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Abstract 

The imminent nanotechnology revolution promises dramatic advancements in science, 

technology, medicine and society as a whole. First generation products containing 

engineered nanoscale materials are already appearing in the marketplace, while more 

sophisticated products are being developed in laboratories around the world. Researchers 

and manufacturing employees are potentially exposed to dispersible nanoscale particulate 

matter via inhalation, ingestion and skin contact. Preliminary research indicates that in 

some cases nanoparticulate matter may be more toxic than other forms of the same or 

similar material. Application of the classical tools of occupational medicine and industrial 

hygiene is hampered by the lack of consensus guidelines for medical monitoring, 

exposure assessment, and exposure control. 
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Introduction 

A revolution is underway in academic and industrial laboratories and factories around the 

world, where developments in nanotechnology promise a huge range of benefits for 

science, technology, and society. More than evolutionary, new nanoscale materials will 

likely prove revolutionary in many fields. This revolution will have a dramatic impact in 

engineering, materials sciences, chemistry, computer technology, aerospace, medicine 

and biological sciences, as well as a wide range of manufacturing. Potential applications 

of these new materials are wide open to innovation. 

 

“Nanotechnology” is most generally defined as the intentional manipulation of matter to 

form novel structures with one or more dimension or features less than 100 nm. In the 

broadest sense nanotechnology includes work at the nanoscale in the fields of inorganic 

and organic chemistry, biochemistry, engineering, electronics and materials science. 

 

While many of the points in this review may be applicable to the entire field of 

nanotechnology, I focus on engineered dispersible inorganic nanoparticulate matter, 

hereafter referred to as nanoparticles. These nanoparticles are not attached to a substrate, 

not part of a larger structure and can be inhaled, ingested or contaminate the skin. They 

are distinct from naturally occurring environmental ultrafine particles and incidentally 

produced nanoparticles such as diesel soot, although some engineered structures are also 

found in air pollution1. 
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The first generation of “passive” nanoscale materials is now appearing in industrial and 

consumer products. This includes carbon nanotubes in composite materials used to make 

sporting equipment, nanoclays in cements and plastics, metals oxides in batteries, paints 

and sunscreens and fluoropolymers in stain repellant clothing.  

 

Second generation “active” nanomaterials are being developed in laboratories around the 

world and a few are on the verge of commercialization. Medicine, in particular, is 

predicted to benefit tremendously from these more advanced materials. Third and fourth 

generation materials, which include the holy grail of nanotechnology, molecular 

manufacturing, are still largely beyond the horizon at this time.  

 

Nanoparticle behavior is often strikingly different from the behavior of the chemically 

similar material of larger particle size. These new properties form the basis for the 

optimistic claims of nanotechnology pundits. The toxicity of new nanoparticles may also 

vary qualitatively or quantitatively from that of similar materials at the micro- or macro 

scale. To date, limited evidence suggests that some materials are uncharacteristically 

toxic at the nanoscale.  

 

Employees involved in the development, production, distribution and use of these 

nanoparticles are already potentially exposed to materials of uncertain toxicity. The pubic 

is also exposed, through the use of topical sunscreens and cosmetics and ultimately 

through the breakdown of other nanomaterial-containing consumer products.  
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The challenge to occupational health professionals is to prevent the development of 

disease in employees handing these novel nanomaterials despite the lack of toxicological 

information, consensus exposure standards, air sampling methodologies and medical 

monitoring protocols. This is particularly difficult in R&D laboratories, where completely 

novel materials are developed and processes change frequently. 

 

Sources of Concern 

Nanotechnology involves a wide range of chemistries and structures, many so 

dramatically new as to have highly unpredictable properties. The range of chemistries 

used for nanoparticles is vast, as shown in table 12. Possible structures are almost 

unlimited, as suggested by figure 1 which reveals the many different nanoparticles 

possible for just one chemistry (zinc oxide). In effect, nanoscale structures may be 

thought of as entirely new chemicals with regard to their potential toxicity.  

 

Unfortunately, it is very apparent that discerning the toxicity of engineered nanoparticles 

will not be a simple task, as details of chemistry, crystalline structure, morphology, 

contaminants, size and many other factors must be considered3-5. The emerging field of 

“nanotoxicology” has experienced growing pains due to methodological problems. For 

example, some early studies of the toxicity of carbon nanotubes were conducted without 

due consideration of the residual metal catalysts left over from synthesis. This resulted in 

some inconsistencies in the literature, with the assignment of toxic properties to the 

nanotubes that may have been the consequence of the synthetic method and residual 

catalyst6. Another early study that purported to expose rodents to single walled carbon 
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nanotubes used a material that was only about 50% nanotubes2. A very recent inhalation 

study that seemed to expose animals to 95% pure carbon nanotubes used materials that  

actually were heavily contaminated with other fibrous carbon nanostructures.  

 

ELEMENTS USED IN ENGINEERED NANOPARTICLES 

Aluminum Animony Barium 

Bismuth Boron Cadmium 

Calcium Carbon Cerium 

Chromium Cobalt Copper 

Dysprosium Erbium Europium 

Gadolinium Gallium Germanium 

Gold Hafnium Holmium 

Indium Iridium Iron 

Lanthanum Lead Lithium 

Lutetium Magnesium Manganese 

Molybdenum Neodymium Nickel 

Niobium Nitrogen Osmium 

Oxygen Palladium Platinum 

Potassium Praseodymium Promethium 

Rhodium Rhenium Ruthenium 

Samarium Scandium Silicon 

Silver Sodium Strontium 

Sulfur Tantalum Technetium 

Terbium Thulium Tin 

Titanium Tungsten Vanadium 

Ytterbium Yttrium Zinc 

Zirconium   

Table 1: Elements used in engineered nanoparticles4 

 

 

Figure 1: The many forms of nanoscale zinc oxide may pose diverse health 

hazards 7 
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The traditional experimental models used to evaluate the toxicity of nanoparticles may 

not be up to the task and may lead to false-positive or false-negative conclusions. The 

authors of several early in vitro studies using the colorimetric “MTT” assay to measure 

toxicity of carbon nanotubes to mitochondria failed to recognize that the carbon 

nanotubes directly interfered with the test, which resulted in flawed conclusions8. Species 

variability is likely to be substantial, for example the pulmonary toxicity of nanoscale 

TiO2 at high doses differs substantially between rats and most other species including 

humans 9-12. More generally, simple, widely employed in vitro assays may not reliably 

predict in vivo toxicity for many nanoparticles13, 14. 

 

However, for perspective it is important to remember that people have been 

occupationally exposed for years to incidental nanoparticles from welding, the production 

of carbon black and combustion smokes, among others. The safe handling of engineered 

nanoparticles should build on what we know of the toxicity of these materials. 

 

Emerging Dose Metric: Surface Area  

A dramatic difference in toxicity as a function of particle size is well established in the 

case of quartz. Quartz particles much larger than 10 µm in equivalent aerodynamic 

diameter are readily removed from the upper and middle part of the respiratory tract 

where they deposit without consequence. However, smaller particles have the opportunity 

to reach the alveolar spaces in the lungs, where oxygen is transferred across the capillary 

membranes into the blood. Once lodged in the alveolar space, the quartz is not readily 
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removed by pulmonary defensive mechanisms, is toxic to pulmonary macrophages and 

initiates a cascade of events characterized by chronic inflammation and ending in lung 

fibrosis and cancer14, 15. 

 

Much of the size-specific toxicity of quartz can be ascribed to differential deposition in 

the respiratory tract, but two other factors, surface area and surface activity, are likely 

involved as well16-18. For a given mass of particles, as the diameter of the particles is 

reduced, the number of particles increases exponentially and the surface-to-volume ratio 

increases linearly, as shown in figure 2. 

 

 

Figure 2: Increase in particle number and surface area with decrease in size19 

 

It is well established in the use of industrial catalysts that atoms in the core of a catalyst 

particle contribute little; surface area is the key factor in accelerating a chemical reaction. 

There is accumulating evidence that the toxicity of quartz is to some extent related to a 

catalytic effect that causes the generation of reactive oxygen species and thus is enhanced 

by particles of very high surface area20. This oxidant stress effect, a product both of 

surface area and surface reactivity, when combined with the alveolar deposition of sub-10 

µm particles, makes quartz a very serious occupational health concern.  

 

For nanoscale materials, a surprisingly large fraction of the atoms in a particle are on the 

surface, available for interaction with biological molecules, as shown in figure 3. In the 
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case of a ZnS quantum nanodot, 4 micrometers in diameter, roughly half of all the 

molecules in the particle are on the surface. For a single walled carbon nanotube or 

buckyball, every atom in the particle is on the surface.  

 

 

Figure 3: Percentage of atoms on the surface of particles as a function of  

particle diameter21, 22 

 

In numerous studies, poorly soluble low toxicity nanoscale particles have been shown to 

be more toxic than microscale materials of the same composition and mass17, 23-28. There 

is significant evidence that in the nanoscale these materials are uncharacteristically toxic 

due in part to accelerated generation of free radicals, hydrogen peroxide and hydroxyl 

atoms, driven by high surface area20, 22. While there are several proposed pathways 

leading to these reactive oxygen species, in the end they all ultimately result in damaged 

DNA, proteins, lipids and other biomolecules, inflammation and even cell death.  

 

The work of Oberdörster and collaborators in this regard is widely referenced. As shown 

in figure 4, Oberdörster demonstrated that nanoscale TiO2 appeared to be much more 

inflammatory in lung than microscale TiO2 particles when compared on the basis of mass 

of material introduced into the lung20. However, when the data were plotted on the basis 

of surface area rather than mass, the inflammatory response was identical for both nano- 

and microscale particles17, 23. Others have reported this surface area effect for various 
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particles of low toxicity including metal oxides, polymers17, carbon black29-32, and other 

carbonaceous nanoparticles22 

 

 

Figure 4: Relationship between mass (left) or surface area (right) and toxicity for 

TiO2 [17, 19] 

 

However, for perspective, figure 6 shows that per unit surface area, quartz is much more 

toxic than TiO217, 28. Similarly, nanoscale nickel and cobalt particles are much more toxic 

than TiO233. Thus, it is not surface area alone that determines the toxicity of all 

nanoparticles, but rather the product of surface area, surface reactivity, and elemental 

toxicity. This variability in surface reactivity even extends to the various crystalline 

forms of TiO2 14, 15.   

 

Indeed, even in the well-worn case of quartz there is a wide range of bioactivity in 

samples obtained from different parts of the earth or handled differently 17 and much of 

the toxicity can be erased by prior treatment with aluminum19  

 

 

Figure 5: Relative inflammatory potency of SiO2 compared to TiO2 and BaSO4 

particles on an equal surface area basis34 
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It is important to note that not all researchers have been able to reproduce this surface 

area-dependent effect for a range of nanoscale particles33, 35, 36, and some of the 

aforementioned positive studies have been criticized on the way in which they derived 

and interpreted their data37. However, at this time, for nanomaterials of low solubility and 

low intrinsic toxicity, surface area as determined empirically is likely the best dose 

metric.  

 

Case Study: Environmental Ultrafines 

There is mounting evidence that exposure to environmental ultrafine (~nano) particles, 

particularly combustion derived nanoparticles (CDNP), contributes to community 

respiratory and cardiovascular morbidity and mortality38-40. Epidemiological and 

experimental studies have consistently indicated that exposure to these incidental 

nanoparticles predisposes compromised people to illness one or a few days post-

exposure37, 41-45. Originally attributed to larger particles, it is now likely that much of this 

observed health impact is due to ultrafine CDNP in air pollution1. 

 

It is likely that the toxic potential of some engineered nanoparticles will parallel this 

effect of CDNP. For example it appears that pulmonary deposition of carbon nanotubes 

has some of the same adverse cardiovascular effects as CDNP. Indeed, it is now known 

that CDNP air pollution includes large numbers of multi-walled carbon nanotubes46, 47. 
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Case Study: Carbon Nanotubes 

The special case of carbon nanotubes is illustrative of many of the difficulties in 

assessing the toxicity of novel nanostructures.  

 

Carbon nanotubes come in two primary forms—single walled nanotubes (SWCNT) and 

nested multiwalled nanotubes (MWCNT). They are being produced by the ton and 

incorporated into many commercial products including baseball bats, bicycles and other 

sporting equipment. Nanotubes range in diameter from about one nanometer (SWCNT) 

to dozens of nanometers (MWCNT) and can have lengths into the micrometer range.  

 

 

Figure 6: Single and multi-walled carbon nanotubes 

 

A large number of in vitro toxicity studies have been reported for carbon nanotubes, with 

most demonstrating unusual cytotoxicity to a range of target cells, as shown in table 2.  
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Year Author Cell Line Main findings 
2003 
 

Shvedova 
 

Human skin fibroblasts 
 

Cell death, oxidative stress  

2005 
 

Ding 
 

Human skin/lung 
fibroblasts 
 

MWCNT induce does-dependent cytotoxicity, 
induce genes indicative of a strong immune, stress 
and inflammatory response 

2005 
 

Jia 
 

Human lung 
macrophages 

SWCNT more toxic than MWCNT10, both more 
toxic than quartz 

2005 
 

Murr 
 

Mouse lung 
macrophages 

S/MWCNT “ropes” showed dose related 
cytotoxicity, more toxic than asbestos 

2005 
 

Fiorito 
 

Mouse & Human 
macrophages 

CNT were not well taken up by macrophages and 
caused little toxicity, metals cause CNT toxicity 

2006 
 

Kagan 
 

Human lung 
macrophages 

Oxidative stress is related to iron contamination, 
macrophages do not effectively engulf CNTs 

2006 
 

Tian 
 

Human fibroblasts 
 

Surface area predicts cytotoxicity, SWCNT more 
toxic than MWCNT 

2006 
 

Pluscamp 
 

Lung macrophage and 
epithelial cells 

Little acute cytotoxicity of MWCNT, toxicity 
related to metal contamination 

2006 
 

Tian 
 

Human fibroblast Surface area predicts cytotoxicity, SWCNT more 
toxic than MWCNT or other carbon. Refined 
SWCNT more toxic than unrefined SWCNT 

2007 
 

Wick 
 

Human mesothelioma 
 

Nanoropes more toxic than asbestos, dispersed 
CNTs less toxic 

Table 2: Selected in vitro studies of carbon nanotube cytotoxicity 

 

In some of these in vitro studies, nanotubes appeared to be more toxic than quartz or 

asbestos, both of which induce lung inflammation, fibrosis and ultimately cancer. Several 

of the authors ascribed the observed toxicity to the metals contaminating impure carbon 

nanotubes6, 48-51.  

 

If carbon nanotubes are instilled or aspirated into the lungs of rodents they induce signs 

of oxidative stress, much like the metal oxide nanoparticles discussed previously, and in 
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most cases cause fibrosis and granuloma formation 52. Depletion of vitamin E, a potent 

antioxidant, exacerbates the oxidative stress and profibrinic activity53. All of the 

published studies of this type are summarized in table 3.  

 

However, these dosing methods are clearly non-physiological, it is quite possible that 

some of these pathologies, particularly the granulomas, are artifacts of the assay and will 

not occur in occupationally exposed individuals. A very recent publication from NIOSH 

supports this hypothesis, where they found no granulomas when they used extremely 

finely ground single walled carbon nanotubes rather than larger particles of agglomerated 

tubes54.  

 

Year  Author Species Granuloma Inflammation Fibrosis 

2001  Huczko G. pig  NA – NA 

2004  Warheit Rat  + +/– + 

2004  Lam  Rat  + + NA 

2005  Muller  Rat  + + + 

2005  Grubek - Jaworska G. Pig + + + 

2005  Shvedova Mouse  + + + 

2006  Mangum Rats  + – + 

2006 Carrero - Sanchez Mice + + NA 

2007  Shvedova Mice  + + + 

2008  Mercer  Mice  – + + 

Table 3: Summary of findings from all published carbon nanotube 

instillation/aspiration pulmonary toxicology studies 
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Mitchell recently published an inhalation study where mice were exposed to multi-walled 

carbon nanotubes55.  No evidence of lung inflammation, fibrosis or granuloma formation 

was detected, but the authors did find evidence of impairment of the animal’s immune 

systems, a new and unique finding. The Mitchell study has been challenged due to a 

number of significant methodological problems, thus its validity is uncertain 56 32.   

 

In contrast, preliminary reports from NIOSH indicate that inhaled single and multiwalled 

carbon nanotubes cause rapid but transient inflammation and consistent diffuse lung 

fibrosis. In the SWCNT inhalation study, the fibrosis is reported to be four times as 

severe than was seen for the same doses via aspiration57, 58. No mention of granulomas 

was made in this context.  

 

Carbon nanotubes may also cause cancer, based on their morphology and biodurability. 

Carbon nanotubes can be viewed as rolled-up layers of graphite that forms a single tube 

about a nanometer in diameter (SWCNT) or a series of concentric nanotubes that can be a 

few or dozens of nanometers in diameter (MWCNTs). Carbon nanotubes can be 

thousands of nanometers in length, they have high tensile strength49 and relatively low 

solubility in biological systems1, 59. They tend to cling together to make larger structures 

called nanoropes that are many nanometers or even micrometers in diameter.  

 

These characteristics are all remarkably similar to a naturally occurring magnesium 

silicate nanotube, chrysotile asbestos, shown in figure 759. 
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Figure 7: Cross section of fibril of chrysotile asbestos showing lamellar structure 

and size very similar to MWCNTs60, 61 

 

Inhaled chrysotile asbestos causes macrophage death, respiratory inflammation, fibrosis, 

lung cancer and probably mesothelioma, a cancer of the lining of the lungs and other 

organs62. However, these effects are not unique to the chemistry of chrysotile. Indeed, the 

amphibole forms of “asbestos”, which are chemically unrelated to chrysotile and do not 

share the lamellar structure, also induce fibrosis and cancer. The occurrence of fibrous 

erionite (a form of zeolite) in the Cappadokia region of Turkey and elsewhere is 

associated with a highly elevated risk of mesothelioma 63. Even man made fibers, such as 

some mineral fibers and refractory ceramic fibers, have the potential to induce these 

diseases64.  

 

Originally proposed by Stanton and Wrench in 197263, it is now generally accepted that 

inhaled fibrous particles have the potential to cause fibrosis and cancer if they meet 

certain criteria of size, shape and biodurability:  

• Particles must be small enough to be deposited in the alveoli 

• Particles must have the right shape, including a high aspect ratio, a length of over 

5 µm or more and a sub-micrometer diameter. 

• Particles must resist dissolution and clearance in the lungs  
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As shown in table 4, widely divergent fiber chemistries cause the same toxic endpoints if 

they have the right size , shape and biodurability49.   

 

It is evident that CNTs have the requisite size, strength and morphology to be suspect in 

this model. Very limited data are available on their biodurability. Muller63 showed that 

80% of unground and 36% of ground MWCNTs were retained in lung tissue after 60 

days, suggesting that MWCNTs may be adequately persistent to cause fibrosis and 

cancer.  

 

Fiber Type 
Lung Half 
Life (Days) Fibrosis Tumors 

MMVF34 Stone Wool 6 – – 
MMVF11 Glass Wool 9 – – 
MMVF10 Glass Wool 37 – – 
MMVF33 475 Glass 49 + +/–a 

RCF1a  Refractory 55 + + 
MMVF32 E Glass 79 + + 
Amosite Asbestos 418 + + 
Crocidolite Asbestos 817 + + 

a. Positive in hamsters but not rats 

Table 4: Correlation between lung biopersistence of long fibers and lung 
pathology32  

 

Limited in vitro testing indicates that carbon nanotubes, like asbestos, can interact with 

DNA65 and cause large scale chromosomal damage, but show no activity in the Ames 

point mutation assay66, 67. Carbon nanotubes and asbestos interact with tissue to create 

reactive oxygen species32, 68. However, no one has studied whole animals past 90 days to 

truly assess the carcinogenicity of inhaled carbon nanotubes. 
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Surprisingly, carbon nanotubes deposited in the respiratory tract can induce toxic effects 

in other organ systems. A recent NIOSH report, described in more detail below, shows a 

range of cardiovascular toxicity due to inspired single walled carbon nanotubes58.  

 

While some material safety data sheets have suggested that the exposure limit for carbon 

nanotubes should be based on the graphite standard (TLV = 5 mg/m3 for respirable dust), 

the instillation/aspiration studies indicate that this exposure level may be unsafe 69. Some 

authors have suggested the use of the PEL for quartz, 0.1µg/m3, as a better starting 

point70. 

 

The hazard posed by any workplace chemical is a product of both the chemicals intrinsic 

toxicity and the potential for exposure. Few studies have assessed the exposure potential 

during the handling of carbon nanotubes. The most notable investigation found levels of 

up to 53 µg/m3 in an occupational setting where nanotubes were made and harvested 71. 

Free fibers were rare; almost all of the carbon nanotubes measured were large aggregates. 

In this regard carbon nanotubes are very different from chrysotile asbestos, where 

handling of processed mineral fiber does release a large number of free nanofibers.  

 

Case Study: Quantum Dots 

Quantum nanodots are single-digit sized particles made up of semiconductor metals that 

demonstrate the amazing feature of changing fluorescence wavelength based on their 

size. Quantum nanodots present an interesting case in that many of these are intrinsically 

cytotoxic due to their metal content (e.g. Cd, Pb, Se) 72. Uncoated nanodots are quite 
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cytotoxic, and it is possible that their toxicity exceeds the sum of the toxicity of the 

constituent metals. For example, Cho73 showed that cytotoxicity of a variety of coated 

nanodots in a breast cancer cell line did not fully correlate with the generation of Cd2+ 

ions. Instead, the quantum nanodots were consistently more toxic that predicted by their 

release of Cd2+ ion (figure 8). In this study quantum dot net toxicity appears to be a 

result of both intrinsic metal ion toxicity and induction of oxidative stress by the surface 

of the intact nanoparticle, the latter effect the same as seen for TiO2, carbon nanotubes 

and other nanoparticles.  

 

Fortunately, quantum dots can be coated with various polymers and biologically 

compatible molecules that shield the semiconducting core from dissolving or interacting 

with tissue, which greatly reduces their toxicity 72.  

 

 

Figure 8: Plot showing reduction in cell viability as a function the propensity of 

Cd2+ ions to plate off of CdSe quantum nanodots with different protective 

coatings. The doted line represents the dose/toxicity relationship for pure Cd2+ 

ions. The nanodots are uniformly more toxic than would be predicted by their 

release of Cd2+ ions 74, 75.  

 

Distribution Across Anatomical Barriers and Systemic Effects 

Exposure to nanoscale particles can occur via any of the usual routes of exposure, that is, 

inhalation, ingestion and skin contact. As with other chemical occupational stressors, 
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each of these routes of exposure must be evaluated to determine the extent of deposition, 

absorption, distribution, excretion and toxicity.  

 

Insoluble nanoparticles may be more mobile across anatomical barriers that microscale or 

larger insoluble particles of the same chemistry. Also, nanoparticles may exert systemic 

toxic effects that may not depend on translocation of the particles. 

 

Digestive and Respiratory Tracts: It has been known for many years that some intact 

nanoparticles cross the digestive tract and respiratory tract and appear in the body76.  

 

Although subject to ongoing controversy related to methodological limitations76, 77, 

inhaled nanoparticles have some ability to cross through or around the cells in the lungs, 

enter the interstitial space and are distributed systemically76. This clearly happens, but the 

extent of this process and significance remains in question. Early studies that suggested 

very rapid translocation of nanoparticles out of lung53, 78-80 were likely flawed, more 

recent work has suggested a slow migration of a small percentage of particles out of the 

lung that is exacerbated by lung inflammation81.  

 

Skin: Many sunscreens contain micro or nanoscale zinc or titanium oxide particles. In 

general, studies suggest that intact skin is a pretty good barrier to these particles82. Under 

some circumstances, sub micrometer particles can penetrate the skin, at least as far as the 

living tissue underlying the stratum corneum82, 83. It is not clear that these particles travel 

as far as the systemic circulation or if they are toxicologically significant. This route of 
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exposure is likely to be of greater importance for damaged skin or concomitant exposure 

to solvents and nanoparticles83.  

 

 

Figure 9: Image showing 500 nm fluorescent beads penetrating to the living 

layers of the skin, but 4 µm beads stopped on the surface of the skin84. 

 

Brain: Although not completely unprecedented85, it was certainly remarkable when it 

was demonstrated that carbon nanoparticles86 and manganese oxide nanoparticles87, 88 

deposited in the olfactory mucosa in rodents translocated up the olfactory neuron axons 

into the brain and in some studies triggered inflammation in neural tissue. This is 

intriguing in light of the lung deposition model proposed by the International Council on 

Radiation Protection that shows nanoparticles less than 10 nm in aerodynamic diameter 

will preferentially deposit in the head airways region rather than the alveolar space89-91. 

There is also evidence that some, but not all, nanoparticles can penetrate the blood-brain 

barrier and gain access to the brain via the bloodstream91, 92. 

 

The importance of these brain translocation mechanisms in humans is unknown. Humans 

have far less olfactory mucosa than rodents. For perspective, welders have been inhaling 

adventitious metal oxide nanoparticles for decades with relatively little obvious adverse 

neurological effect for metals other than manganese.  

 



Occupational Medicine Implications of Engineered Nanoscale Particulate Matter 

R.J.Kelly - LBNL  Pg. 21 of 42 

Placenta: The placenta seems to present a more formidable barrier to nanoparticle 

translocation93, although at least one report suggested translocation into the fetus91, 94.  

 

Systemic Toxicity 

In general, the consequence of translocated nanoparticles has not been established. As 

might be expected, nanoparticles in the blood stream are sometimes accumulated in the 

liver and lymph nodes, as shown for quantum dots in a mouse in figure 1094.  

 

 

Figure 10: Accumulation of injected quantum nanodots in the lymph nodes, bone 

marrow and liver of a mouse 68. 

  

Li of NIOSH studied the cardiovascular toxicity of carbon nanotubes aspirated into the 

lungs of rats genetically modified to rapidly develop atherosclerosis42. This pulmonary 

exposure resulted in cardiovascular toxicity, including accelerated atherosclerosis, 

oxidative stress in aorta and heart tissue and damage to aortic mitochondrial DNA. The 

exposure level used in this study was intended to approximate the potential human 

exposure at the PEL for respirable graphite.  

 

It is not known if this cardiovascular toxicity was due to translocated nanotubes 

interacting directly with aortic and heart tissue or some type of secondary response, due 

to the observed inflammation of lung tissue. Recall that inhalation of environmental 

ultrafine combustion particulate matter also induces cardiovascular toxicity32. 
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As yet unpublished work by Castranova at NIOSH finds that TiO2 particles instilled into 

the lungs of rodents causes dysfunction of the microvascular system32. Treated animals 

showed blunting and even reversal of the response to dilators that was dose dependent, 

more severe for nanoparticles than for microparticles and appeared within 1 day of 

dosing. Confocal microscopy demonstrated rapid accumulation of polymorphonuclear 

leukocytes all along the microvascular walls. This is likely a systemic effect rather than 

due to translocated particles based on the rapidity of response.  

 

NIOSH has also presented preliminary data which suggest that pulmonary exposure to 

MWCNTs and TiO2 nanowires may degrade the integrity of the blood brain barrier and 

cause brain damage, primarily in the olfactory bulb, hippocampus and frontal cortex95. 

This was not due to translocation up the olfactory nerve. In the case of the MWCNT this 

effect was seen with doses in the range of what a person would be exposed to at the PEL 

for graphite.  

 

Very little work has been done to assess the potential reproductive toxicity of engineered 

nanoparticles. One brief report indicates that gold nanoparticles may have a negative 

impact on sperm function in vitro96. A recent study found that pulmonary deposition of 

carbon black had negative impact on the reproductive system of male mice93, 97. Older 

references suggests that C60 may have fetotoxic potential98. These studies are two few 

and incomplete to allow any conclusions regarding the reproductive toxicity of 

nanoparticles.  
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Goals of an Occupational Medicine Program  

Broadly construed, occupational medicine programs attempt to limit the health effects of 

chemical and physical stressors in the workplace. With respect to chemically induced 

disease, the goals of an occupational medicine program are, in order of preference: 

 

1. Prevent occupational diseases from occurring 

2. Quickly detect occupational diseases that do occur 

3. Intervene to cure occupational diseases 

 

Goal 1:Prevent Occupational Disease 

This goal, preventing occupational illness entirely, is the loftiest ambition of an 

occupational medicine program. Traditionally, the paradigm for achieving this goal relies 

on four key program elements: 

 

Workplace Exposure Monitoring–Exposure to chemical agents is assessed 

either by environmental monitoring (e.g., air monitoring, dermal exposure 

assessment) or biological monitoring (e.g., blood analysis, urinalysis, 

lung counting). The results of these assays are compared to established limits as 

an index of the risk.  

 

Establish Workplace Controls–Controls are established to reduce employee 

exposure to occupational stressors. Controls may include engineered controls 
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(e.g., ventilation, filtration, enclosure), administrative controls (e.g., safe work 

practices, training) and personal protective equipment (e.g., gloves, respirators, 

goggles). 

 

Medical Pre-Screening for People at Elevated Risk–Prior to exposure to an 

occupational stressor, the working population is screened for conditions that may 

put them at elevated risk of occupational disease. At-risk employees may be 

offered alternative assignments or enhanced protection to reduce their chances of 

becoming ill.  

 

Medical Surveillance– In this context, medical surveillance is narrowly defined 

to describe a process of looking for health trends in the worker community that 

might warrant further action. This is distinct from “medical monitoring”, which is 

the key element of goal two and has a clinical focus98. Note that in practice many 

people use the terms medical monitoring and medical surveillance 

interchangeably, but in fact they are conceptually distinct. Some OSHA standards 

have “medical surveillance” provisions, but these are better described as “medical 

monitoring”. 10 

 

This paradigm requires several elements to be in place: 

• Exposure monitoring methods are available and affordable 

• A standard exists to which measured exposures can be compared 

• Control methods applicable to larger particles are effective for nanoparticles  
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• The target organ(s) and health effects are known and can be screened 

• The impact of pre-existing conditions on risk are known 

• Alternatives are available for employees found to be at increased risk of disease 

due to preexisting conditions 

 

For most nanoscale particulate matter, there are no accepted exposure monitoring 

methods, no exposure standards, the effectiveness of traditional control methods is only 

now being elucidated, the target organs are not always obvious and the impact of pre-

existing conditions on risk is not clear. This makes it very difficult to establish an 

evidence-based program to prevent the manifestation of occupational disease related to 

nanoparticles. 

 

Exposure Monitoring 

As of December 2007, there are almost no published consensus methods to measure 

exposure to nanoscale materials or exposure standards to compare to the results. NIOSH 

has proposed a draft an exposure limit of 0.1 mg/m3 for nanoscale TiO2, which stands 

alone as a widely recognized exposure standard specific for engineered nanostructured 

materials in the U.S. 99. 

 

It is a simple matter to buy handheld condensation nuclei counters that can enumerate 

airborne nanoparticles down to 10 nm in diameter, but it is difficult even to obtain 

relative measurements with these instruments due to the extremely high and variable 

background level of natural and anthropogenic ultrafine particles. In laboratory settings, 
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the signal of interest is likely to be a small fraction of the background noise. Also these 

instruments are not size or chemistry specific. Even with these limitations these 

instruments have been used successfully in factory settings as part of research efforts100.  

 

Size-selective real time aerosol monitors for measuring nanoscale particulate matter, such 

as mobility particle spectrometers, are available but this equipment is very expensive, 

large, and requires special training to operate. A number of researchers have reported 

successful deployment of this type of instrument in labs and factories101-103. Like the 

simpler condensation nuclei counters, these instruments are not able to distinguish 

engineered nanoparticles from background ultrafines. 

 

Particles can be collected on filters or other media with subsequent analysis by electron 

microscopy. This allows for speciation and sizing of nanoparticles, but at huge cost in 

terms of time and expense and requires expertise that is of very limited availability right 

now.  

 

NIOSH has reported the results of an investigation where they built a clean room around 

a carbon nanotube source, thus removing the confounding background particles. They 

also avoided the problem with nanoparticle measurement techniques by measuring the 

level of airborne residual catalyst metals and back-calculating the exposure to carbon 

nanotubes. Interestingly, the authors found only relatively low levels of carbon nanotubes 

in their air samples and attributed this result to the extensive agglomeration of the newly 

synthesized tubes into micro- and macro clumps that did not readily become airborne.  
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This level of effort is feasible for a funded research study, but not for routine exposure 

monitoring, especially in research labs where the work changes all the time.  

 

The vast majority of industrial hygiene exposure limits for particulate matter are specified 

on a mass basis. Thus OSHA limits exposure to lead to 50 µg/m3 of air averaged over an 

8-hour day. The exposure limit for some fibrous materials is based on particle count. 

However, there is no generally accepted sampling method to evaluate particle surface 

area, likely the most relevant exposure metric for many nanoscale particles. Some 

research in this area has been done104 and at least one vendor offers an instrument 

purported to measure surface area directly, but this suffers from the same interference 

from ambient ultrafines and lack of chemical specificity as the simple particle counting 

instruments. This instrument is primarily a research tool at this time.  

 

Where existing exposure limits based on chemistry are available, great caution must be 

exercised before applying them to nanoparticles. For example, the toxicity of uncoated 

CdSe quantum nanodots may be a function both of the intrinsic metal ion toxicity and the 

catalytic promotion of oxidative stress that is a property of the intact nanoparticle. 

Existing Cd exposure limits do not account for these dual pathways to toxicity. Similarly, 

use of the graphite exposure limit for structurally related carbon nanotubes may lead to 

disease, as the morphology of the nanotube induces additional toxicological mechanisms 

that are not accounted for in the exposure standard.  

 



Occupational Medicine Implications of Engineered Nanoscale Particulate Matter 

R.J.Kelly - LBNL  Pg. 28 of 42 

Medical Pre-Screening 

There is currently no technical basis for recommending medical prescreening criteria for 

most nanoparticle exposed workers.  

 

Exposure Control 

Until quite recently, it was not clear that the usual triumvirate of engineered, 

administrative and personal protective controls was adequate to control exposure to 

nanoparticles.  

 

In 1991 it was proposed that nanoparticles smaller than about 10 nm might not be 

effectively captured by mechanical air filters due to a “thermal rebound” effect105. The 

authors calculated that at some size the nanoparticles would rebound from the filter 

matrix due to their propensity to diffuse and thus not be captured, much in the way that 

individual vapor or gas molecules pass unchecked through a filter.  In 2004 a study was 

published that purported to demonstrate this effect for very small nanoparticles106. Other 

authors reported similar findings107. About this time it was also reported that N95 

respirator filters, especially those that rely on electrostatic charge effects for particle 

deposition, might not perform quite at their stated efficiency for nanoparticles108-113. 

 

Overwhelming data are now available from numerous investigators showing filters work 

as expected for particles as small as 2 nanometers109, 110, 114, 115.The earlier negative 

reports suffered from methodological problems that resulted in erroneous conclusions110. 
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Of course, at some size, filtration efficiency must drop off, as air and vapor molecules are 

not captured in a particulate filter. Data from Kim suggest that thermal rebound does 

appear at about 2 nm, just about the diameter of a buckyball108.  

 

Discussion continues regarding the permeability of gloves and other elastomeric 

materials to nanoparticles. However, limited studies to date indicate that latex and nitrile 

rubber gloves form a reliable barrier to nanoparticles under test conditions110.  

 

 

Figure 11: Penetration of nanoparticles through a low efficiency filter as a 

function of size, showing that particles below 2 nm may not be captured as 

predicted by filtration theory100, 116 

 

Despite some suggestions to the contrary, local exhaust ventilation will function for 

engineered nanoscale particles exactly as it has all along for incidentally produced 

nanoparticles 100. 
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Figure 12: Demonstration of the effectiveness of a fume hood at preventing 

exposure to carbon nanotubes117-119. 

 

In summary, the management of exposure to nanoparticles can in most cases be achieved 

using familiar engineered, administrative and personal protective control measures.  

 

Medical Surveillance 

NIOSH, the NNI and Nasterlick from BASF have recommended the establishment of 

worker medical surveillance programs to monitor for the emergence of sentinel cases of 

new disease98, 117. At this time it is unlikely that most employers have the capability or 

will to establish a meaningful sentinel event medical surveillance program, so as a 

practical matter, medical surveillance is not likely to figure prominently in occupational 

medicine programs for nanoparticles for the near term. 

 

Goal 2: Detect Occupational Disease Quickly 

The second goal of occupational health surveillance is to detect subclinical signs of 

illness in a worker population, with an eye toward quick intervention to prevent 

development of overt disease. This process is most commonly called “medical 

monitoring” in the United States119 and is mandated by the Occupational Safety and 

Health Administration for some chemical agents such as asbestos, lead and benzene 

(although most laboratory work is exempted from these requirements).  

 

The criteria for establishing a medical monitoring program include117, 119: 
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• Understanding who is being exposed 

• Knowledge of the target organ(s) and specific health effects 

• Availability of reliable and safe medical tests 

• Action criteria to compare to test results 

• Availability of interventions to arrest or reverse disease 

 

Medical monitoring often includes diagnostic studies to identify perturbations that 

disclose the preliminary stages of occupational disease. Thus for asbestos, which causes 

pulmonary fibrosis, lung cancer and mesothelioma, OSHA mandates that the medical 

evaluation include a chest x-ray and pulmonary function testing. Whereas preclinical 

detection of mesothelioma is largely irrelevant (it is essentially 100% fatal), the discovery 

of subclinical disease may result in limiting further asbestos exposure that can reduce the 

progression of fibrosis. Early-stage lung cancer may be treatable via surgery and other 

interventions.  

 

For most nanomaterials, it is unclear what diagnostic studies should be included in a 

medical monitoring program119. While many suggestions have been, including 

measurement of heart rate variability, proinflammatory cytokines, lung CT studies, liver 

enzyme tests, etc., none of these rise to the level of validation normally required for 

inclusion in a targeted medical monitoring program119. The sensitivity, specificity and 

risk/benefit ratio of such testing is unknown with respect to most nanoparticles.  
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It is also not always clear who should be included in a monitoring program, as the usual 

inclusion criteria incorporate the results of exposure monitoring that are not likely to be 

available for nanoparticles.  

 

Nasterlack and colleagues at BASF in Germany published an opinion paper that argues 

that routine medical monitoring of workers exposed to nanoparticles is not warranted or 

feasible at this time, and effort should instead be expended on control measures to 

prevent exposure117. 

 

NIOSH has recently published a draft guideline that proposes “Insufficient scientific and 

medical evidence now exists to recommend the specific medical screening of workers 

potentially exposed to engineered nanoparticles”.  

 

The feasibility of medical monitoring is likely to evolve as the findings of more whole 

animal toxicological studies become available. For example, if new inhalation studies 

confirms the relationship between carbon nanotubes inhalation and lung fibrosis and 

granuloma formation, it will be reasonable to formulate specific guidelines for medical 

surveillance of workers exposed to these materials. 

 

Goal 3: Treatment of Disease 

If all else fails and occupational disease is manifested, the third goal of occupational 

medicine it to heal those injured by their experience at work. This might be affected by 
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removing the injured individual from further exposure via transfer, or via some form of 

treatment.  

 

Medical removal is not always effective at limiting the progression of disease and raises 

real concerns for both the employer and employee. This inevitably leads to ethical and 

practical quandaries. Specifically, is it justifiable to remove a worker from his or her job 

based on the results of uncertain tests, without knowing if this intervention will make any 

difference in disease outcome?  

 

 

Conclusion 

As the discovery and commercialization of nanoscale materials expands, occupational 

health professionals such as physicians and industrial hygienists will be forced to develop 

hazard assessment, exposure control and health monitoring strategies without the usual 

panoply of tools.  

 

This quandary is not that unusual in a research setting such as a university or 

pharmaceutical company, where the creation of novel materials is the stock-in-trade. 

However the widespread use of materials of uncertain hazard in diverse industries, big 

and small, is unusual and may pose an unacceptable risk that will not be recognized until 

cases of disease start appearing in number. 
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The emerging nanotechnology revolution is another grand step in the industrial 

revolution that has been underway for over 200 years. As with prior steps in the 

revolution there will likely be anticipated and unanticipated consequences, both good and 

bad, of new technologies. The goal should be to anticipate and mitigate adverse 

consequences before people are injured or the environment is contaminated. If history is 

any indication, this will be a very difficult task. 

 

Strategies to manage the poorly defined risk of nanoparticulate matter are beginning to 

appear from various government and consensus standard setting organizations in the 

United States and Europe. The companion manuscript to this paper presents the hazard 

assessment and control recommendations for research laboratories developed by the five 

Department of Energy Nanoscale Science Research Centers 
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