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Abstract: 
 
Scientists predict that future climate change will effect both human and natural systems.  Using 
two rainfall-runoff modeling methods, this analysis predicts the effects of climate change on the 
hydrology of upper Alameda Creek, a small drainage area in California’s Coast Range.  I 
analyzed daily rainfall, temperature, and stream flow data collected from field gages for 8 years 
to develop a numerical predictive model.  Using the Army Corps of Engineers Hec-HMS model 
and autoregressive statistical techniques, I minimized the difference between the predicted and 
the observed creek discharge. I then generated an altered temperature and precipitation regime 
based on a high-end climate change prediction downscaled to a 60 square mile grid.  For upper 
Alameda Creek, annual precipitation is predicted to fall by 28.2% and annual temperature is 
predicted to increase by 5.2˚C by 2100.  The autoregressive model had the lowest error when 
compared to the observed data, and predicts a 22% decrease in total discharge and considerably 
smaller peak flows with climate change.  The Hec-HMS model predicts a 46% reduction in total 
discharge and large reductions in peak flows with climate change.  Reduced discharge and peak 
flows will have adverse impacts on downstream uses, including drinking water supplies for San 
Francisco, recreational uses at Sunol Regional Wilderness, and habitat for native rainbow trout, 
alluvial sycamore, California red-legged frog, California tiger salamander, and other rare and 
endangered species. 
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1.  Introduction 
 
 Scientists have been making predictions about the impacts of climate change for decades.  

However, the unspecific nature of these predictions is often difficult for people to understand.  

For example, many people do not see the importance of a global 2˚ Celsius (C) increase in 

atmospheric temperature over the next 100 years.  Recent modeling efforts are providing 

downscaled predictions of climatic change that provide more accurate local impacts.  These 

predictions allow researchers to develop quantitative estimates of the impacts of climate change 

on specific natural and human systems.  This analysis addresses the impacts of climate change on 

the hydrology of upper Alameda Creek drainage area in Santa Clara and Alameda Counties in 

California.  This drainage area provides drinking water to the City and County of San Francisco 

and supports rare riparian habitat.  The predicted increase in temperature and decrease in 

precipitation in the drainage area is expected to reduce the amount of water available to both 

human and natural systems. 

 Several researchers have studied the impacts of climate change on the availability of 

drinking water in California statewide.  Climate change models do not consistently predict either 

an increase or a decrease in the amount of precipitation in California (Knowles and Cayan, 2002), 

but they do all consistently predict an increase in temperature from 1˚C to 6˚C by 2100 (Miller, 

2003).  This temperature change is predicted to reduce the amount of precipitation that falls as 

snow in the Sierra, and change when the snow melts.  One study of the Sacramento/San Joaquin 

watershed (California’s primary hydrologic system) predicts climate change will reduce spring 

runoff by 5.6 km2 (~20% of historical annual runoff), with associated increases in winter flood 

peaks (Knowles and Cayan, 2002).  Another study predicts an increase in severe droughts in the 

same watershed, with the number of years with dry or critically low stream flow increasing from 

32% during the historical period of 1906 to 1999 to between 50-64% by 2100 (Hayhoe et. al. 

2004).    
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 Several researchers have also modeled the impacts of climate change on natural habitats 

and communities.  Many species are found in areas that have specific ranges in average annual or 

seasonal temperature and precipitation, called climate envelopes.  Predicted climate change will 

alter the size and spatial location of the climate envelopes, which could reduce the amount of 

habitat available to a species, and increase the probability it will become locally extirpated or 

extinct.  One study predicts that 15 to 37% of species worldwide will be committed to extinction 

by 2050 due to habitat loss from climate change (Thomas et. al., 2004).  Other researchers have 

looked at how vegetation types will change with predicted climate change.  These studies show 

that high elevation communities are at the highest risk and that desert expansion is likely (Hayhoe 

et. al. 2004, Diffenbaugh et. al., 2003).  However, there are relatively few studies on the impacts 

of climate change to specific riparian species and habitats.   

 This study uses two recent downscaled climate change predictions to determine the 

impact on the hydrology of the upper Alameda Creek drainage area.  This drainage area is 33.3 

square miles and ranges in elevation from 930 feet to 3,050 feet above sea level.  I chose this 

location because the daily stream flow has been gaged by the United States Geological Survey 

(USGS) since 1994 and the hourly rainfall has been gaged by the East Bay Regional Parks Fire-

Rescue Services since 1997 (see Figure 1 for watershed and gage locations).  The stream gage is 

located upstream of any diversion, and there is no development in the watershed, so the 

hydrology is relatively unaffected by humans.  Directly downstream from the stream gage, the 

water is diverted for drinking water, used by rare riparian species (such as native rainbow trout, 

alluvial sycamore, California red-legged frog, and California tiger salamander), and enjoyed by 

hikers and bikers in the Sunol Regional Wilderness.  Because of the value of this drainage area to 

both human and ecological needs, it serves as a useful case study for considering the interaction 

of climate and runoff. 
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Methods:  

 I began investigations of run-off processes by visiting Sunol Regional Wilderness on 

February 26, 2005 on a class field trip (7.1 cubic feet per second (cfs) at gage), and again on my 

own on April 2, 2005 (48 cfs at gage).  The Sunol Wilderness visitor center is several miles 

downstream from the USGS gage.  On April 2, 2005, I hiked up towards the gage, noting the 

water level, the soil types, bedrock outcrops, riparian and hillside vegetation, and land uses.  

Unfortunately, the San Francisco Public Utilities Commission blocked access to the gage and the 

upper watershed for security reasons, since the stream is diverted below the gage for drinking 

water.  However, the field visits did indicate the recreational and ecological uses of the creek 

downstream from the gage.   

I downloaded stream gage data from the USGS water resources website 

(http://water.usgs.gov) for gage number 11172945 titled “Alameda Creek above diversion near 

Sunol, CA.”  Data are available from October 1, 1994 till the present day, or 10.5 years of data.  

The USGS characterizes the records as “fair” (USGS, 2001).  I also downloaded the weather gage 

data from the California Data Exchange Center (http://cdec.water.ca.gov) for the Rose Peak gage.  

This gage is located at 2,500 feet above sea level, approximately 1 mile from Alameda creek, and 

approximately 2 miles from the stream gage (see Figure 1).  Data are available from April 28, 

1997 till the present day, or roughly 8 years of data.  The gage records hourly precipitation, air 

temperature, average wind speed, relative humidity, and other information.   

The stream gage data are only missing a few data points, and the USGS provides 

estimates for these data points on their website, which I used to complete the record.  The weather 

gage data had a considerably higher number of missing data points.  Of the 69,024 data points 

downloaded (2,876 days * 24 hours), 4,896 or 7% were missing.  The precipitation gage data is 

reported in annual cumulative totals for each hour.  I converted the hourly data to daily data by 

taking the maximum cumulative total recorded for each day.  When the data gaps lasted several 

days, I assumed that the annual cumulative precipitation increased linearly over these periods.  
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This tends to overestimate the number of days with rain, but it avoids the problem of having large 

precipitation spikes in the cumulative total when the gage starts working again.  I then converted 

the cumulative totals into daily totals by subtracting the previous day’s total from the current 

day’s total.   

Using the weather gage data as the input, I used two methods to predict the runoff for the 

upper Alameda Creek watershed.  This allowed a comparison of predicted runoff with the actual 

observed runoff from the stream gage.  For the first method, I downloaded the Army Corps of 

Engineer’s Hydrologic Engineering Center’s Hydrologic Modeling System 2.2.2 (Hec-HMS 

2.2.2) from their website (http://www.hec.usace.army.mil/).  I imported the cleaned stream and 

precipitation gage data into the program, and modeled the upper Alameda Creek as one sub-basin.  

I limited the time series to July 1, 1997 to March 10, 2005 since a precipitation record of the 

winter of 1997 was missing.  I began by calculating a Soil Conservation Survey curve number 

and a lag time based on the following equation:   

Y
SLTlag 1900

)1( 7.0
8.0 +

=  

where Tlag is the lag time in hours, L is the hydraulic length of the watershed in feet, S is the 

maximum retention in the watershed in inches as defined by S = 1000/CN – 10, CN is the curve 

number, and Y is the watershed slope in percent.  I calculated: L as 14.6 miles using the GIS 

software package ArcMap; CN as 75 using the observed watershed characteristics from the field 

visits, USDA soil surveys, aerial photos, and a table of runoff curve numbers from the Soil 

Conservation Service (1986); and Y as 2.75% from a digital elevation model based on USGS 

1:24,000 topographic maps.  Based on these inputs, I calculated a Tlag  of 19.1 hours.   

Hec-HMS provides an optimization routine to refine your parameters based on the data of 

an existing gage.  Using this routine, the optimized CN was 35.7, the optimal Tlag was 0.1 hours, 

and the sum of squared residuals between the predicted and observed flow data was almost 64 

million.  Since these optimized values do not seem reasonable and were considerably different 
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than the calculated values, I tested other loss rate, transform, and baseflow methods.  The method 

that gave me the lowest sum of squared residuals was the Green and Ampt loss method with a 

Snyder unit hydrograph transform and no baseflow.  The optimized parameters include a 

volumetric moisture deficit of 0.2, wetting front suction of 0.04 inches, a hydrologic conductivity 

of 0.0115 inches/hour, a Snyder lag of 38 hours and a Snyder peaking coefficient of 0.304.  This 

reduced the sum of squared residuals from 64 million to under 8 million, and the simulated 

volume of runoff of 114,000 acre feet was only 1% different than the observed value of 113,000 

acre feet over the modeled period.   

I used a second modeling technique by importing the precipitation, temperature, and 

runoff data into the SPSS statistical program.  Like the precipitation data, I had to clean the 

temperature data to avoid missing daily values.  I did this determining the average daily 

temperature for each month, and replacing any missing data with the monthly average.  I 

developed several additional variables to help model runoff, such as lagged precipitation and 

temperature for 1 to 5 days; an average temperature and precipitation for the proceeding 7, 10, 

and 30 days; and a cumulative index for precipitation for the proceeding 7, 10, and 30 days.  I 

also developed the following equation to calculate a precipitation decay variable: 

a
P

PP d
d

1−+=  

where Pd is the current day’s decayed precipitation value, P is the daily precipitation, Pd-1 is the 

previous day’s decayed precipitation, and a is a parameter that I varied from 0.1 to 1.  I ran a 

step-wise linear regression with daily stream flow as the dependent variable and all of the 

precipitation and temperature variables as the independent variables.  Since the daily stream flow 

in one day is highly correlated with the flow in the previous day, I also ran an auto-regressive 

time-series regression to remove this biasing effect. The sum of squared residuals is 6.1 million 

for the best fitting linear regression model and 4.4 million for the auto-regression model. 
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 For the climate change impacts, I used the results from a recent article published in the 

Proceedings of the National Academy of Sciences (PNAS).  The authors of this article 

downscaled the results from two global climate change models and two emissions scenarios to 

determine the impacts of climate change by 2100 (Hayhoe, 2004). I obtained a GIS raster file of 

their results for the high-end scenario, with a spatial resolution of 1/8 of a degree of longitude and 

latitude, or roughly 60 square miles.  Since the upper Alameda Creek is only 33.3 square miles, I 

used the predicted climate change impacts from one raster cell in the center of the watershed.  

The predicted changes include a 28.2% reduction in daily precipitation, and an annual increase of 

5.2˚ C. 

 To predict the impacts of climate change on the hydrology of upper Alameda Creek, I 

changed the Hec-HMS run options to a 0.718 ratio (which is the same as 1 – 28.2%) of the 

current precipitation, and re-ran model.  To predict the hydrology using the SPSS model, I 

duplicated the import data, but multiplied the precipitation by 0.718 and added 5.2˚C to each of 

the daily temperature records.  I then imported the data into SPSS again, set the estimation range 

to the original data, and had the program estimate values for the original and future data. 

 

Results: 

 Figures 2a and 2b show the paired daily hydrograph and precipitation data for the 

Alameda Creek and Rose Peak gages.  Figure 2a shows that the largest daily precipitation events 

for this period occurred in the 2002-2003 winter, followed by two large events in the 1999-2000 

winter.  Figure 2b shows a subset of the data presented in Figure 2a to illustrate the temporal 

relation between precipitation and runoff.  For the most part, the rainfall and runoff peaks occur 

within the same day.  Figure 2b also shows that in the beginning of the wet season, much of the 

rainfall is absorbed in the soil and does not runoff.  However, as the soil becomes saturated, 

almost all of the rain that falls, runs off.     
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 Table 1 shows the average temperature, total precipitation, and discharge by year.  I 

calculated annual totals from July 1 for each year to fully capture all of the rain before each wet 

season.  The wettest year for precipitation was the 1997-98 winter.  1997-98 also has the highest 

annual discharge, followed by 1998-99.  Table 1 also shows the change in storage in the basin 

due to evaporation, transpiration, and groundwater flows.  Finally, Table 1 shows the percent of 

the rainfall that runs off via Alameda Creek each year.  This percentage is highest in wet years, 

and lowest in dry years. 

 Figure 3 shows the observed and Hec-HMS predicted hydrograph for July 1997 to March 

2005.  The Hec-HMS model under-predicts many of the peak flows, especially in wet years like 

1997-98 and 1999-00.  The model also over-predicts flows early in the winter.  Figure 4 shows 

the same information as Figure 3 for July 1997-June 1998 (a wet year) and Figure 5 shows the 

same information for July 2000 to June 2001 (a dry year).  These figures emphasize the 

differences between the modeled and observed hydrographs.   

 Table 2 shows the results for the best-fitting SPSS auto-regressive (AR(1)) model and a 

description of the variables used in the model.  The unstandardized coefficient B indicates the 

predicted change in discharge given a one-unit increase in the variable, holding all else equal.  

For example, a one-inch increase in daily precipitation (P) will result in an increase of 65 cfs for 

that day.  Based on the relative size of the coefficients, the most important variables in predicting 

runoff are the decayed precipitation, the daily precipitation, and the 1-day lag of daily 

precipitation.  All of the variables have the expected sign except for the two temperature 

variables.  Theoretically, increased temperature should lead to an increase in evaporation and 

transpiration, which would lower the amount of excess runoff.  In addition, the summer months 

have higher air temperatures and have very low flows.  However, the model shows a positive 

relationship between temperature and runoff.  The “t” and “sig.” columns show that all of the 

variables except the 10-day average temperature (T_10AVG) are significant.  T_10AVG is kept 

in the model because it was significant in other regression models, and it makes theoretical sense 
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to include it.  The R squared of 0.64 indicates that the variables in the model explain 64% of the 

total variation in the discharge record.   

 Figures 6, 7, and 8 show the same information as Figures 3, 4, and 5, but with the 

predicted discharge from the SPSS AR(1) model.  Figure 6 shows that the SPSS model does a 

better job at predicting the peak flows, but it still does not estimate the peaks as high as the 

observed peaks.  Figure 7 shows the SPSS model tracks the observed discharge values more 

closely than the Hec-HMS model.  Figure 8 shows that the SPSS model still predicts a few flows 

that did not exist, and predicts existing flows too early.  However, it is an improvement over the 

Hec-HMS model.   

 Table 3 shows a numerical comparison between observed, Hec-HMS, and SPSS model 

outputs for both annual discharge and peak flows.  The SPSS model fits the observed data better 

since its sum of squared residuals (SSR) of 4.4 million is half that of the Hec-HMS model (7.8 

million).  The SPSS model comes closer to predicting the annual discharge for each year, but both 

models under-predict and over-predict in the same years.  Interestingly, there is no clear 

correlation between over- and under-prediction and relative rainfall.  For example, both models 

under-predict discharge in the wettest year (1997-98), but over-predict discharge in the next two 

wettest years (1999-2000 and 2002-2003). The SPSS model also does a better job at predicting 

peak flows, but is still under the observed daily peak flows. Both models come very close to 

predicting the total discharge for the entire period of 112,688 acre-feet.  

 Table 4 shows the results of the climate change analysis in comparison with the observed 

data for the historical period.  The Hec-HMS climate change predictions are based on a 28% 

reduction in daily precipitation.  This results in a 46% reduction in total discharge and 

significantly lower peak flows.  The SPSS predictions are based on both a 28% reduction in 

precipitation and a 5.2˚C in average daily temperatures.  This has a more moderate affect on total 

discharge, with a 22% reduction in total discharge.  This could be a result of the positive 

coefficient on the temperature variable in the SPSS regression output.  The SPSS model also 
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predicts lower peaks flows. Figures  9, 10, and 11 show a comparison of the hydrographs for the 

entire future period, a wet year, and a dry year.   

 

Discussion: 

 This analysis shows the importance of field data to calibrate and check the results of 

hydrologic models such as Hec-HMS.  Having gage data can help to calibrate the model, and help 

choose which methods to use.  The SPSS AR(1) model provides a good fit for the observed data, 

but the results are not applicable to other watersheds of different sizes and locations.  However, 

this method can be used on gaged watersheds to help predict hydrologic conditions for un-gaged 

or future periods.  Both models still have a high sum of squared residuals indicating that they 

have somewhat low predictive power.  The SPSS AR(1) model is the best fitting, but it still only 

explains 64% of the variation in observed discharge.  While some of the remaining 36% of the 

variation could be a result of inaccuracies in the precipitation and discharge data, additional 

missing variables could include changes in vegetation growth resulting from fire or diseases, 

fluctuations in groundwater flow, and variation in evaporation and transpiration due to changes in 

cloud cover.   

 The models predict that annual discharge will drop by 22 to 46% as a result of climate 

change. This could have significant impacts to drinking water supply, natural habitats, and 

recreational use.  Demand of clean potable water will increase as California’s population rises.  

This may cause the San Francisco Public Utilities Commission to increase the amount of water 

diverted below the gage.  This will cause an even greater reduction in water for the recreational 

users at Sunol Regional Wilderness and the rare and endangered species that rely on the creek.  

Lower peak flows will also alter the channel morphology and reduce the amount of fresh habitat 

for pioneer riparian vegetation.  Climate change could have similar results on downstream 

hydrology as a large dam in the upper Alameda Creek drainage area.  
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 While the results of this analysis are significant, there are several areas of uncertainty in 

the data and the prediction methods.  The climate change predictions indicate average annual 

precipitation may change, but they do not estimate the variability in annual precipitation.  For 

example, many scientists believe that climate change will cause more extremely wet years, 

followed by long periods of drought.  If this pattern differs considerably from historical patterns, 

the natural systems that rely on precipitation and continuous stream flow may not be able to 

survive.  This analysis does not model any impacts associated with changes in annual variation in 

precipitation, but this would be an area for interesting future research. 

 There are also uncertainties associated with the data and predictions used in the models.  

The stream gage data is classified as “fair” by the USGS, and 7% of the precipitation gage data is 

missing from the record.  While the daily data set is rich, the eight full years only covers a small 

portion of the annual variation in precipitation and stream flow.  The modeling at best only 

explains 64% of the observed data, so it is likely to explain even less of the future data.  The 

climate change predictions are getting better, but many models still predict more precipitation in 

California, rather than less.  Finally, the largest source of uncertainty over the next 100 years is 

human action.  If emissions are controlled, climate change could be less severe.  New 

development in the upper Alameda Creek area could also affect the hydrology by increasing 

impervious surface area.  Despite these uncertainties, it is important to try to predict future 

scenarios and the response of natural systems to climate change to help make appropriate 

planning decisions now. 

 

Conclusion: 

 While current climate change models predict differing outcomes by 2100, especially with 

regard to precipitation, the most recent high-end scenario climate change prediction for the upper 

Alameda Creek watershed indicates an increase of 5.2˚C and a 28% decrease in precipitation.  

With the existing field data for this watershed, I was able to create a rainfall-runoff model using 
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the Hec-HMS model and multivariate regression techniques.  While I was unable to accurately 

model some of the natural variation in peak flows, the two models were able to predict the total 

volume of runoff within 1% of the observed data.  With these models, I was able to predict the 

average annual discharge of the upper Alameda Creek watershed will drop by 22 to 46% with a 

similar reduction in peak flows by 2100.  The recent high-end climate change predictions indicate 

similar reductions in precipitation and increases in temperature throughout California.  If the 

results for this watershed can be applied to other watersheds in California, the impacts to water 

supply, riparian habitat, and recreational use of our rivers will be significant.      
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Figure 1:  Location of Upper Alameda Creek 
Watershed and Gages
Sources:  Elevation data from USGS (seamless.usgs.gov)
Streams and waterbodies from California Spatial Information Library (www.gis.ca.gov)
Gage locations from California Data Exchange Center (cdec.water.ca.gov)



Figure 2a:  Daily Data for Alameda Creek Gage above Diversion (USGS #11172945) and Rose 
Peak Precipitation Gage, July 1997 to March 2005
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Figure 2b:  Daily Data for Alameda Creek Gage above Diversion (USGS #11172945) and Rose 
Peak Precipitation Gage, November 1997 to February 1998
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Figure 3:  Hec-HMS Optimized Model Output and Observed Hydrograph
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Figure 4:  Hec-HMS Optimized Model Output and Observed Hydrograph 
 for July 1997 to June 1998 (Wet Year)
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Figure 5:  Hec-HMS Optimized Model Output and Observed Hydrograph
for July 2000 to June 01 (Dry Year)
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Figure 6:  SPSS Optimized Model Output and Observed Hydrograph
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Figure 7:  SPSS Optimized Model Output and Observed Hydrograph 
for July 1997 to June 1998 (Wet Year)
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Figure 8:  SPSS Optimized Model Output and Observed Hydrograph
for July 2000 to June 01 (Dry Year)
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Figure 9:  Climate Change Model Outputs and Observed Hydrograph

-200

0

200

400

600

800

1,000

1,200
Ju

l-9
7

O
ct

-9
7

Ja
n-

98

A
pr

-9
8

Ju
l-9

8

O
ct

-9
8

Ja
n-

99

A
pr

-9
9

Ju
l-9

9

O
ct

-9
9

Ja
n-

00

A
pr

-0
0

Ju
l-0

0

O
ct

-0
0

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

A
pr

-0
2

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

A
pr

-0
3

Ju
l-0

3

O
ct

-0
3

Ja
n-

04

A
pr

-0
4

Ju
l-0

4

O
ct

-0
4

Ja
n-

05

D
ai

ly
 D

is
ch

ar
ge

 (c
fs

)

Observed Discharge

SPSS AR(1) Climate Change Discharge

Hec-HMS Climate Change Discharge



Figure 10:  Climate Change Model Outputs and Observed Hydrograph 
for July 1997 to June 1998 (Wet Year)
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Figure 11:  Climate Change Model Outputs and Observed Hydrograph
for July 2000 to June 01 (Dry Year)
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Table 1:  Summary of Annual Precipitation, Temperature, and Discharge Information 
for Upper Alameda Creek Drainage Basin 

Year 
(starting 
July 1) 

Days Average 
Temp. 

(C) 

Annual 
Precip. 

(in) 

Basin 
Annual 
Precip.  
(ac ft) 

Discharge 
(ac ft) 

Change 
in 

Storage 
(ac ft) 

Runoff 
% of 

Precip 

          
1997-98 365 53.2 30.32 53,848 35,637 18,211 66%
1998-99 365 55.0 17.53 31,133 16,953 14,180 54%
1999-2000 366 57.3 22.09 39,232 15,385 23,847 39%
2000-01 365 56.6 14.35 25,486 6,266 19,219 25%
2001-02 365 56.4 18.83 33,442 6,386 27,056 19%
2002-03 365 57.1 22.35 39,694 12,863 26,830 32%
2003-04 366 57.5 16.43 29,180 8,243 20,936 28%
2004-05* 255 55.5 20.05 35,609 10,953 24,656 31%
Total  2812 56.1 161.95 287,623 112,688 174,936 39%
* 2004-2005 records for July 1, 2004 through March 8, 2005       

 
Table 2:  SPSS Model Variables and Coefficients 

Variable Unstandardized Coefficients t Sig. 
  B Std. Error     
(Constant) -70.022 14.122 -4.958 0.000 
DEC_DUM 11.737 4.609 2.546 0.011 
P 64.726 9.843 6.576 0.000 
P_LAG1 56.924 6.533 8.714 0.000 
P_30CUM 7.668 1.201 6.382 0.000 
DECAY0.7 66.023 9.157 7.210 0.000 
T_LAG1 0.630 0.151 4.165 0.000 
T_10AVG 0.309 0.256 1.208 0.227 
AR(1) 0.533 0.016 33.315 0.000 
Dependent Variable:  Discharge (cfs); Sum of Squared Residuals: 4,406,119; R square: 0.64 

Variable Description       
DEC_DUM Dummy variable that is 1 for the months of December - April 
P Daily precipitation (in)    
P_LAG1 1 day lag of daily precipitation (in)   
P_30CUM 30-day cumulative total of daily precipitation (in)   
DECAY0.7 Daily precipitation decayed at a rate of 0.7   
T_LAG1 1-day lag of daily average temperature   
T_10AVG 10-day average of daily temperature   
AR(1) Autocorrellation parameter     

 



 
Table 3:  Summary of Annual Discharge and Daily Peak Flow for Upper 

Alameda Creek Drainage Basin 

Year 
(starting 
July 1) 

Observed 
Discharge 

(ac ft) 

Observed 
Peak 
(cfs) 

Hec-HMS 
Discharge 

(ac ft) 

Hec-
HMS 
Peak 
(cfs) 

SPSS 
Discharge 

(ac ft) 

SPSS 
Peak 
(cfs) 

SSR1   7,854,247  4,406,119   
1997-98 35,637 1120 21,132 334 29,879 669 
1998-99 16,953 628 9,435 218 13,728 398 
1999-00 15,385 693 18,718 397 16,020 544 
2000-01 6,266 278 7,581 150 6,880 161 
2001-02 6,386 324 14,185 196 9,261 232 
2002-03 12,863 584 19,692 461 14,777 452 
2003-04 8,243 552 9,282 132 9,312 331 
2004-052 10,953 402 13,928 284 12,782 415 
Total  112,688   113,953   112,639   
1: Sum of Squared Residuals (lower values indicate a better model fit) 
2: 2004-2005 records for July 1, 2004 through March 8, 2005     

 
 



Table 4:  Summary of Annual Discharge and Daily Peak Flow for Upper Alameda Creek Drainage Basin with Climate Change 

Year 
(starting 
July 1) 

Observed 
Discharge 

(ac ft) 

Observed 
Peak 
(cfs) 

Year 
(starting 
July 1) 

Hec-HMS 
Discharge 

(ac ft) 

% of 
Historical

Hec-
HMS 
Peak 
(cfs) 

% of 
Historical

SPSS 
Discharge 

(ac ft) 

% of 
Historical

SPSS 
Peak 
(cfs) 

% of 
Historical

Historical Period Future Period 
1997-98 35,637 1120 2097-98 11,147 31% 207 18% 17,174 48% 257 23%
1998-99 16,953 628 2098-99 4,494 27% 129 21% 7,933 47% 178 28%
1999-00 15,385 693 2099-00 10,266 67% 250 36% 13,257 86% 257 37%
2000-01 6,266 278 2100-01 3,400 54% 80 29% 6,528 104% 130 47%
2001-02 6,386 324 2101-02 7,421 116% 114 35% 10,043 157% 180 55%
2002-03 12,863 584 2102-03 11,558 90% 298 51% 13,370 104% 267 46%
2003-04 8,243 552 2103-04 4,446 54% 73 13% 8,833 107% 128 23%
2004-05* 10,953 402 2104-05* 7,700 70% 177 44% 11,291 103% 216 54%
Total  112,688     60,433 54%     88,429 78%     
* 2104-2105 records for July 1, 2104 through March 8, 2105               
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