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Abstract 

Scatterplot research has identified factors that impact people’s 
perception of correlation magnitudes, yet much less is known 
about how people reason about data represented in scatterplots. 
We investigated how people make correlational and causal 
inferences based on scatterplots with and without outliers. In 
Experiment 1 and 2, participants viewed scatterplots matched 
in overall correlational magnitude depicted, but half had an 
outlier. In Experiment 3, the scatterplots in the two conditions 
were matched in the correlation magnitude depicted by all the 
dots excluding the outlier. For each scatterplot, participants 
stated their endorsement for correlational (X and Y change 
together) and causal statements (X changes Y). Only when 
outliers further strengthened an already moderate to strong 
relationship, people endorsed related correlational statements 
more and showed a stronger causality bias. Altogether we 
demonstrate that the impact of outliers in scatterplots on visual 
reasoning depends on the strength of the relationship depicted. 

Keywords: scatterplot; outlier; causality bias  

Introduction 
In both scientific and everyday communication of data, 
graphs are utilized more than other data visualizations. It is 
well known that graphs can be effective in communicating 
various risks (Fagerlin et al., 2011; Lipkus & Hollands, 
1999), financial information (Beattie & Jones, 2008; Merkl-
Davies & Brennan, 2007) and evolving global trends, as we 
clearly saw in the recent pandemic (Charterjee et al., 2021; 
Fansher et al., 2022a; Romano et al., 2020; Zacks & 
Franconeri, 2021). However, it is also known that graphs can 
be misleading either because people do not have the levels of 
graph literacy to ensure their effective processing (Galesic & 
Garcia-Retamero, 2011; Lee et al.,2017), or because graph 
formats lead to various interpretive biases (Fansher et al., 
2022b; Shah & Hoeffner, 2002; Tumen & Boduroglu, 2022). 
There are also some controversial findings as to whether 
graphs increase or hinder scientific reasoning (e.g. Tal, 2015; 
Tal & Wansick, 2016, but also see Dragisevic & Jansen 2015; 
Fansher et al., 2022c).  

One major class of scientific reasoning errors is known as 
the causality bias, the tendency to erroneously make 
inferences of causality from correlational data (Shah et al., 
2017). It has been shown that people often conclude that A is 
caused by B based only on a correlation between these two 
variables (Bleske-Rechek et al., 2015; Rodriguez et al. 2016), 

failing to acknowledge the possibility of third variables that 
could be driving the relationship (Klaczynski et al., 1997; 
Shah et al., 2017). 

Very few studies have investigated this bias in relation to 
graphical depictions of data. While Fansher et al. (2022c) 
reported that bar graphs and line graphs do not lead to 
increases in causality bias, Xiong and colleagues (2019) 
reported that scatterplots and bar graphs increased causal 
inferences compared to line graphs. These inconsistent 
findings could be partly due to methodological differences 
between studies; much research has shown that basic 
graphical elements and data features impact graph 
perception.  In the current study, we specifically focused on 
scatterplots and investigated whether the presence of outliers 
in the data differentially impacted endorsement of 
correlational or causal inferences. 

Outliers & Scatterplots 
Visual outliers are features that deviate from a local 

distribution of features and their saliency is a function of their 
deviation from the remaining set (Rosenholtz, 1999; 
Hochstein et al., 2018). It is well established that the visual 
system can rapidly identify outliers (Treisman & Gelade, 
1980; Wolfe, 1994). Furthermore, recent work has shown that 
outliers are represented with high resolution (Avcı & 
Boduroglu, 2020) and are obligatorily processed along with 
remaining items in a scene and cannot be totally disregarded 
(Cant & Xu, 2020). Despite these findings on processing of 
visual outliers, there is limited research translating and 
integrating these perceptual findings into the graph 
processing realm. Specifically, how presence of outliers 
influence scatterplot processing is still not fully understood. 

It is known that in scatterplots, viewers can extract 
correlation magnitude with moderate accuracy, and these 
estimations are impacted by various visual features of the 
scatterplot. Early studies have typically asked participants to 
intuitively estimate the association strength between the 
variables depicted in scatterplots (e.g. Bobko & Karren, 
1979; Cleveland, Diaconis & McGill, 1982; Cleveland & 
McGill, 1984; Meyer, Taieb & Flasher, 1997); a smaller 
subset of studies asked participants to discriminate between 
two simultaneously presented scatterplots whose certain 
properties were manipulated (e.g. Doherty, Anderson, Angott 
& Klopfer, 2007; Pollack, 1960; Rensink & Baldridge, 2010; 
Rensink, 2017). Regardless of the methodology used, studies 
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have typically shown that viewers’ estimates are not veridical 
(e.g. Cleveland et al., 1982; Meyer et al., 1997), with 
estimates showing greater deviations from the actual for 
weaker than stronger correlations (e.g. Bobko & Karren, 
1979; Cleveland et al., 1982; Correll & Heer, 2017; Meyer et 
al., 1997). A number of these earlier studies have also 
investigated how viewers are influenced by the presence of 
outliers in scatterplots while estimating associations between 
variables. These studies have shown that people typically 
disregard or minimize the impact of outlier(s) when making 
estimates (Bobko & Karren, 1979; Meyer & Shinar, 1992; 
Meyer et al., 1997; Rensink, 2010; Wainer & Thissen, 1979; 
for a more recent account see Ciccione et al., 2023).  

Unlike these studies focusing on estimating correlation 
magnitude, a smaller set of studies have investigated how 
outliers impact extracted trends. For instance, Correll & Heer 
(2017) demonstrated that viewers excluded outlier clusters 
while estimating trend-lines. However, when the impact of 
single outliers on trend-line estimates were investigated, 
there was no evidence that they were excluded (Oral & 
Boduroglu, 2022). In addition to methodological details that 
vary across these studies, this seeming contradiction between 
the exclusion of outlier clusters and the inclusion of outlier 
points in trend estimates may be partly due to the perceptual 
difference between a cluster and a single outlier point. 
Specifically, the cluster may have been processed as a 
separate entity from the remaining items and could have been 
therefore excluded from trend estimates. While these studies 
speak to the processing of outliers in scatterplots, they do not 
address how outliers impact reasoning about data presented 
in scatterplots. 

Present Study 
In three experiments, we specifically investigated whether 
the presence of outliers in scatterplots influenced people’s 
tendency to differentially endorse correlational and causal 
statements. Perception research suggests that people exclude 
distinct outliers as they summarize other remaining visual 
elements (Avcı & Boduroglu, 2021; Epstein et al., 2020). On 
the other hand, trend-line estimate studies suggest single 
outliers are not excluded from trend-line estimates. Even if 
outliers were initially excluded as trends are summarized, 
they could nevertheless impact subsequent visual reasoning 
processes. By visual reasoning processes we refer to 
processes related to the comprehension of the data. 
Specifically, whether people conclude there is a correlational 
or causal relationship between variables depicted. In all three 
experiments, we presented participants with a series of 
scatterplots; half of these scatterplots had an outlier that 
differed from the remaining data spatially on both axes 
(outlier+) but was trend-consistent. In Experiment 1 and 2, 
the outlier+ and no-outlier displays were matched on overall 
correlation magnitude. This meant that the major cluster in 
outlier+ displays (i.e. the outlier excluded) in fact depicted a 
weaker relationship than the matching no-outlier display. 
these experiments were identical except for the magnitude of 
the relationships depicted. Experiment 1 and 2 were identical 

in all regards except that in Experiment 1, scatterplots 
depicted moderate (.4-.7) and in Experiment 2, scatterplots 
depicted weaker relationships (.2-.4) (for example stimuli see 
Figure 1). In Experiment 3, we matched the magnitude of the 
relationship between the outlier-excluded cluster in outlier+ 
and the no-outlier scatterplots; outliers in the outlier+ 
scatterplots further strengthened an existing moderate-to-
strong relationship (see Figure 2). In each experiment, after 
viewing each scatterplot, participants were presented with 
one of two statements, either a correlational statement (X and 
Y change together) or a causal statement (X changes Y) and 
were asked to rate their agreement on a 0-100 scale. The exact 
phrasing of these statements was determined after extensive 
piloting. 

If participants were not excluding outliers while reasoning 
about the data presented in scatterplots, then there should be 
no difference in endorsement for correlational and causal 
statements in Experiment 1 and 2, because in these two 
experiments, the outlier+ and no-outlier displays were 
matched in magnitude. On the other hand, in Experiment 3, 
given outlier+ scatterplots depicted a stronger relationship 
than no-outlier scatterplots, and that outliers amplified an 
already moderate relationship, one would expect there to be 
greater support for correlational statements for outlier+ 
compared to no-outlier scatterplots.   

If participants were excluding outliers during visual 
reasoning, then this could influence perceived correlational 
magnitudes; consequently, in the first two experiments for 
no-outlier scatterplots, correlational statements should be 
endorsed more strongly than for outlier+ scatterplots because 
the former would likely be perceived as depicting stronger 
relationships. We expected this to be particularly true for 
Experiment 1 where moderate relationships were depicted. In 
Experiment 2, since weak relationships were predicted, we 
thought there may be greater error in perceived correlational 
magnitudes (Rensink, 2017) and outlier presence may have 
less of an impact on endorsement of correlational statements. 
In Experiment 3, exclusion of outliers during the reasoning 
process should result in perception of similar magnitude 
relationships across the outlier+ and no-outlier displays; if 
this were the case, the endorsement for correlational 
statements should be similar.  

While the literature does not allow us to make clear 
predictions regarding endorsement for causality statements, 
we expected people to make stronger endorsement for 
causality when the perceived relationship was stronger than 
weaker. Simply put, if it is thought that A and B are not 
related, then it would be unlikely that A and B would be 
thought of as causally related. This anticipation should result 
in stronger endorsement of causality in Experiment 1 
(moderate relationships) than in Experiment 2 (weak 
relationships). With regards to the impact of outlier presence 
in scatterplots, whether they would impact perceived 
causality could vary as a function of whether they are 
excluded (or not). If outliers were excluded from the 
reasoning process, then causal statements could be endorsed 
more in the no-outlier than in the outlier+ condition in  
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Figure 1: The top and bottom row presents example 

stimuli from Experiment 1 and 2, respectively. For the 
outlier+ graphs, the correlation magnitude with and without 

the outliers are both indicated. 
 

Experiment 1; similar levels of causality endorsement would 
be expected across the two conditions in Experiment 3.  

Given the similarity of the three experiments, the method 
and results of these three experiments are be presented 
together.  

Method 

Participants 
In all three experiments, Bogazici University undergraduates, 
with normal or corrected-to-normal vision, participated in an 
online experiment in return for course credit. Based on a 
priori determined exclusion criteria, participants failing the 
attention checks, those who gave the same rating on more 
than 80 % of the trials, and whose ratings and study 
completion times exceeded that of the sample by 3 SD’s were 
not included in subsequent analyses (26, 14 and 8 participants 
in Experiment 1-3, respectively). This left us with 106 
participants (59 female, 44 male, 3 Other) in Experiment 1, 
114 participants (64 female, 49 male, 1 Other) in Experiment 
2 and 108 participants (60 female, 40 male, 8 Other) in 
Experiment 3. Target sample size was determined based on 
Xiong et al. (2019). 

Scatterplot task 
In all three experiments, participants completed the same 
scatterplot task. The task was programmed in PsyToolKit. 
We first describe the general structure of the task and then 
highlight experiment-specific variations.  

The experiment started with a very brief familiarization 
phase where participants were shown an example scatterplot 
and introduced to graph elements (the x and y axis, the dots 
etc.). Participants were told that on each trial they would be 
presented with a scatterplot and a statement underneath. 
Upon inspecting the data presented in the scatterplot, they 

were to indicate how much they agreed with that particular 
statement using a 0-100 slider scale (anchors: I disagree vs. I 
agree; cursor left flushed). They were told to pay attention to 
the statements and that these statements would vary.  

On each trial, participants were centrally presented with a 
scatterplot depicting 20 black points on a gray background; 
to minimize impact of prior beliefs, axis were not labelled. 
Underneath each scatterplot, there was one of two statements: 
“X changes Y” (causal statement) or “X and Y change 
together/X and Y jointly change” (correlational statement). 
For each experiment, 20 scatterplots were created, half  
depicting a positive and the other half depicting a negative 
relationship. Half of these were outlier+ scatterplots, yoked 
to no-outlier scatterplots. Each scatterplot was presented 
twice in random order, once coupled with the correlational 
and the other time coupled with the causal statement. 

In outlier+ scatterplots, the spatial location of the outlier 
point was determined based on the trend of the data, ensuring 
that the outlier was trend-consistent. This meant that for 
positive trends the outlier was presented in either the lower 
left or the upper right corners of the remaining data cloud. 
The reverse was true for negative trends. The position of the 
outlier point was determined so that the corresponding value 
deviated at least by 2.5 SDs (max 3SDs) from the remaining 
data cloud on both the X and Y axis. In Experiment 1 & 2, 
the magnitude of the correlations for outlier+ and no-outlier 
scatterplots were matched. The only difference between these 
two experiments was that in Experiment 1 scatterplots 
depicted moderate relationships (average r = .65, with 
correlation magnitudes ranging between .42 - .69) and 
Experiment 2 depicted weak relationships (average r = .30, 
with correlation magnitudes ranging between .21 - .39). In 
Experiment 3, the global correlation magnitude in the no-
outlier and the outlier+ was not matched. Instead, we created 
19 point scatterplots and for the no-outlier condition, we 
added another dot around the centroid of the data cloud; for 
outlier+ scatterplots, we added an additional trend-consistent 
outlier point that further amplified the trend depicted by the 
19 points in the data cloud. This resulted in no-outlier 
scatterplots that depicted moderate relationships (r =.5 - .7)  
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Figure 2: Example stimuli from Experiment 3. The left 
panel represent the trend-consistent outlier condition, and 

the right panel represents the no outlier condition. The 
outlier is circled for emphasis.  In both cases (purple 

outlined), the main data cluster revealed a correlation of 
identical magnitude, but in the outlier condition, the outlier 

increased the strength of association. 
 
and outlier+ scatterplots that depicted stronger relationships 
(r=.75 - .82), (see Figure 2). 

Individual Differences Measures 
Upon completion of the scatterplot task, in Experiment 1 

and 2, participants also completed graph literacy and a 
scientific reasoning scales. To measure graph literacy, we 
used a 7-item subscale on scatterplot processing from the 
Visualization Literacy Assessment Test (Lee et al., 2017). To 
measure scientific reasoning, we used the 11 item Scientific 
Reasoning Scale (Drummond & Fischhoff, 2015). 
Performance on both these scales were highly and negatively 
skewed and because of restricted range problems we could 
not utilize these data as individual difference measures. 
Because of that, in Experiment 3, these scales were omitted. 

Results 
In all three experiments, for each participant we calculated 
the average endorsement for correlational and causal 
statements for outlier+ and no-outlier scatterplots. Table 1 
presents the average endorsement for correlational and causal 
statements across the three experiments, and the comparison 
of the no-outlier and the outlier+ conditions. For each 
experiment, we separately carried out a 2 (Statement type: 
correlational, causal) X2 (Scatterplot type: no-outlier, 
outlier+) repeated measures ANOVA on the endorsement 
ratings.  

In Experiment 1, the analyses revealed a main effect of 
scatterplot type (F(1,105)=24.53, p<.001,ηp

2 =.189) that was 
qualified by a scatterplot type X statement type interaction 
(F(1,105)=7.178, p<.008,ηp

2=.064). This pattern was due to 
participants giving higher ratings to no-outlier displays. More 
specifically, while participants gave much stronger 
endorsement to correlational statements in the no-outlier 
condition than in the outlier+ condition (d=.36), the same was 
not true for the causal sentences (d=.13). This suggested that 
participants may have been at least partially excluding the 
outlier during their visual reasoning process. Furthermore,  

Table 1: Endorsement of correlational and causal 
statements  

 

 
the higher ratings for correlational statements may reflect a 
certain level of awareness that moderate correlations between 
variables do not necessarily imply a causal link; given that 
this particular sample had both high scientific reasoning and 
graph literacy this may not be surprising. Furthermore, there 
was a moderate relationship between endorsement for 
correlational statements and the correlation magnitude 
depicted in the scatterplots (r=.48, p=.034).   

In Experiment 2, the same 2X2 ANOVA analyses revealed 
a main effect of statement type (F(1,113)=9.31, 
p<.002,ηp

2=.08) and a weaker yet significant main effect of 
scatterplot type (F(1,113)=23.84, p<.001,ηp

2=.02). The 
interaction did not reach significance, F<1. These results 
partially replicate Experiment 1 in that no-outlier scatterplots 
(M=46.5) received higher ratings than outlier+ (41.8) 
regardless of statement type. This suggests that participants 
may had been excluding, at least partially, the outlier as they 
reasoned about the data presented in the scatterplots, because 
as in Experiment 1, in Experiment 2, no-outlier displays 
depicted stronger relationships. Critically, this experiment 
also demonstrated that when weaker relationships were 
presented in scatterplots, endorsements of causality was 
lower (47.4 vs. 40.8), consistent with our expectations of a 
general awareness that unrelated (or weakly related) variables 
are less likely to be causally related. 

In the third experiment, unlike in the first two, instead of 
equating the overall correlation magnitude, we had equated 
the correlation represented by the 19 dots in the outlier+ (i.e. 
excluding the outlier) and that represented in the no-outlier 
condition. In this case, the presence of a trend-consistent 
outlier amplified the local moderate relationship. If 
participants were excluding outliers regardless, then in this 
experiment, endorsement of statements should not have 
varied across conditions. Contrary to these expectations, in 
Experiment 3, outlier+ (57.4) scatterplots received higher 
endorsement than no-outlier (51.3) scatterplots, (F (1,107) 
=32.72, p<.001, ηp

2=.23). The statement type X scatterplot 
type interaction did not reach significance, (F (1,107) = 2.58, 
p=.11, ηp

2=.02). Nevertheless, to follow-up on our a priori 
expectations, our inspection of the endorsement of 
correlational and causal statements revealed an interesting 
pattern. There seemed to be a moderate impact of outlier 
presence on endorsement of causal statements (d=.33) and 
this effect was almost as strong as the effect of outliers on 
correlational statements (d=.36) in Experiment 1. We believe 
that these findings may suggest that when outliers further 

Statement Expt.   No-Outlier M (SD) Outlier+ M (SD) Cohen’s d 

  Expt 1  53.6 (18.6)  46.6(20.0)  .36 

Correlational Expt 2  50.2 (21.1)  44.6 (21.6)  .26 

  Expt 3  52.0 (20.9)  56.9 (20.3)  .24  

  Expt 1  50.2 (19.4)  47.7(20.0)  .13 

Causal  Expt 2  42.7 (22.0)  38.9 (22.1)  .17 

  Expt 3  50.5 (21.9)  57.8 (21.9)  .33 
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amplify an existing moderate trend, participants may be more 
likely to exhibit causality bias, misinterpreting correlational 
relationships as causal. 

Discussion 
These three experiments are among the first to investigate the 
impact of outliers on how people perceive both the 
correlational and causal relationships between variables 
depicted in scatterplots. Bringing together insights from 
visual perception, graph processing and reasoning, we 
believe our work offers an initial yet unique perspective as to 
when and why participants may exhibit a causality bias when 
viewing sets of correlational data. We specifically 
demonstrate that only when outliers enhance moderate 
relationships, participants are more likely to infer causality. 
However, in other conditions, participants refrained from 
making strong causal inferences. Thus, the impact of the 
outlier seems to be dependent on what is conveyed by the 
broader correlational data. Specifically, only when outliers 
increase the correlation magnitude depicted in the scatterplot, 
it leads to meaningful increases in the endorsement of 
correlational and causal relationships. Our findings go 
beyond recent studies that have investigated the relationship 
between graphical depictions of data and causality bias (e.g. 
Fansher et al., 2020c; Xiong et al., 2017) because those work 
do not directly address the issue of outliers. We argue that 
systematic investigations into the effect of outliers on 
reasoning is worthwhile because research has shown that 
people can focus on aberrations in data patterns especially 
when trying to challenge scientific truths (e.g. for the climate 
change context see Ranney & Clark, 2016). Furthermore, 
belief in pseudoscience is often associated with illusions of 
causality (Torres et al, 2020). If outliers in certain patterns 
enhance moderate relationships, this may lead people to 
misinterpret trends, and show unwarranted yet stronger belief 
in the data. If these data confirm with existing worldviews, 
this could further lead to confirmation and/or myside-type 
biases. 

Due to restricted range problems we were not able to 
investigate the impact of graph literacy and scientific 
reasoning on scatterplot processing. Nevertheless, we must 
note that our particular sample of college students had high 
graph literacy and scientific reasoning scores. Taking this 
into account, the three experiments revealed that, individuals 
with high graph literacy and scientific reasoning, can 
accurately process data presented in scatterplots: For 
instance, in the first two experiments when presented 
relationships were weak or moderate, participants were not 
misguided by outlier values. They were able to disregard the 
impact of these outlier data points. People were also sensitive 
to the magnitude of the relationship depicted: endorsement of 
correlational statements increased as a function of actual 
correlation magnitude in the scatterplot. Comparison of 
endorsement given to both correlational and causal 
statements across Experiment 2 and 3 are consistent with this 
interpretation. Also, when scatterplots depicted weaker 

relationships, causal statements received lower endorsement 
(see Table 1). 

 
 

Figure 3: the relationship between gun ownership per 100 
people and gun deaths per 100K people across countries.  

 
It is possible that our choice to use no-context as we 

presented these scatterplots, may have influenced the results 
and possibly made it easier to ignore outliers in Experiment 
1 and 2. If context were to be provided, participants’ 
vulnerability to top-down factors could have influenced their 
endorsement for correlation and causal statements. 
Specifically, if an outlier point represented a familiar case, 
then its impact may be much harder to ignore, even if the data  
set represented a relatively weak relationship. We believe 
Figure 3 illustrates this possibility. 

Figure 3 shows the relationship between gun ownership 
and gun deaths per 100K people across countries (figure and 
data from: http://mark.reid.name/blog/gun-deaths-vs-gun 
ownership.html). The red arrow was added to highlight the 
data point representing the United States. When the data from 
the US is excluded, the correlation magnitude of the 
remaining data is approximately around .40; if the US data is 
included, the correlation surpasses .60. As one inspects this 
data, once a salient and publicly discussed case is recognized, 
it might be much harder to ignore its impact. What remains 
unknown is whether in these cases people disproportionately 
exhibit causality bias. Given the importance of and 
challenges associated with everyday reasoning (Shah et al., 
2019), future work needs to replicate and extend our current 
findings to investigate the impact of familiarity and 
plausibility of outliers on causality bias. 
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