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Cooperation with Rivals

Kai Pommerenke ∗

April 11, 2006

Abstract

The common characteristic of R&D joint ventures between oligopolis-
tic competitors, arms reduction talks, and study groups in law school is
cooperation with rivals. Players benefit from cooperation, but any gain
by their partner weakens their own position when competing for profits,
security, or a high class ranking. I construct a model in which players
have different resource endowments and can increase them through bilat-
eral cooperation. The final allocations enter a contest success function
and determine each player’s probability of winning a fixed prize. A refine-
ment of Nash equilibrium, Pairwise Stable Nash Equilibrium (PSNE), is
defined to deal with the need for mutual consent to establish cooperation.
Results show that universal full cooperation is a PSNE in this zero-sum
game without repeated play if no player predominates, and the only PSNE
if players are free to negotiate side-payments. The model is then applied
to trade between the US and China.

Cooperation with rivals is commonplace. Examples include the sharing of in-
formation between competing firms (Hippel, 1987), arms reduction talks, study
groups in law school, trade between states engaged in military or economic com-
petition (Liberman, 1996; Barbieri and Levy, 1999), and cooperation between
co-workers in firms with a limited number of opportunities for promotion. Co-
operation can be explicit, as when IBM and Microsoft jointly develop software
(Economist, 2004), or implicit, as when two competing candidates who both lag
the front runner refrain from using negative advertising targeted at each other.

In a situation of rivalry, a player’s payoff increases with his own strength
and decreases with the strength of other players, where strength refers to arms,
patents, knowledge, or some other resource. There is thus a fundamental trade-
off involved in cooperating with a rival: Gains from cooperation provide incen-
tives to cooperate, but any gain by a partner weakens a player’s position when
competing head-to-head for a limited reward.

The problem is trivial when there are only two players: Any relative gain
by one player is a relative loss for the other, who therefore refuses to cooperate.

∗University of California, Santa Cruz. Email: kpommerenke@yahoo.com. Helpful advice
from Daniel Friedman and Donald Wittman, and financial support from the Institute on
Global Conflict and Cooperation through its Public Policy and Nuclear Threats (PPNT)
Fellowship are gratefully acknowledged.
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When there are more than two players, however, this simple reasoning no longer
applies. If a player experiences a relative loss vis-à-vis his partner, but obtains
an absolute gain, he improves his position relative to all other players, and
cooperation becomes possible in equilibrium (Snidal, 1991a,b; Werner, 1997).

The literature discusses cooperation with rivals in the context of collusion
in oligopoly (Cournot, 1971), R&D joint ventures (Veugelers, 1998; Caloghirou
et al., 2003), relative gains (Waltz, 1979; Grieco, 1988a,b; Snidal, 1991a,b) and
contests (Hirshleifer, 1991; Skaperdas, 1992; Powell, 1993; Morrow, 1997; Neary,
1997; Skaperdas and Syropoulos, 1997; Noh, 2002). In most contest models, a
resource can be used either for production or appropriation. A player’s payoff
depends on the size of the prize and his probability of winning. The former
increases with the total amount of resources used for production, while the
latter is determined by a contest success function that increases in a player’s
resources dedicated to appropriation (arms) and decreases in his opponent’s
investment in arms.

This paper presents a model in which players have different resource endow-
ments and can increase them through bilateral cooperation. The final alloca-
tions enter a contest success function and determine each player’s probability of
winning a fixed prize. Contrary to the convention in the literature, I disregard
production and focus on the division of an exogenous prize. Any equilibrium
with cooperation is thus a stronger result, since cooperation does not increase
the size of the pie.

The main results are as follows: Full cooperation between all players is
the only equilibrium if there are at least three players and side-payments are
possible. If side-payments are not possible, universal full cooperation can still
be an equilibrium if no player predominates.

The paper makes two contributions: it shows that cooperation between rivals
can occur in the equilibrium of a one-shot, zero-sum game, i.e. even without
repeated play or joint production in the widest sense. It also extends the contest
literature by considering an unlimited number of players, without requiring them
to be identical, and using a more general contest success function than most
models.

The model and its main results are presented in sections 1 and 2, while sec-
tion 3 develops two extensions. Section 4 discusses international trade between
the US and China as an application, and section 5 concludes. The appendix
contains the mathematical proofs.

1 A Model of Cooperation under Rivalry

The game under consideration is characterized by heterogeneity, gains from
cooperation, and rivalry. Let N = {1, . . . , n} be a finite set of agents with
n ≥ 2. Players can be heterogeneous on one dimension, i.e. they might have
different endowments of resources, but are identical otherwise. Player i’s initial
resource allocation is denoted r0

i , with r0
i ≥ 1 for all i ∈ N .
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Secondly, cooperation with another player adds to the player’s resources. Let
cij denote the extent of player i’s cooperation with player j, with 0 ≤ cij ≤ 1.

Definition. Players i and j cooperate fully with each other whenever cijcji = 1.
Full cooperation between all players is called universal full cooperation.

Let cs
ij be player i’s cooperation level vis-à-vis j under strategy profile s.

Definition. A strategy si for player i is a vector (cs
i,1, . . . , c

s
i,i−1, c

s
i,i+1, . . . , c

s
i,n).

A strategy profile s is the set of strategies {s1, . . . , sn}.

Let r+
ij denote the maximum gain in units of resources accruing to player i as

a result of cooperation with player j, net of any costs. The value of r+
ij is given

exogenously for all i, j. The actual gain from cooperation is the product cijcjir
+
ij .

The exact functional form of how the two cooperation levels are combined does
not matter as long as each partner can unilaterally reduce the resulting gain to
any level below the maximum that is determined by his partner’s cooperation
level.

Assumption 1 (Resource accumulation). Player i’s allocation of resources after
playing s is

ri(s) ≡ r0
i +

∑
j 6=i

(
cs
ijc

s
jir

+
ij

)
.

The assumption implies that there is no limit on the number of cooperation
partners, that players strictly increase their resource allocations by further co-
operation, and that they cannot end up with less resources than their original
endowment. The next assumption specifies that both partners in any cooper-
ative venture obtain equal and strictly positive gains from cooperation. It will
be relaxed in extension 3.2.

Assumption 2 (Gains from cooperation). r+
ij = r+

ji > 0 ∀ i, j ∈ N, i 6= j.

The third element of the game is rivalry: Relative allocation of resources
matters, since it determines a player’s probability of winning an exogenous prize.
Player i’s probability of winning the prize, pi, is a function of the strategy
profile and is captured by the following contest success function (Skaperdas,
1996; Hirshleifer, 2000):

Assumption 3 (Contest success function).

pi(s) =
ri(s)

d∑n
j=1 rj(s)

d
.

Here, d is a decisiveness parameter, such that d = 0 corresponds to equal
division of the prize irrespective of resources, d = 1 denotes strictly proportional
division, and d = ∞ describes a situation where the winner takes all. Most of
the contest models cited in the introduction assume d = 1.
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The probabilities of winning the prize add up to one across all players. The
term pi can be interpreted as a player’s share of the prize or his probability of
winning the entire prize.

The cooperation game Γ is given by the (n+2)-tuple (N,S1, . . . , Sn, u).
Here, Si is player i’s strategy set, and the utility function u is the mapping
u :

∏
i Si −→ Rn, with

ui(s) = w · ri(s) + pi(s).

The variable w ≥ 0 is a weight determining the relative importance of re-
sources and the probability of winning the prize in determining utility. The
utility of winning the prize for certain, given w = 0, is normalized to one. The
exact functional form of the utility function does not matter, as long as the
weight on resources can switch between zero and positive.

A distinction needs to be made between games in which players care only
about their probability of winning the prize, and games in which they also derive
utility from their allocation of resources.

Definition. In a pure contest, w = 0; in a mixed contest, w > 0.

In a pure contest, players are only concerned with winning the prize, and any
gains from cooperation are instrumental in the sense of increasing the player’s
chances of winning the prize. In a mixed contest, players care about gains from
cooperation both for their direct impact on utility and their instrumental role.
Whether resources are spent in the contest, and can thus be interpreted as a
measure of effort, or remain in the possession of the players does obviously not
matter in a pure contest.

Examples of pure contests include R&D races, performance evaluations at
the workplace, the signaling theory of education for degree programs that pub-
licize class rankings, and most elections. Examples of mixed contests include
trade between countries engaged in economic rivalry, the formation of hunting
parties in tribal societies, and study groups if students benefit directly from
their education. See Table 1 for more details on these examples.

Table 1: Examples of Pure and Mixed Contests
Situation Resource Cooperation Prize
Econ. competition∗ GDP Trade Power
Education(∗) GPA Study group High class ranking
Elections Voter sympathy No neg. ads Win office
Managerial work Goals met Share inform. Promotion
R&D race Know-how Joint venture Profit
Tribal groups∗ Meat provided Hunting party Status
Note: ∗ denotes a mixed contest

The order of play is as follows: Players choose their strategies simultaneously.
The players then implement their decisions and reap the gains from cooperation.
Finally, the exogenous prize is allocated based on each player’s final resources
and the contest success function.
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A player can unilaterally terminate a cooperative venture, but it takes the
agreement of two players to establish a new one. Thus, a situation in which
two players choose cooperation levels of zero with respect to each other can
be a Nash equilibrium, even if cooperation would make both strictly better off
without incurring any risk. An equilibrium refinement is required to rule out
such situations.

The component of player i’s strategy pertaining to player j is denoted by
sij . Furthermore, let {s∗i−j , sij} denote a strategy for player i that is equal to
s∗i , except that the component s∗ij is replaced by sij , and let s−ij be the profile
of strategies of all players except players i and j.

Definition. Strategy profile s∗ is a Pairwise Stable Nash Equilibrium (PSNE)
of the game Γ, if and only if it is a Nash equilibrium (NE) of Γ and, for all
i, j ∈ N , i 6= j, sij ∈ Si and sji ∈ Sj :
If ui({s∗i−j , sij}, {s∗j−i, sji}, s∗−ij) > ui(s∗),
then uj({s∗i−j , sij}, {s∗j−i, sji}, s∗−ij) < uj(s∗).

In a PSNE, no two players can be made better off by changing those compo-
nents of their strategies that refer to each other. The pairwise component of the
solution concept is similar to pairwise stable networks as defined by Jackson and
Wolinsky (1996), but allows for continuous choice variables. The concept differs
from pareto dominance refinements of NE since every PSNE is pareto efficient
in a pure contest: Given that the probabilities sum to one, the total payoff is
always constant in a pure contest. In contrast to Coalition-Proof NE (Bernheim
et al., 1987), PSNE considers only deviations from the equilibrium profile that
are instigated by either one player acting alone, or two players changing only
those components of their strategies that refer to each other.

2 Full Cooperation in Equilibrium

The following two subsections present the conditions for universal full cooper-
ation in PSNE. Section 2.1 discusses the case without and section 2.2 the case
with side-payments.

2.1 Cooperation without Side-Payments

Players can benefit from bilateral cooperation in a multi-player game even if
their position relative to their cooperation partner deteriorates, since coopera-
tion strengthens their position vis-à-vis all other players. The trade-off between
benefiting oneself and a rival shows up in the marginal utility for increasing
cooperation with another player, given some strategy profile s:

∂ui(s)
∂cij

=
dri(s)

d−1 ∂ri(s)
∂cij

∑
k 6=i rk(s)d(∑

k rk(s)d)2 −
dri(s)

d
rj(s)

d−1 ∂rj(s)
∂cij(∑

k rk(s)d)2 .

The first term on the RHS is the marginal benefit from increasing player i’s
allocation of resources through increased cooperation, while the second term
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is the marginal disutility from increasing the partner’s allocation. Since all
variables are positive, more cooperation is in i’s interest only if the first terms
exceeds the second. Further manipulation of the above equality leads to the
following lemma. All proofs are given in the appendix.

Lemma 1. Given assumptions 1 to 3, cooperation in a pure contest without
side-payments is all-or-nothing in all NE for d < 1. For d ≥ 1, intermediate
cooperation levels are possible in equilibrium.

The following proposition specifies the conditions under which full cooper-
ation by all players is a PSNE. Let s∗ be the strategy profile of universal full
cooperation, and let r∗i be player i’s resource allocation under s∗: r∗i ≡ ri(s∗) =
r0
i +

∑
j 6=i r+

ij .

Proposition 1. Given assumptions 1 to 3, universal full cooperation is a PSNE
in a pure contest without side-payments if no player predominates, i.e. if, for
all distinct i, j,

∑
k 6=i,j r∗k

d ≥ (r∗i − r∗j )(r∗j − r+
ji)

d−1 for d < 1, or iff
∑

k 6=i r∗k
d ≥

r∗i r∗j
d−1 for d ≥ 1.

The trade-off between benefiting oneself and a rival works in favor of coop-
eration if no player is too strong. The more resources player i has in equilibrium
compared to some player j, the less likely that the conditions in the proposition
will be satisfied. Intuitively, cooperation with equal sharing of the gains from
cooperation hurts the larger partner in any pair, while benefiting the smaller
partner. Nevertheless, cooperation is in the interest of the larger player if other
rivals are sufficiently strong.

A numerical example helps illustrate the result. Consider a pure contest with
three players, and assume that the maximum gains from bilateral cooperation,
r+
ij , are constant at one unit for all players. In the example in Table 2, full

cooperation between players 2 and 3 only is the unique PSNE. No player can
increase his payoff by adding or terminating a cooperative venture under his
control, and no other constellation constitutes a PSNE. The payoff of the largest
player, player 1, would decrease from .55 to .54 if he cooperated with one of the
smaller players, and to .53 if he cooperated with both. If, on the other hand,
player 1’s initial resource allocation were smaller, say 4 instead of 6, or one of the
other players had more initial resources, the condition for d ≥ 1 in proposition
1 would be satisfied and universal full cooperation would be a PSNE.

Table 2: Example - Cooperation between Players 2 and 3 as PSNE
Initial Full cooperation in pairs:

position {2,3} {1, 2}, {2, 3} {1, 3}, {2, 3} all none
i r0

i pi ri pi ri pi ri pi ri pi ri pi

1 6 .67 6 .55 7 .54 7 .54 8 .53 6 .67
2 2 .22 3 .27 4 .31 3 .23 4 .27 2 .22
3 1 .11 2 .18 2 .15 3 .23 3 .20 1 .11

Note: d = 1, r+
ij = 1 for all i, j; italics denote PSNE
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The conditions stated in proposition 1 are sufficient for d < 1, and necessary
and sufficient for d ≥ 1. It is not, however, immediately obvious whether they
are satisfied. The following corollary contains two simpler sufficient conditions.

Corollary 1. Given assumptions 1 to 3, universal full cooperation is a PSNE
in a pure contest without side-payments if, for all i,

∑
k 6=i r∗k

d ≥ r∗i for d < 1
or pi(s∗) ≤ 0.5 for d ≥ 1.

Finally, if no player benefits from reducing his cooperation levels in a pure
contest, their utility would drop even more after limiting cooperation in a mixed
contest, with w > 0. The proof of the following corollary is trivial and therefore
omitted.

Corollary 2. Given assumptions 1 to 3 and no side-payments, if universal full
cooperation is a PSNE in a pure contest, it is also a PSNE in a mixed contest.

Since many models with contest success functions assume d = 1, the follow-
ing proposition determines the set of possible equilibria for this special case. Let
l be the largest player given universal full cooperation, i.e. l = argmaxi{r∗i }.

Proposition 2. Given assumptions 1 to 3 and d = 1, there is always a unique
PSNE in a pure contest with n > 2: universal full cooperation if pl(s∗) <
0.5, arbitrary cooperation levels by l and full cooperation by all other players if
pl(s∗) = 0.5, and no cooperation by l and full cooperation by all other players
otherwise.

2.2 Cooperation with Side-Payments

In a game with side-payments, players can decide how to share the gains from
cooperation.

Definition. In the game with side-payments, players i and j can agree on a
sharing arrangement such that player i receives a fraction fij of the gains from
cooperation, and player j receives a fraction fji = (1− fij), with 0 ≤ fij ≤ 1.

If players are able to negotiate side-payments, player i’s gain can be expressed
as a fraction of the total gains r+

i+j ≡ r+
ij +r+

ji, such that player i’s gain from the
cooperation with j is fijcijcjir

+
i+j . The game without side-payments is thus a

game with side-payments in which the fractions are given exogenously for every
pair.

The definition implies that the fractions add up to one. If this is not true,
some additional assumptions are necessary: If the sum of the fractions exceeds
one, no cooperation occurs; if it falls short of one, the remaining gain is wasted.
Given these assumptions, it is clear that the fractions must add up to one in
any Nash equilibrium.

Definition. In the game with side-payments, a strategy si for player i is a pair
of vectors

(
(cs

i,1, . . . , c
s
i,i−1, c

s
i,i+1, . . . , c

s
i,n), (fs

i,1, . . . , f
s
i,i−1, f

s
i,i+1, . . . , f

s
i,n)

)
.
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Given these definitions, we can specify resource accumulation in the game
with side-payments.

Assumption 4 (Resource accumulation). Player i’s allocation of resources after
playing s is

ri(s) ≡ r0
i +

∑
j 6=i

(
fs

ijc
s
ijc

s
jir

+
i+j

)
.

The following proposition sums up the main result.

Proposition 3. Given assumptions 2 to 4, full cooperation can be sustained as
a NE in a pure contest with side-payments for n = 2. For n > 2, there is always
a PSNE, and all PSNE are characterized by universal full cooperation.

The proof in the appendix is based on ratio-preserving fractions. Let s−ij

be the strategy profile of universal full cooperation except for no cooperation
between i and j. If two players split the gains from cooperation such that each
player i obtains a fraction ri(s−ij)/(ri(s−ij)+rj(s−ij)), the ratio of their proba-
bilities remains constant for any level of cooperation. This sharing arrangement
is called ratio-preserving sharing.

A practical problem with ratio-preserving sharing is that the fractions must
be determined iteratively, since each depends on all other cooperative ventures
and their sharing arrangements. In applications of the model, ri(·) can be
approximated by r0

i if gains from cooperation are small relative to initial en-
dowments, or it can be calculated numerically.1

In the example in Table 3, universal full cooperation is the unique PSNE.
Terminating any cooperative venture reduces the payoff of the two players in-
volved. Furthermore, though not shown in the table, any player terminating
two ventures sees his payoff reduced even more. The maximum gain from coop-
eration is again assumed to be one unit for every pair of players. The fractions
represent a set of ratio-preserving sharing arrangements.

Table 3: Example - Full Cooperation with Side-Payments as PSNE
Initial Ratio-preserv- Full cooperation in pairs:

position ing fractions all {1,2},{2,3} {1,3},{2,3} {1,2},{1,3}
i r0

i pi fi,1 fi,2 fi,3 ri pi ri pi ri pi ri pi

1 6 .67 - .72 .83 7.55 .63 6.72 .61 6.83 .62 7.55 .69
2 2 .22 .28 - .66 2.94 .25 2.94 .27 2.66 .24 2.28 .21
3 1 .11 .17 .34 - 1.50 .13 1.34 .12 1.50 .14 1.17 .11

Note: d = 1, r+
ij = 1 for all i, j; italics denote PSNE

Ratio-preserving sharing, however, is not the only sharing arrangement sup-
porting universal full cooperation, as stated by the following corollary.

Corollary 3. For n > 2, sharing arrangements other than ratio-preserving
sharing support universal full cooperation in equilibrium.

1A sample Matlab code for a numerical solution is available from the author.
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It should be obvious that if the result holds in a pure contest, it must also be
true in a mixed contest, with w > 0. In that case, a range of fractions around
ratio-preserving sharing allows for full cooperation in equilibrium, independent
of the number of players. The proof is trivial and is omitted.

Corollary 4. Given assumptions 2 to 4, every PSNE in a mixed contest with
side-payments is characterized by universal full cooperation.

3 Extensions

3.1 Generalized Rivalry with Side-Payments

In the game with side-payments, I can relax the assumption on the contest
success function and still obtain an interesting result. The following assumption
is weaker than assumption 3, and replaces it in this section.

Assumption 5 (Generalized CSF).

pi(s) =
h(ri(s))∑n

j=1 h(rj(s))
,

h(x) > 0 ∀ x > 0; h(x) is continuous; x < y ⇒ h(x) < h(y) ∀ x, y > 0.

To make the model more tractable, I restrict cooperation to be all or nothing,
i.e. cij ∈ {0, 1}. Contrary to the result in section 2.2, the existence of a PSNE
is no longer guaranteed in the game with more than two players. If there is a
PSNE, however, it must still include universal full cooperation.

Proposition 4. Given assumptions 4 and 5, cooperation can be sustained as
a NE in a pure contest with all-or-nothing cooperation and side-payments for
n = 2. For n > 2, every PSNE is characterized by universal full cooperation.

As before, if the result holds in a pure contest, it must also be true in a
mixed contest, with w > 0. The proof is trivial and is omitted.

Corollary 5. Given assumptions 4 and 5, every PSNE in a mixed contest with
all-or-nothing cooperation and side-payments is characterized by universal full
cooperation.

3.2 Unequal Gains without Side-Payments

This section allows for unequal gains from cooperation, thus relaxing assumption
2. Lemma 1 still holds and is restated here for completeness.

Lemma 2. Given assumptions 1 and 3, cooperation in a pure contest without
side-payments is all-or-nothing in all NE for d < 1. For d ≥ 1, intermediate
cooperation levels are possible in equilibrium.
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As before, let r∗i ≡ ri(s∗) = r0
i +

∑
k 6=i r+

ik. Without loss of generality, assume
that every player i orders the other players such that, whenever j < k,

r∗j
d−1r+

ji/r+
ij ≤ r∗k

d−1r+
ki/r+

ik. (1)

Proposition 5. Given assumptions 1, 3 and ordering (1), universal full co-
operation is a PSNE in a pure contest without side-payments if no player pre-
dominates, i.e. if

∑
k 6=i,j r∗k

d ≥ (r∗i r+
ji/r+

ij − r∗j )(r∗j − r+
ji)

d−1 for d < 1, or if∑
k 6=i,j rk(sij∗)d >

(
ri(sij∗)r+

ji/r+
ij − r∗j

)
r∗j

d−1 for d ≥ 1, for all distinct i, j.

Here, sij∗ is the same strategy profile as s∗, except that, for all k > j, player
i chooses cooperation levels cij∗

ik such that

d
(
r∗k + [cij∗

ik − 1]r+
ki

)d−1 = r∗j
d−1 r+

ji

r+
ij

r+
ik

r+
ki

, (2a)

if this equality can be satisfied by choosing 0 < cij∗
ik ≤ 1, and

cij∗
ik = 0 otherwise. (2b)

Proposition 5 contains a rather complex condition for the case of d ≥ 1, as it
requires the determination of cooperation levels cij∗

ik for all i, j, k. The following
corollary states a simpler condition for universal full cooperation to be a PSNE,
by placing restrictions on the maximum gains from cooperation. As before, let
s∗ be the strategy profile of universal full cooperation, and let si>j be the same,
except that player i chooses cik = 0 for all k > j.

Corollary 6. Given assumptions 1 and 3, ordering (1) and d ≥ 1, universal full
cooperation is a PSNE in a pure contest without side-payments if, for all distinct
i, j,

∑
k 6=i,j rk(si>j)d ≥

(
ri(si>j)r+

ji/r+
ij − r∗j

)
r∗j

d−1, and r+
ij ≤

(
1− d1/(1−d)

)
r∗i .

The second condition in the corollary is easily satisfied for moderate levels
of rivalry. For d ≤ 2, it is satisfied whenever r+

ij ≤ 0.5 r∗i , or in other words,
whenever no player can more than double his entire allocation by cooperating
with one more player.

As before, if no player benefits from reducing his cooperation levels in a
pure contest, their utility would drop even more after limiting cooperation in a
mixed contest, with w > 0. The proof of the following corollary is trivial and is
omitted.

Corollary 7. Given assumptions 1 and 3 and no side-payments, if universal
full cooperation is a PSNE in a pure contest, it is also a PSNE in a mixed
contest.

4 Application to International Trade

Governments care not only about national welfare, but also about power (Cohen,
1990; Richardson, 1990). While economists have traditionally treated interna-
tional trade as a purely economic activity, political scientists often view it as a

10



situation of rivalry. Neorealists argue that international anarchy fosters com-
petition and conflict among states since any disproportional economic gain by
one state can be converted into military advantage which may then threaten
the independence or even survival of other states (Waltz, 1979). Grieco (1988a,
p. 498) affirms that “The fundamental goal of states in any relationship is to
prevent others from achieving advances in their relative capabilities.”

The importance of relative gains does not depend on the use of force. As
external security threats diminish, states pursue relative gains more forcefully in
economic relations so that even relations among potential allies are influenced
by relative gains considerations (Mastanduno, 1991; Luttwak, 1993; Liberman,
1996). The main conflicts of interest between the major powers are likely to be
over economic issues, since in the absence of military conflict, economic activity
is the most important source of power (Huntington, 1993).

The current scapegoat for various economic ills is China. A poll taken in
2005 found that 54 percent of Americans viewed China’s emergence as a super-
power as a threat to world peace (Ipsos-Reid, 2005). American politicians often
advocate a curtailment of trade with China (Economist, 2004). President Bush
called China a “strategic competitor” and imposed quotas on a range of Chi-
nese exports (Economist, 2001, 2003). Former President Clinton acknowledged,
if not approved, the notion of China as a rival in saying “Some Americans be-
lieve we should try to isolate and contain China . . . in order to retard its capacity
to become America’s next great enemy” (Economist, 1998). Rousseau (2002,
p. 667) neatly sums up the argument: “The net gains of trading with such a
vast untapped market are huge . . . . But if agreeing to trade with China con-
tributes to such a rapid rise in Chinese power that it becomes more threatening
to US security, then the United States should still reject such opportunities of
cooperation on grounds of relative gains concerns.”

If the US government cared only about economic power, does it necessarily
follow that free trade with China is not in its best interest? The model presented
here can help answer that question. Economic power is a function of economic
output, so that GDP can be treated as the resource in a pure contest in which pi

is country i’s probability of being able to exert political or economic influence.
The utility of producing the entire world’s output is normalized to 1.

A reasonable assumption is that economic influence is roughly proportional
to a country’s share of global economic activity. In this model, the assumption
translates to d = 1. I further assume that gains from cooperation are the same
for both partners and that side-payments in units of GDP are not possible. I
will relax the first two assumptions in a sensitivity analysis later.

Since gains from cooperation are relatively small for countries the size of the
US and China, we can approximate each country’s resources in the absence of a
particular cooperative venture by its resources with universal full cooperation,
i.e. its GDP. With equal gains from cooperation and d = 1, US marginal utility
from cooperating more with China is non-negative whenever

∑
i 6=US r∗i ≥ r∗US .

In other words, the GDP of the rest of world, including China, must exceed
American output for the US not to have an incentive to limit cooperation with
China.
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Purchasing power parity estimates of GDP are good for comparing living
standards, but “for geo-political purposes or impact on the world economy,
however, the . . . figure based on market exchange rates is much more appropri-
ate” (Cooper, 2000, p. 3). Using the IMF’s IFS database from September 2004,
and converting all national currency figures to US dollars at average annual
exchange rates, in 2002 the US had a GDP of $10.5 trillion, China $1.4 trillion
and the rest of world combined $19.7 trillion. Since the condition was clearly
satisfied in 2002, curtailing trade with China was not in the best interest of the
US even if one assumes pure power maximization. Since China has grown more
rapidly than the US, the condition has been satisfied hence. China also has an
incentive to cooperate fully, due to its smaller GDP.

To see if the result holds for varying assumptions, I perform a sensitivity
analysis for d and the ratio of gains from cooperation. As shown in expression
(5) in the appendix, American marginal utility for more cooperation with China

is non-negative whenever
∑

i 6=US,PRC r∗i
d ≥

(
r∗US

r+
P RC

r+
US

− r∗PRC

)
rPRC(sij)d−1.

Assuming d = 1, the maximum value for r+
PRC/r+

US to support full cooperation
in equilibrium is

r+
PRC

r+
US

≤
∑

i 6=US r∗i

r∗US

=
19.7 + 1.4

10.5
= 2.

The US would have an incentive to reduce cooperation only if China’s benefit
from full cooperation was more than double the US benefit. On the other
hand, assuming again equal gains from cooperation, expression (5), evaluated
at sij = s∗, holds for all values of d.

Therefore, a rather large discrepancy in benefits must occur for the US to
have an incentive to limit cooperation. Furthermore, if we relax the extreme
assumption of pure power maximization and consider mixed rather than pure
contests, full cooperation between the US and China can occur in equilibrium
for a wide range of relative benefits and values of d.

5 Conclusion

A player’s rivals are all other players whose increased strength decreases the
player’s probability of winning an exogenous prize. The model developed in
this paper analyzes situations of rivalry and determines the conditions under
which cooperation between any two players can be sustained in equilibrium.

Players are allowed to differ on one dimension such that a player’s allocation
of resources, e.g. power, GDP or know-how, determines his probability of win-
ning the prize. The main assumptions are that bilateral cooperation increases
both players’ resource allocations, and that the prize is allocated based on a
contest success function of the power form.

A refinement of Nash equilibrium, Pairwise Stable Nash Equilibrium, is in-
troduced to deal with the need for mutual consent to establish a cooperative
venture. Results show that universal full cooperation is a PSNE in this zero-sum

12



game without repeated play if third parties are sufficiently large for every pair of
players, and the only PSNE if there are at least three players and side-payments
in units of resources are possible.

The model is applied to trade between the US and China. Full cooperation
between the US and China is an equilibrium strategy in a pure contest for power
if China’s benefit from full cooperation is not more than double the benefit to
the US.

Appendix A. Proofs

Note that universal full cooperation must be a PSNE if it is a NE.

Proof of Lemma 1. Let sij be the strategy profile of universal full cooper-
ation, except that player i chooses any cij . Using assumptions 1 and 2, noting
that rk(sij) = r∗k for all k 6= i, j, and ri(sij) − rj(sij) = r∗i − r∗j , shows that
marginal utility ∂ui(sij)/∂cij is non-negative whenever∑

k 6=i,j

r∗k
d ≥ (r∗i − r∗j )rj(sij)

d−1
. (3)

Since rj(sij) increases strictly in cij by assumption 1, the RHS decreases in cij

for d < 1 and increases for d > 1, while the LHS is independent of cij . The
resulting plot of utility against cij is thus either monotonic over the range of
cij , or it is U-shaped for d < 1 or inversely U-shaped for d > 1. For d < 1, only
extreme cooperation levels, cij ∈ {0, 1}, can thus occur in equilibrium.

Proof of Proposition 1. Satisfaction of expression (3) evaluated at cij = 0
(cij = 1) for d < 1 (d ≥ 1) ensures non-negative marginal utility over the entire
range of cij . Therefore, no player has an incentive to reduce cooperation with
any one rival if expression (3) with rj(sij) = r∗j − r+

ji for d < 1, or rj(sij) = r∗j
for d ≥ 1 holds for all distinct i, j ∈ N . The remainder of the proof, done
separately for d < 1 and d ≥ 1, demonstrates that no player has an incentive to
reduce cooperation with more than one rival.

d < 1 Since player i never has an incentive to choose an intermediate coop-
eration level for d < 1 (see lemma 1), I consider only deviations from universal
full cooperation that reduce cooperation with some players to zero. Let sD be
such a deviation, where Di ⊆ N\{i} is the set of players dropped by player i,
i.e. cij = 0 for all j ∈ Di, and Ci the complement of Di, such that cij = 1 for
all j ∈ Ci. Furthermore, let l be the largest player in the set Di in the sense
of l = argmaxj∈Di

{
(r∗j − r+

ji)
d−1

}
. Player i’s marginal utility for cooperation

with l, ∂ui(sD)/∂cil, is non-negative for all values of cil whenever∑
j∈Ci

r∗j
d +

∑
j∈Di

(r∗j − r+
ji)

d ≥
(
r0
i +

∑
j∈Ci

r+
ij

)
(r∗l − r+

li )
d−1. (4)
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The first equilibrium condition stated in proposition 1 can be written as∑
j 6=i,l r

∗
j

d + (r∗l − r+
li )

d ≥ (r0
i +

∑
j 6=i,l r

+
ij)(r

∗
l − r+

li )
d−1. Expression (4) is true

if the LHS of (4) falls short of the LHS of the previous inequality by no more
than the RHS:

∑
j∈(Di\{l})(r

∗
j

d − (r∗j − r+
ji)

d) ≤ (
∑

j∈(Di\{l}) r+
ij)(r

∗
l − r+

li )
d−1.

This inequality is clearly true if it is true for each summand, or if r∗j
d − (r∗j −

r+
ji)

d ≤ r+
ij(r

∗
l − r+

li )
d−1 ∀ j ∈ (Di\{l}). Since l is the largest player dropped

by i, we know that (r∗j − r+
ji)

d−1 ≤ (r∗l − r+
li )

d−1. Thus, (4) is true whenever
r∗j

d−1 ≤ (r∗j − r+
ji)

d−1, which is always true for d < 1. Player i thus does not
have an incentive to reduce cooperation with l. Since the same argument also
holds for the next largest player in Di after l, and all remaining players in Di

(in descending order), player i increases his utility by resuming full cooperation
with all players. Universal full cooperation is thus a NE.

d ≥ 1 The test case for universal full cooperation to be a NE is the situation
when the equilibrium condition holds with equality for all rivals of one player,
say player i. In that case, marginal utility is zero initially; a given reduction
in cij , for all j, lowers utility less than starting with strictly positive marginal
utility. That is, for all j ∈ N\{i},

∑
k 6=i r∗k

d = r∗i r∗j
d−1. For d = 1, marginal

utility is always zero, and universal full cooperation thus a NE. For d > 1, r∗j
must be the same for all j. By implication, r∗i = (n− 1)r∗j in the initial state of
universal full cooperation.

As i reduces some cik infinitesimally, the LHS of the equilibrium equality
decreases by dr∗k

d−1, while the RHS falls by r∗j
d−1. Since r∗k = r∗j , the LHS

decreases more than the RHS for d > 1. In that case, marginal utility turns
negative and i has an incentive to reduce cij for all players j 6= i, k. To max-
imize utility, player i chooses some strategy s such that all conditions hold
with equality again. Therefore, all of i’s rivals must still be identical, and
ri(s) = (n−1)rj(s). Let q be the fraction of player j’s resource allocation under
s∗ that is preserved under s. Player i’s utility in a pure contest playing s is

ui(s) =
((n−1)rj(s))d

((n−1)rj(s))d+(n−1)rj(s)
d

=
((n−1)qr∗j )d

((n−1)qr∗j )d+(n−1)(qr∗j )d
= ui(s∗).

With utility constant, player i does not have an incentive to reduce any
cooperation level; and universal full cooperation is a NE.

Proof of Corollary 1. If r∗i < r∗j , then the inequalities in proposition 1 are
necessarily satisfied, ensuring a NE. If r∗i ≥ r∗j , pi(s∗) ≤ 0.5 implies

∑
k 6=i r∗k

d ≥
r∗i r∗j

d−1 for d ≥ 1. For d < 1,
∑

k 6=i r∗k
d ≥ r∗i implies

∑
k 6=i,j r∗k

d ≥ r∗i − r∗j ⇒∑
k 6=i,j r∗k

d ≥ (r∗i −r∗j )(r∗j −r+
ji)

d−1, thus satisfying the conditions in proposition
1, proving that universal full cooperation is a NE.

Proof of Proposition 2. If pl(s∗) < 0.5 ⇔
∑

k 6=l r
∗
k > r∗l for i = l, it

must also be true for all i. Therefore, the condition for d ≥ 1 in proposition 1 is
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satisfied and universal full cooperation is a PSNE. If
∑

k 6=l r
∗
k = r∗l , ∂ul/∂clk = 0

for all k, so that l is indifferent between more and less cooperation. With equal
gains from cooperation, the equality still holds even without any cooperation by
l:

∑
k 6=l(r

∗
k − r+

kl) = r0
l . By implication,

∑
k 6=i,l(r

∗
k − r+

kl) + r0
l > r∗i − r+

il for all
i 6= l. Therefore, all other players have an incentive to cooperate fully. Finally,
if

∑
k 6=l r

∗
k < r∗l , l has an incentive not to cooperate with any player. As shown

before, all other players still have an incentive to choose full cooperation.
For some strategy profile s to be another PSNE in either of the three cases,

at least two players i and j must not have an incentive to cooperate fully with
some other players, i.e.

∑
k 6=i rk(s) ≤ ri(s) and

∑
k 6=j rk(s) ≤ rj(s). Since

both inequalities cannot be satisfied simultaneously for n > 2, universal full
cooperation is the unique PSNE.

Proof of Proposition 3. Let s be a strategy profile in which player i chooses
cij < 1, and let s+ be the same profile except that i chooses some cooperation
level c+

ij > cij . If the ratio of two players’ probabilities of winning the prize
is the same with more cooperation as without, both must be better off with
more cooperation in the game with n > 2 players. Setting the ratios equal,
pi(s+)/pj(s+) = pi(s)/pj(s), and solving for the implied sharing arrangement
reveals the following fraction: fij = ri(s)/(ri(s) + rj(s)), which I call ratio-
preserving sharing.

If two players divide the additional gain from full cooperation accordingly,
their allocations increase while maintaining the same ratio of probabilities. Both
will be better off. Therefore, less than full cooperation cannot occur in PSNE.
If two players split the entire gain accordingly, neither has an incentive to limit
cooperation with his partner in the game with n > 2 players.

In the game with two players, the two payoffs must add up to one. Ratio-
preserving sharing is the only division that does not change either player’s payoff
as a result of cooperation. Any level of cooperation can thus be sustained as
a NE with ratio-preserving sharing. This argument proves the first part of
proposition 3.

I now show that in the game with n > 2 players, universal full cooperation
with ratio-preserving sharing of all the gains from cooperation is a NE. Let s∗

be the strategy profile of universal full cooperation, and let sik be the same
except for i choosing a cooperation level cik < 1. Suppose player i reduces his
cooperation with player k from full cooperation, thus switching from s∗ to sik.
Given that the ratio pi/pk stays constant due to ratio-preserving sharing, his
utility must fall in response to the decrease in his resources.

The LHS of the following inequality gives the ratio-preserving fraction for
player i when cooperating with j, under strategy profile s∗, while the RHS
represents the sharing arrangement that keeps the ratio pi/pj constant given
the limited cooperation levels between i and k as specified by sik:

ri(s∗)
ri(s∗) + rj(s∗)

>
ri(sik)

ri(sik) + rj(sik)
.
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Since rj(s∗) = rj(sik) and ri(s∗) > ri(sik), the LHS is greater than the
RHS: Given the fractions specified by s∗, player i obtains a larger share of the
gains from cooperation with j than is required to maintain a constant ratio
under strategy profile sik. Decreasing cij thus reduces pi/pj , ri, rj , and con-
sequently pi. Therefore, reducing cooperation with any one player decreases
utility, and reducing cooperation with any other player decreases utility even
further, making universal full cooperation a NE.

Proof of Corollary 3. Replacing the exogenous gains from cooperation in
expression (5) by r+

ij = fijr
+
i+j and r+

ji = (1−fij)r+
i+j yields the following condi-

tion for player i:
∑

k 6=i,j r∗k
d ≥

(
r∗i

1−fij

fij
− r∗j

)(
r∗j + (cjicij − 1)(1− fij)r+

i+j

)d−1.

For ratio-preserving sharing, fij = ri(s
−ij)

ri(s−ij)+rj(s−ij) , the condition reduces to∑
k 6=i,j r∗k

d ≥ 0, and is thus always satisfied for n ≥ 2 players. A sum greater
than zero allows for deviations from ratio-preserving sharing. As a result, there
is an interval around the ratio-preserving fractions such that full cooperation
makes both players unambiguously better off.

Proof of Proposition 4. Let s∗ be some strategy profile in which players i
and j cooperate: cijcji = 1; let s−ij be the same as s∗, except that players i and
j do not cooperate, i.e. cijcji = 0. Cooperation between i and j can be sustained
in equilibrium if no player has an incentive to terminate the cooperation, i.e. if
pi(s∗) ≥ pi(s−ij) and pj(s∗) ≥ pj(s−ij). Solving for

∑
k 6=i,j h(rk(s∗)) yields

⇔
∑

k 6=i,j

h(rk(s∗)) ≥ h(ri(s−ij))h(rj(s∗))− h(rj(s−ij))h(ri(s∗))
h(ri(s∗))− h(ri(s−ij))

and

∑
k 6=i,j

h(rk(s∗)) ≥ −h(ri(s−ij))h(rj(s∗))− h(rj(s−ij))h(ri(s∗))
h(rj(s∗))− h(rj(s−ij))

.

Since pi(s∗) < pi(s−ij) for fij = 0 and pi(s∗) > pi(s−ij) for fij = 1, there
must be a unique f∗ij ∈ (0, 1) such that pi(s∗) = pi(s−ij), due to the strict
monotonicity and continuity of ri(·), h(·) and the contest success function (as-
sumptions 4, 5).

In the game with n = 2, the LHS is zero. Therefore, pi(s∗) = pi(s−ij)
only if the numerator on the RHS also equals zero. Since both numerators are
identical, both conditions must hold with equality. Therefore, there is a unique
f∗ij such that neither player is better off or worse off as a result of cooperation.

With n > 2 players, the LHS is strictly positive. Since the numerators are
identical and both denominators are strictly positive, the RHS of one inequality
must be non-positive, strictly satisfying the inequality. For any sharing arrange-
ment, at least one partner must thus be strictly better off with cooperation.

As fij increases from 0 to 1, pi(s∗) rises above pi(s−ij) at some point, while
pj(s∗) falls below pj(s−ij) at some other point. Since at least one player must
always be strictly better off with cooperation, the equality of probabilities for
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j must occur at a greater value of fij than the equality for i. Therefore, there
is always a fraction, and in fact a range of sharing arrangements around this
fraction, such that both players are strictly better off with cooperation. As a
result, any strategy profile in which two players do not cooperate with each other
cannot be a PSNE. Therefore, all PSNE include universal cooperation.

Proof of Lemma 2. The proof is identical to the proof of lemma 1, except
that marginal utility ∂ui(sij)/∂cij is non-negative whenever

∑
k 6=i,j

r∗k
d ≥

(
r∗i

r+
ji

r+
ij

− r∗j

)
rj(sij)

d−1
. (5)

Proof of Proposition 5. For d < 1, and l denoting the largest player dropped
in the sense of l = argmaxj∈Di

{
(r∗j − r+

ij)
d−1r∗ji/r∗ij

}
, player i’s marginal utility

for cooperation with l is non-negative for all values of cil whenever
∑

j∈Ci
r∗j

d +∑
j∈Di

(r∗j − r+
ji)

d ≥
(
r0
i +

∑
j∈Ci

r+
ij

)
(r+

li /r+
il )(r

∗
l − r+

li )
d−1. Following similar

steps as in the proof of proposition 1, it can be shown that this inequality is
satisfied whenever the expression for d < 1 in proposition 5 holds, thus making
universal full cooperation a NE.

For d ≥ 1, let si<j be the strategy profile in which all players except i
fully cooperate, and i cooperates fully only with the first j − 1 players, ordered
according to (1), and chooses some arbitrary cooperation levels for all players
k ≥ j. Player j is thus the first player with whom i does not fully cooperate.
Player i has an incentive to fully cooperate with j if and only if

∑
k 6=i,j

(
r∗k + (ci<j

ik − 1)r+
ki

)d

+ r∗j
d >

(
r0
i + r+

ij +
∑

k 6=i,j

ci<j
ik r+

ik

)r+
ji

r+
ij

r∗j
d−1. (6)

This condition is satisfied if the LHS has increased more or decreased less
than the RHS, compared to the condition in proposition 5, rewritten as:

∑
k 6=i,j

(
r∗k + (cij∗

ik − 1)r+
ki

)d

+ r∗j
d >

(
r0
i + r+

ij +
∑

k 6=i,j

cij∗
ik r+

ik

)r+
ji

r+
ij

r∗j
d−1. (7)

If this relationship is true for each k, it must be true for the entire ex-
pression. The change in the LHS for a marginal change in cij∗

ik is d
(
r∗k +

(cij∗
ik − 1)r+

ki

)d−1
r+
ki d cij∗

ik , while the RHS changes by r∗j
d−1(r+

ji/r+
ij)r

+
ik d cij∗

ik .
The marginal changes are equal whenever

d
(
r∗k + (cij∗

ik − 1)r+
ki

)d−1 = r∗j
d−1 r+

ji

r+
ij

r+
ik

r+
ki

. (8)
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Note that this condition is identical to expression (2a). The LHS clearly in-
creases in cij∗

ik for d > 1, while the RHS is independent of cij∗
ik , and thus con-

stant. For those players k for which cij∗
ik falls into the interval (0, 1], ci<j

ik can
be smaller, equal or larger than cij∗

ik . If ci<j
ik is smaller than cij∗

ik , the LHS of (7)
decreases by less than the RHS as player i reduces cij∗

ik to ci<j
ik , thus ensuring

the truth of condition (6). If it is equal, there is no change. If ci<j
ik is larger

than cij∗
ik , the LHS of (7) increases more than the RHS as player i increases cij∗

ik

to ci<j
ik , thus also ensuring the truth of condition (6).
Finally, for those players k for which cij∗

ik = 0, the LHS of (7) must increase
no less than the RHS, as i chooses ci<j

ik = 1: r∗k
d−(r∗k−r+

ki)
d ≥ r+

ik(r+
ji/r+

ij)r
∗
j

d−1.
Given the ordering of players, the preceding inequality is true if r∗k

d−(r∗k−r+
ki)

d ≥
r+
ik(r+

ki/r+
ik)r∗k

d−1, which simplifies to r∗k
d−1 ≥ (r∗k − r+

ki)
d−1. Since d ≥ 1, this

inequality is always true. Therefore, the LHS of (7) increases more than the
RHS as i switches from cij∗

ik = 0 to ci<j
ik = 1. Since equality (2a) does not hold

for any value of cij∗
ik in case (2b), the LHS must always exceed the RHS for

any value of ci<j
ik . Condition (6) must therefore hold, concluding the proof that

player i increases his utility by resuming full cooperation with player j. Since
the same argument also holds for the next largest player and all remaining ones,
player i does not have an incentive to reduce cooperation with any player in the
first place. Universal full cooperation is thus a NE.

Proof of Corollary 6. The first condition in corollary 6 is the same as the
condition in proposition 5, with all cij∗

ik = 0 for k > j. Assume again that player
i has reduced cooperation with one or more players k > j. Universal full coop-
eration is a PSNE if i has an incentive to fully cooperate with j, independent of
his cooperation levels cik. Since the condition in the corollary ensures a positive
marginal utility, ∂ui/∂cij , when evaluated at cij = 1 and cik = 0, it must still
hold if the LHS increases no less than the RHS for any cik > 0. As we know from
(8), this is the case whenever d

(
r∗k + (cij∗

ik − 1)r+
ki

)d−1 ≥ r∗j
d−1(r+

ji/r+
ij)(r

+
ik/r+

ki).
Since the LHS increases in cij∗

ik , the condition is satisfied for all cooperation lev-
els if it holds for cij∗

ik = 0, i.e. if d(r∗k − r+
ki)

d−1 ≥ r∗j
d−1(r+

ji/r+
ij)(r

+
ik/r+

ki). Given
ordering (1), this inequality is true if d(r∗k − r+

ki)
d−1 ≥ r∗k

d−1(r+
ki/r+

ik)(r+
ik/r+

ki),
which simplifies to r+

ki ≤
(
1− d1/(1−d)

)
r∗k. This is the second condition con-

tained in the corollary. Player i therefore has an incentive to resume full coop-
eration, first with j, and then all other players.
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