(e.g., COVIS), a few ERP components could be revealed: (1) 

An P1 component, a positive deflection peaked in posterior 

electrodes around 100ms post-stimulus, is associated with 

early visual processing or encoding (Liang et al., 2007) as 

well as attention modulation (Fu et al., 2005; Luo et al., 

2001), with higher P1 amplitude indicating increased 

attentional effort. (2) A P300 component, a positive 

deflection peaked around 300ms, indexing the working 

memory, especially the rule information updating in memory 

(Morrison et al., 2015). (3) An N400 component, a negative 

deflection in the 200-600ms time window, related to semantic 

processing (Kutas & Federmeier, 2011), or acquisition of 

abstract rules (Sun et al., 2012).  

Brain region activity involved in category learning could 

be measured by functional near-infrared spectroscopy 

(fNIRS) simultaneously to investigate the frontal and 

temporal activity, which are shown related to working 

memory and semantic processing, respectively. fNIRS 

measures blood's intrinsic optical absorption utilizing near-

infrared light from a source to scalp detector probes (Lloyd-

Fox et al., 2010). Based on the amount of light absorbed, 

concentration changes of oxygenated and deoxygenated 

hemoglobin can be deduced and are thought to be comparable 

to fMRI (Cui et al., 2011). By concurrently recording the 

EEG and fNIRS, both the temporal signatures and spatial 

activations in the brain would be depicted and the relatively 

limited spatial resolution of EEG can be compensated. 

Present Experiment 

To investigate whether rule- and similarity-based category 

learning was supported by common and distinct cognitive 

processes, an experimental study with EEG and fNIRS 

devices recorded concurrently was conducted using the same 

stimuli set. Specifically, we investigated (1) if rule-based and 

similarity-based category learning had the same or different 

P1, P300, and N400 components; (2) whether the left frontal 

and temporal lobes were active differently. Based on the 

dual-system processing theory, we hypothesized that 

distinctive cognitive processes could be observed in working 

memory, and semantic processing related neural components 

or brain activation. Compared to similarity-based category 

learning, rule-based category learning required working 

memory and verbal system to evaluate hypotheses, eliciting 

a larger P300 and N400 and activating functionally supported 

brain regions. 

Method 

Participants 

We recruited 73 healthy, right-handed, normal, or corrected-

to-normal vision volunteers (40 females; Mean: 20.81 years, 

SD: 2.37 years). All of them were naive about the hypotheses 

of the study and were tested in a sound-attenuated and 

electrostatically shielded room in the psychology laboratory. 

Behavioral data of all 73 participants were analyzed (39 

rule-based and 34 similarity-based). Eight neural data were 

excluded from the analyses because of excessive ocular 

artifacts, or bad data quality, leaving 65 participants in the 

final analyses (34 rule-based, 31 similarity-based). 

Materials 

Materials were similar to those used previously by Deng and 

Sloutsky (2015) and consisted of colorful drawings of 

artificial creatures. These creatures were accompanied by the 

novel labels, lulu and momo. These categories had two 

prototypes (Lulu0 and Momo0, respectively) that were 

distinct in the color and shape of seven of their features: body, 

hands, feet, head, tail, antennae, and a neck button (see Figure 

1). With the variations in these seven features, two sets of 

stimuli were formed. 

The High-match items and Switch items were stimuli that 

included five of seven features from one prototype and two 

features from the other (i.e., five features of Lulu0 plus two 
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features of Momo0, or five features of Momo0 plus two 

features of Lulu0, forming the seven features of each item). 

For the rule-based category learning group, the classification 

of stimuli depended on the deterministic feature (neck 

button)—the stimulus with a rain-drop button was lulu and 

the stimulus with a cross button was momo. For the 

similarity-based group, they made decisions based on the 

overall similarity among the exemplars, five out of seven 

features from the Lulu0 would be lulu and five features from 

the Momo0 would be momo. Since each stimulus had seven 

features, switching the two features results in 42 variants, 

including 30 High-match items and 12 Switch items, half of 

which were lulu, and the other half were momo.  

The New-feature items and Filler items were stimuli whose 

five of seven features were from one prototype and the other 

two features were new, which were not from Lulu0 or 

Momo0 (i.e., five features of Lulu0 plus two new features, or 

five features of Momo0 plus two new features, forming the 

seven features of each item). For the similarity-based 

category learning group, the classification of stimuli 

depended on the similarity with Lulu0 or Momo0. Lulus were 

items with five Lulu0 features and two new features, whereas 

momos were items with five Momo0 features and two new 

features. For the rule-based group, the classification of 

stimuli would be determined if their deterministic feature 

were from Lulu0 (rain-drop button) or Momo0 (cross button), 

whereas there would be no correct response for those stimuli 

whose deterministic feature is a new feature (Filler items). 

These filler items were designed (1) to avoid participants 

inferring the classification of stimuli during testing (if all 

other features were changing but the deterministic feature 

stayed static, participants may give the feature a salient status 

during testing); (2) to ensure that both learning groups were 

presented the identical stimuli (this manipulation is critical 

for the rule-based group to avoid learning by inference in 

testing); and (3) to verify the effectiveness of strategy 

manipulation (the filler trials can assistant us to identify 

whether the deterministic feature differs from the other 

features in the rule-based group, but it has no significant 

status for the similarity-based group). Each stimulus had 

seven features, five features of Lulu0 or Momo0 and two new 

features resulted in 42 variants, including 30 New-feature 

items and 12 Filler items, of which half were lulu and the 

other half were momo.  

 

 
 

Figure 1: Examples of stimuli.  

Procedure 

The experiment consisted of instructions, training, and 

testing. The training was a between-subject factor, with 

participants being presented with either rule- or similarity-

based categorization training. Instructions and testing were 

identical for both training groups. The experiment was 

presented on the computer and controlled by E-prime 2.0.  

 

Instructions and Training For both rule-based and 

similarity-based category learning groups, all features of 

Lulu0 and Momo0 were given to participants explicitly one 

by one before training. In the rule-based categorization group, 

they were told that all lulu (or momo) had a raindrop-shaped 

(or a cross-shaped) button and most of the lulu (or momo) had 

the other features (body, hands, feet, head, tail, and antennae, 

one at a time). This information was repeated in the corrective 

feedback on each trial during training using the following 

script: This one is lulu (or momo), and it has the lulu’s (or the 

momo’s) button. In the similarity-based categorization group, 

all the features (body, hands, feet, head, tail, antennae, neck 

button) were presented one at a time, and participants were 

told that most of the lulu (or momo) had this feature. The 

corrective feedback was provided by: This one is lulu (or 

momo), and it looks like lulu (or momo). Testing was not 

mentioned during the training phase. Participants were 

randomly assigned to one of the two training conditions. 

Participants in both groups were asked to classify the stimuli 

into the lulu and momo categories (one stimulus was provided 

in each trial). They were given 30 training trials (randomly 

chosen from the High-match items) and each trial was 

accompanied by corrective feedback. 

 

Testing The testing phase was administered immediately 

after training, and it was identical for both groups. During the 

testing phase, 30 High-match items, 12 Switch items, 30 

New-feature items, and 12 Filler items were presented three 

times randomly in three blocks. No feedback was provided. 

Behavioral Data Analysis 

The 30 training trials were divided into three learning blocks, 

and only the data whose accuracy in the final block above the 

chance threshold of 0.5 were retained to ensure that the 

subject had understood the task. To verify the effectiveness 

of strategy manipulation, linear mixed effect models were 

performed on the RT and ACC of testing trials, with the 

subject as a random factor, learning strategy (rule-based, 

similarity-based), stimuli conditions (High-match, Switch, 

New-feature, Filler), and their interaction were entered into 

as fixed factors, using the lmer, glmer, and ANOVA functions 

in the lme4 and lmerTest package in R (Brown, 2021). It 

should be mentioned that even though rule-based learners 

were instructed to categorize based on the deterministic 

features, they might not completely disregard other 

probabilistic features (Deng & Sloutsky, 2016), and thus they 

would perceive that if the similarity of stimuli was 

significantly altered. As a result, since the deterministic 

feature (neck button) should differ from other features for the 
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rule-based learners but had no special status for similarity 

strategy learners, we predicted that rule-based learners should 

perform differently on High-match and Switch items and on 

New-feature and Filler items, whereas the similarity-based 

learners should not. 

EEG Recording and Analysis 

EEG and fNIRS data were collected simultaneously using an 

EasyCap. For EEG acquisition, 32 electrodes were arranged 

based on the international 10/20 system (Figure 2, green) and 

digitized at 1000 Hz. During the online acquisition, the left 

mastoid electrode was used as a reference, and the impedance 

of all electrodes was kept below 20 kΩ. 

For offline analysis in EEGLAB v2021.0 (Delorme & 

Makeig, 2004) in MATLAB. Continuous EEG data were first 

down-sampled to 250 Hz, re-referenced to the grand average 

of all channels, and filtered with a band pass of 0.1-30 Hz. 

Bad channels were interpolated by averaging the spherical 

electrodes, which took up less than 2% of all the channels. 

Then epochs lasting from 200 ms before the target onset to 

1000 ms afterwards were extracted. Eye movement-induced 

muscle activity was removed from the segmented data by the 

Independent Component Analysis (ICA) algorithm and 

ADJUST automatic classification algorithm (Mognon et al., 

2011), and manual screening on topographical distribution 

were employed. The EEG signal exceeded ±75μV in 

amplitude during the epochs was then deleted.  

In light of the COVIS theoretical framework, previous 

studies (Chen et al., 2015) and the wave of the current results, 

the mean P1, P300, and N400 amplitudes of selected 

electrodes were measured during an 80-120 ms, 200-440 ms, 

and 200-500 ms time window after the stimuli onset, 

respectively. To improve the statistical power and reduce 

false effects (Luck & Gaspelin, 2017), the average values of 

FP1, AFF5h, FC1, FP2, F4, FCz, and FC2 electrodes were 

collapsed as an anterior activity indication, and the averages 

of P3, Pz, P4, O1, Oz, and O2 electrodes were collapsed as a 

posterior activity indication. 

It should be noted that Switch items and Filler items were 

presented to ensure that participants of both groups precepted 

the same stimuli. There weren’t enough Switch or Filler trials 

to study their brain signals and comparing responses to them 

did not provide further information on our primary issue. As 

a result, P1, P300, and N400 amplitudes were then exported 

in linear mixed effects models, with random intercepts for the 

subject, learning strategy, condition (High-match, New-

feature), and their interaction as fixed factors. 

fNIRS Data Acquisition and Data Analysis 

Eight sources and 8 detectors were placed in the left frontal 

and temporal cortex, thus forming 22 fNIRS channels (Figure 

2; 8 sources, orange; 8 detectors, blue; 22 channels, purple 

line). Each source transmitted LED lights at the wavelength 

of 760 nm and 850 nm. The distance between the source and 

detector was maintained at 3 cm. Optical signals were 

sampled at 7.81 Hz. The MNI coordinates of optodes and 

channels were obtained from their spatial information at the 

international 10/20 system, which was then imported to 

NIRS_SPM to generate anatomical labels and percentage of 

overlap (Ye et al., 2009). Channels 2, 5, 7, 8, 9, 10, 12, and 

13 reflected the contributions of the dorsolateral prefrontal 

cortex (dlPFC); channels 1, 2, 3, 4, 6, and 7 were located over 

the frontopolar cortex (FPC); channels 12 was located over 

the Broca’s area; channel 16 and 17 were located over the 

middle temporal gyrus (MTG); channel 14, 18, and 19 were 

located over the pre-motor and supplementary motor cortex 

(MC); channels 15 and 16 were located over the superior 

temporal gyrus (STG); and channels 21 and 22 were located 

over the supramarginal gyrus part of Wernicke’s area. In sum, 

seven regions of interest: dlPFC, FPC, Broca’s area, MTG, 

MC, STG, and Wernicke’s area, were selected for analysis. 

The pre-processing of fNIRS data was performed with 

nirsLAB (Xu et al., 2014). Motion artifacts were removed 

from the raw data by the built-in algorithm, which was 

subsequently filtered with a band pass of 0.01-0.2 Hz. 

Modified Beer-Lambert Law was then used to calculate 

hemodynamic states. Changes in oxygenated hemoglobin 

(HbO), deoxygenated hemoglobin (HbR), and total 

hemoglobin (HbT) were modeled with the canonical HRF 

function in the Level 1 module of statistical parametric 

mapping. As a result, general linear model (GLM) 

coefficients (beta values) were calculated for High-match and 

New-feature conditions for each participant.  

Although both HbO and HbR beta values were obtained 

from the GLM estimations, only HbO signals were 

compared, since it is a more sensitive indicator of changes in 

regional cerebral blood flow (Fu et al., 2014). To illustrate 

the activation for using the rule-based strategy and the 

similarity-based strategy, an independent-sample t-test on 

HbO beta values was used to compare across two groups by 

the activation averaged across channels for each region of 

interest (seven regions of interest, dlPFC, FPC, Broca’s area, 

MTG, MC, STG, and Wernicke’s area). Since the purpose of 

Switch and New-feature trials was to verify the effectiveness 

of learning strategy manipulation, we compared the brain 

activation between two groups of High-match condition and 

New-feature conditions. 

 

 

 
 

Figure 2: A. The layout of fused EEG-fNIRS setup. B. The 

layout of fNIRS channel positions. 
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Results 

Behavioral Results 

For the training data, for RT, the significant interaction 

between the learning strategy and block (p < .001) revealed 

no difference between the three blocks for the similarity-

based group (p > .382), whereas RT of the rule-based group 

of block1 was significantly longer than the other blocks (ps < 

.001) and no difference was found between block2 and 

block3 (p = .435). For ACC, no difference was found between 

the three blocks in the rule-based group (ps > .050) and the 

similarity-based group (ps > .409). ACC of the last training 

block of all the participants was above 0.5 (rule = 0.913 ± 

0.161; similarity = 0.725 ± 0.209). 

To verify the effectiveness of strategy manipulation, linear 

mixed-effect models were used on testing RT and ACC, 

showed significant interactions (ps < .001). We primarily 

reported the difference between the two groups on High-

match and Switch items, and on New-feature and Filler items. 

Consistent with our prediction, participants in the rule-based 

group (1) showed a lower accuracy (p < .001) to Switch trials 

(0.840 ± 0.271) than to High-match trials (0.926 ± 0.114), 

whereas no difference was found in the similarity-based 

group (p = .277, Switch: 0.770 ± 0.269; High-match: 0.792 ± 

0.18); (2) responded slower and with a lower accuracy (ps < 

.001) to Filler trials (RT: 1601 ± 660 ms; ACC: 0.865 ± 

0.222) than to the New-feature trials (RT: 960 ± 444 ms; 

ACC: 0.968 ± 0.074), whereas no difference was found in the 

similarity-based group (ps ≥ .340, Filler RT: 2195 ± 1527 ms, 

ACC: 0.865 ± 0.217; New-feature RT: 2113 ± 1278 ms, 

ACC: 0.874 ± 0.180).  

In sum, our manipulation for learning strategies was 

successful as our results revealed that the deterministic 

feature was learned differently from other features in the rule-

based learning group, while for the similarity-based group, 

these features are not specific.  

ERP Results 

Figure 3 depicts the grand-averaged ERP waveforms of 

selected brain areas and scalp topographies of P1, P300, and 

N400 in the High-match and New-feature conditions.  

For P1, Figures 3B and 3D showed that the P1 component 

was observed in the posterior brain region, without main 

effects or interaction effect (ps > .229). For P300, Figures 3B 

and 3D showed a large positive wave with maximum 

amplitude at 200 to 440 ms after stimulus onset in the 

posterior brain region. The main effect of the learning 

strategy (p = .030) showed that the amplitude of the rule-

based (1.80 ± 2.26 μV) group was higher than the similarity-

based (0.62 ± 2.33 μV) group. The N400 effects were 

observed in the anterior brain region, in Figures 3A and 3C. 

A marginal main effect of learning strategy (p = .085) showed 

that the N400 amplitude of the rule-based (-2.16 ± 2.15 μV) 

was marginally larger than the similarity-based (-1.27 ± 2.24 

μV) group. No interaction was observed.  

 

 

 

Figure 3. The grand-averaged waveform of the rule-based 

group (orange), similarity-based group (blue), and difference 

between them (black, rule minus similarity). EEG component 

windows were indicated by shaded grey vertical bars and 

their topographies were plotted.  

 

Our analysis showed that (1) the ERP response to High-

match and New-feature stimuli showed a similar pattern, for 

which the P1 (80-120 ms), P300 (200-440 ms), and N400 

(200-500 ms) components were observed; (2) an identical 

component, P1, was revealed in two learning groups; (3) 

distinct components, P300 and N400, were observed, with 

the average P300 and N400 components of the rule-based 

group were higher than the similarity-based learning group.  

fNIRS Results 

As shown in Table 1, in both conditions, the similarity-based 

group was likely to activate the FPC more whereas the rule-

based group was likely to activate the Wernicke’s area more.  

Similar to the ERP results, our fNIRS data revealed the 

same pattern in High-match and New-feature conditions, and 

the difference between rule-based and similarity-based 

learning groups showed in the FPC and Wernicke’s area.  
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Table 1: Independent sample t-tests for HbO beta values 

across rule- and similarity-based learning groups. 

 

Condition ROI 
Comparisons 

t p Cohen’s d 

High-

match 

dlPFC -0.423 0.675 0.105 

FPC 2.477* 0.018 0.639 

Broca’s area 0.524 0.603 0.133 

MTG 0.529 0.600 0.135 

MC 0.281 0.780 0.070 

STG 0.320 0.750 0.079 

Wernicke’s area 1.747# 0.091 0.454 

 

New-

feature 

dlPFC 0.509 0.613 0.123 

FPC -1.88# 0.066 0.477 

Broca’s area 0.926 0.358 0.229 

MTG 0.632 0.530 0.159 

MC 1.155 0.253 0.281 

STG 0.465 0.644 0.113 

Wernicke’s area 2.025# 0.051 0.524 

* p < .05, # p < .1 

Discussion 

In our study, we evaluated ERP responses and hemodynamic 

activations to the same stimuli sets of individuals who were 

manipulated to use rule-based and similarity-based category 

learning strategies. Behavioral results demonstrated the 

success of strategy manipulation. ERP responses showed that 

a similar P1 component, but the rule-based group showed a 

larger P300 and N400 amplitudes than similarity-based 

category learning group. The distinct activations between two 

learning groups showed in the frontopolar cortex and 

Wernicke’ area, with similarity-based group exhibiting 

higher frontopolar cortex activation and lower Wernicke’ 

area activation. These findings indicated the common and 

distinct cognitive processes between rule-based and 

similarity-based category learning strategies. 

Object categorization has been regarded as a two-stage 

process: stimulus representations and processes for decision 

making. The first stage, visual feature processing could be 

reflected by early ERP components, such as P1, reflecting the 

early visual processing (Liang et al., 2007) and higher P1 

amplitude indicating distributed visuospatial attention 

focusing (Fu et al., 2005; Luo et al., 2001). It seems more 

features were needed to be represented in the similarity-based 

category learning, compared to the rule-based learning. 

However, no difference was observed in the P1 component in 

the current research, which could be due to it was the 

supervised learning strategy and no difference in visuospatial 

attentional effort. Future research should examine the 

differences between unsupervised, internal, unintentional 

rule-based and similarity-based strategies (Love, 2002). 

Nevertheless, the current results showed shared visual feature 

processing or visuospatial attention allocation between rule-

based and similarity-based category learning.  

The second step, forming a membership criterion and 

making a choice, evidenced by late ERP components, the 

P300 and N400. Rule-based and similarity-based 

classification diverge in the anterior P300, reflects working 

memory changes (Polich, 2007). Rule-based categorization 

requires concentrating attention on a single dimension, 

whereas paying attention to several dimensions are required 

in similarity-based categorization. Besides, rule-based 

categorization had higher N400 amplitude, an index of the 

degree of the semantic processing (Kutas & Federmeier, 

2011), and thus, is associated with rule learning or abstraction 

(Kutas & Federmeier, 2011; Sun et al., 2012).  

The role of semantic processing in rule-based strategy use 

was also confirmed by our fNIRS results, showing that 

Wernicke's area was activated more. Perry and Lupyan 

(2014) found that Wernicke's area plays a key role linking 

stimuli and linguistic representations in categorization. 

Moreover, in contrast to the rule-based, the similarity-

based strategy integrates information into a category. 

Similarity-based strategies activated the FPC more. The level 

of FPC blood oxygen has been correlated with integrating the 

outcomes of several cognitive activities for optimizing 

behavioral goal (Ramnani & Owen, 2004). Converging with 

the implicit learning system of COVIS, similarity-based 

strategy elicited enhanced activation in the FPC, showing the 

integration across several input dimensions was required. 

Conclusion 

Since an identical problem can be solved by employing 

different strategies, we investigated the common and distinct 

cognitive processes between rule-based and similarity-based 

category learning by evaluating electrophysiological and 

hemodynamic responses. Participants were instructed to 

employ a rule- or similarity-based strategy. We compared the 

ERP responses and fNIRS activation to the same stimuli sets 

with a rule-plus-similarity structure. The common cognitive 

process was unpacked. A similar visual perceptual processing 

or visuospatial attention allocation process was involved, as 

evidenced by a similar P1 component. The distinct cognitive 

processes were extracted, which were consistent with COVIS 

theory. Compared with similarity-based category learning, 

larger P300 and N400 were elicited, and Wernicke’s area was 

activated more, indicating that the hypotheses testing, and 

rule verbal abstraction processes were critical in rule-based 

categorical representation. In contrast, the frontopolar cortex 

(FPC) was engaged more in similarity-based category 

learning to integrate several dimensions into a categorical 

representation. In sum, the shared stimulus representation 

process and distinct decision-making processes were 

involved in rule- and similarity-based category learning, 

implying an explicit system and an implicit system in rule-

based and similarity-based category learning, respectively.  
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