
UC Berkeley
White Papers

Title
Linking Administrative Data: Strategies and Methods

Permalink
https://escholarship.org/uc/item/455309xh

Authors
Augustine, Elsa
Reddy, Vikash
Rothstein, Jesse

Publication Date
2018-12-01

Data Availability
The data associated with this publication are available at:
https://github.com/californiapolicylab/data-linking

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/455309xh
https://github.com/californiapolicylab/data-linking
https://escholarship.org
http://www.cdlib.org/

Linking Administrative
Data: Strategies and
Methods

A California Policy Lab White Paper

 ELSA AUGUSTINE
VIKASH REDDY
JESSE ROTHSTEIN

DECEMBER 2018

The California Policy Lab builds better lives through data-
driven policy. We are a project of the University of
California, with sites at the Berkeley and Los Angeles
campuses.

This research publication reflects the views of the authors
and not necessarily the views of our funders, our staff, our
advisory board, the Regents of the University of
California, or of our government partners.

capolicylab.org Linking Administrative Data: Strategies and Methods 3

Executive Summary

We review the linking of datasets that contain identifying
information (e.g., names, birthdates) but not unique
common identifiers for each individual. We discuss strategies
for identifying matches in three families: rules-based
matching, supervised machine learning, and unsupervised
machine learning. These vary in the ways that they combine
human knowledge with computing power. We define
different measures of accuracy and explore the performance
of common algorithms in test data.

Our goal is to de-mystify data linking for non-technical
readers. We attempt to explain the criteria that should
inform the choice of linking methods, and the decisions that
need to be made to implement them.

Acknowledgements

We thank Evan White, Charles Davis, Nathan Hess, Jared
Murray, Sarah Tahamont, Aaron Chalfin, and Zubin Jelveh
for helpful conversations and comments on earlier drafts.
We are grateful to Caleb Siu for excellent research
assistance and to the Laura and John Arnold Foundation for
financial support. Cover image created using an icon made
by Lucy G from www.flaticon.com.

Contents

Executive	Summary	3	

Introduction..	4	

Methods	of	Linking	12	

Evaluating	Matching	Algorithms.......	20	

Software	Profiles	22	

Exploring	performance	26	

Conclusions	34	

Sources	...	36	

capolicylab.org Linking Administrative Data: Strategies and Methods 4

Introduction

Let us begin with an example. In cities and counties across California, homelessness is a burgeoning
problem. More than 100,000 of the state’s residents are homeless, and while it is true that a low
supply of affordable housing is one driver of homelessness in the state, over time it has become
clear that this crisis is not due to the dearth of low-income housing alone. Homelessness is a
complex issue tied to many other inter-related factors, such as mental and physical health,
substance use, employment, and interactions with the criminal justice system. To fully grasp the
complexity of this issue or begin to address it therefore requires drawing connections and insights
from multiple sectors.

Much of the data needed to study the homelessness crisis already exists thanks to the
recordkeeping of state and local public agencies in their daily operations. For example, a local
police department will know an individual’s arrest history, while the state’s health agency maintains
records of any inpatient psychiatric care received. This information together may begin to explain
the root causes of an individual’s housing instability and suggest interventions that could help him
or her stay housed.

Increasingly, policymakers are recognizing the promise that administrative records hold for
unearthing insights about the populations they serve and the impacts of various government
programs. A valuable characteristic of administrative data is that it is often possible to link together
data from multiple programs, agencies, or databases, allowing researchers to begin to study multi-
dimensional problems like the homelessness crisis in California.1 Research drawing on these linked
data is finding relationships across sectors that were previously unappreciated, like the impact of
dental care on educational attainment, or the impact of school discipline on criminal justice
involvement. However, the initial linking of administrative data is not trivial; in fact it is often quite
difficult.

A few decades ago, data linkage had to be done by hand and was enormously labor intensive,
often prohibitively so. Later, computers could link datasets much more quickly, but only when they
shared a common unique identifier (e.g., a Social Security Number, or SSN). This was great
progress, but limits on the practice remained. Often data systems to be linked do not have
common unique identifiers; moreover, real-world databases are plagued by missing fields, errors
and transpositions, true changes in values (e.g., when an individual moves to a new address), and
differences in the way that information is recorded. Until recently, even rudimentary approaches to
this problem were so computationally intensive as to be limited to very small databases.

This is no longer the case. Advanced computers, improved database design, and machine learning
methods can greatly facilitate improved data matching, even when databases lack common unique
identifiers. Data matching remains a mysterious art, however, and is not well understood, even by
most users of administrative data.

1 Many terms are used to describe this process of identifying observations that reference the same individual across
data systems – a sampling includes “data matching,” “data linking” or “linkage,” “record linking,” “entity resolution,”
“object identification,” “de-duplication,” and “field matching” (Christen, 2012). In this paper, we use “record linkage,”
“data matching,” and “data linking” interchangeably to describe the task of matching records across datasets.

capolicylab.org Linking Administrative Data: Strategies and Methods 5

This white paper aims to demystify data matching. We discuss the various methods available,
at a level intended to be accessible to a non-technical reader. We emphasize those methods that
are appropriate for linking across administrative datasets maintained by public agencies, with some
personally identifiable information (PII) but no common, unique identifier like an SSN. Our goal is
to reveal the advantages and disadvantages of different approaches for this common problem.

In the sections that follow, we illustrate the steps involved in data linking and discuss the ways that
computing power can be brought to bear to facilitate this. We then review some of the software
packages that implement the various approaches, and present evidence from a particular setting of
their accuracy and performance.

Protecting Privacy While Linking Data

When working with administrative data, protecting the privacy of individuals represented in
the data is always of utmost importance. Analysis of data that has been linked can often be
done without having access to any personally identifiable information (PII); however, the linking
process itself relies on such information. As a result, we advise that the linking process be done
in settings with strong privacy protections in place and that great care is taken when working
with data that has been linked.

There are broadly two alternatives to linking data while maintaining the privacy of individuals.
The first, and more common, is to complete the linking process using PII, and then encrypt and
separate PII from the remainder of the data before any further analysis is done.

In situations when there are stronger restrictions on PII that prohibit its use in the linking
process, such as when the datasets include sensitive health information, one can first encrypt
all PII using hashing functions, then link the datasets on the hashed identifiers. This paper
does not explore methods for linking hashed data, and we refer interested readers to the
literature that has developed in the health field, such as the National Center for
Biotechnology Information’s resources on the subject (Dusetzina et al., 2014; Kho et al.,
2015).

Finally, it is important to note that linking together different administrative datasets increases
the probability of reidentification, even when the PII has been removed or otherwise obscured.
It is therefore important to ensure that access to linked individual-level data is carefully
monitored, even once PII has been removed.

capolicylab.org Linking Administrative Data: Strategies and Methods 6

The Challenges of Linking Administrative Data

Fundamentally, linking two datasets amounts to comparing pairs of individual records. A single
record from one database is compared to a potential match from another database, and an
assessment must be made about whether the two records refer to the same individual. This
assessment must then be repeated for each candidate pair of records across the two datasets,
often many millions of times.

The simplest case is when there is a common unique identifier field in each dataset, known as a
“key,” that uniquely identifies records within each dataset and that is common across them. For
example, when each dataset contains an SSN or student ID, the assessment of whether a pair of
records is a match may be as simple as asking whether those IDs are the same. This can be done
rapidly; assuming complete and accurate data, merges of millions of records can be completed
quickly on even ordinary computer systems, with perfect accuracy.

The task becomes more difficult when some records are missing the key, when the key field is
corrupted in one or both of the datasets, or when there is no single key that identifies records and
is available in each dataset. This latter problem is our focus, and it is by far the more common
scenario when seeking to link public datasets.

An Illustration

To illustrate, we explore a hypothetical link between two very small datasets, with five records
each, listed in Table 1. There is no key field that uniquely identifies records in the two datasets;
instead, we must rely on other information like names, dates of birth, and gender, none recorded
with perfect accuracy, to identify matches.

In this simple problem, there are 25 possible combinations of one record from dataset A with one
record of dataset B. Each must be evaluated to identify the matches between the two samples.
With only 25 potential pairs, it is straightforward to do this by hand. We can quickly conclude that
there are four true matches between the datasets, but that record 5 in dataset A (Russell Brand)
and record 1 in dataset B (Zach Braff) have no corresponding observations in the other dataset.

Table 1: Hypothetical Linking Scenario

Dataset A

 Dataset B

 ID-A First Name Last Name DOB Gender ID-B First Name Last Name Birth Year Gender Zip
 A1 Angelina Jolie 6-4-1975 B1 Zach Braff 1975 M 90210
 A2 Denzel Washington 12-28-1954 M B2 Angela Jolie 1975 F
 A3 Jhon Legend 12-28-1978 M B3 John Legend 1987 M 90049
 A4 Kerry Washington F B4 Denzel Washington 1954 M 90210
 A5 Russell Brand 6-4-1975 M B5 Kerri Washington 1977 F 90025

capolicylab.org Linking Administrative Data: Strategies and Methods 7

This seems simple, but some introspection makes clear that the decision rules needed to arrive at
this conclusion are quite complex – how did we conclude that record 3 in dataset A matches
record 3 in dataset B, despite differences in both the first name and the year of birth? While it is
difficult to articulate the algorithm that we use in doing this, there is no alternative than to do it
algorithmically when scaling this approach to millions or billions of potential pairs.

An algorithmic approach can be thought of as consisting of several distinct decisions. We must
decide (1) which fields to consider; (2) how we will compare them against one another; and (3)
how to use the information we gain through those comparisons to decide which record pairs are
matches and which are not.

(1) Choice of fields is fairly straightforward. In our example, there are three fields that are
common to the two datasets: first name, last name, and gender. One additional field
contains similar enough information to allow for comparison – dataset A has the birthdate
and dataset B has the birth year. These four fields can be used to assess whether a pair is a
match. By contrast, the fifth field in dataset B, the zip code, has no analogue in dataset A,
so provides no useful information for linking.2

(2) The second decision is how to compare fields between the two datasets. To illustrate
this decision, we show the 25 potential pairs in Table 2, using color coding to indicate the
degree of agreement between corresponding fields: blue indicates cases where the two
records in a pair have identical values for a particular field, red indicates fields that are
clearly different, and yellow shows cases where the values are similar but not identical or
where one is missing. The use of an intermediate category allows for the possibility of data
entry and spelling errors, which are common in real-world datasets, though it is also
possible to use a binary match/non-match categorization. Most of Table 2 is red, for the
simple reason that 21 of the 25 pairs are not in fact true matches.

(3) The third decision is how to select the few true matches from the many non-

matches. It is clear that the one row that is uniformly red (row 7) can be discarded, and
the one row that is uniformly blue (row 9) should be kept. But what to do with the others?
The ability to identify partially matching records that are not identical on all fields is
essential when linking administrative records. One approach to linking would be to count a
pair as a match only if the two databases have identical information in all of the overlapping
fields – first names, last names, birth years, and gender. This rule would identify only one
pair, row 9 in Table 2, as a match. In every other case, there is at least one difference
between a field in dataset A and the corresponding field in dataset B.

2 It is worth mentioning that in real world linking problems there are often fields that are common across the two
datasets but not used to link records. For example, if the data are drawn at two different points of time, time varying
fields will often be omitted, as they can be an unreliable source of information on the quality of a match. Excluded
fields could include those capturing information on occupation, income, or address, among others.

capolicylab.org Linking Administrative Data: Strategies and Methods 8

An exact matching rule is clearly too conservative. One would like to allow for differences, if
nothing else because there have clearly been data entry errors in preparing these datasets. The first
name field illustrates: Record A-3 in dataset A has the first name entered as “Jhon,” which seems
unlikely to be correct. If we interpret this as a misspelling of “John,” it matches with record B-3 in
dataset B (row 13 of Table 2). These same records have birth years of 1978 in dataset A and 1987
in dataset B. Again, this plausibly derives from a transcription error. It seems quite likely that this
pair is a true match, despite the yellow-blue-yellow field scoring.

Identifying matches in these data clearly requires flexibility, with tolerance for missingness and
misreporting. This necessitates care: one would not want to consider row 10 or 19 to be a match
despite the matching last names, as “Washington” is a common last name and each of the other
fields is quite different. In a larger dataset, there might be thousands of potential matches that share
the same last name and year of birth, but one would not consider this information sufficient to
make a match when other fields disagree. Things are improved somewhat when the last names are

Table 2: Potential Pairs

 Variables from Dataset A Variables from Dataset B

Row ID First Name Last Name DOB Gender ID First Name Last Name Birth Yr Gender
1 A1 Angelina Jolie 6-4-1975 Missing B1 Zach Braff 1975 M
2 A1 Angelina Jolie 6-4-1975 Missing B2 Angela Jolie 1975 F
3 A1 Angelina Jolie 6-4-1975 Missing B3 John Legend 1987 M
4 A1 Angelina Jolie 6-4-1975 Missing B4 Denzel Washington 1954 M
5 A1 Angelina Jolie 6-4-1975 Missing B5 Kerri Washington 1977 F
6 A2 Denzel Washington 12-28-1954 M B1 Zach Braff 1975 M
7 A2 Denzel Washington 12-28-1954 M B2 Angela Jolie 1975 F
8 A2 Denzel Washington 12-28-1954 M B3 John Legend 1987 M
9 A2 Denzel Washington 12-28-1954 M B4 Denzel Washington 1954 M
10 A2 Denzel Washington 12-28-1954 M B5 Kerri Washington 1977 F
11 A3 Jhon Legend 12-28-1978 M B1 Zach Braff 1975 M
12 A3 Jhon Legend 12-28-1978 M B2 Angela Jolie 1975 F
13 A3 Jhon Legend 12-28-1978 M B3 John Legend 1987 M
14 A3 Jhon Legend 12-28-1978 M B4 Denzel Washington 1954 M
15 A3 Jhon Legend 12-28-1978 M B5 Kerri Washington 1977 F
16 A4 Kerry Washington Missing F B1 Zach Braff 1975 M
17 A4 Kerry Washington Missing F B2 Angela Jolie 1975 F
18 A4 Kerry Washington Missing F B3 John Legend 1987 M
19 A4 Kerry Washington Missing F B4 Denzel Washington 1954 M
20 A4 Kerry Washington Missing F B5 Kerri Washington 1977 F
21 A5 Russell Brand 6-4-1975 M B1 Zach Braff 1975 M
22 A5 Russell Brand 6-4-1975 M B2 Angela Jolie 1975 F
23 A5 Russell Brand 6-4-1975 M B3 John Legend 1987 M
24 A5 Russell Brand 6-4-1975 M B4 Denzel Washington 1954 M
25 A5 Russell Brand 6-4-1975 M B5 Kerri Washington 1977 F

Match Partial Match Non-Match

capolicylab.org Linking Administrative Data: Strategies and Methods 9

rare – two “Jolie” records are more likely to refer to the same person than two “Washington”
records – but even so our confidence would be weak.

Perhaps the hardest cases in our example are pairs 2 and 21. The two records in pair 2 match
exactly on last name and year of birth and have similar first names. While one of the records is
missing information about gender, there is no indication of an inconsistency here. In pair 21, the
two records match exactly on the year and gender, and the last names are quite similar as well.
(Using the edit distance, a common measure of distance between two strings, “Brand” and “Braff”
are as similar as “Angela” and “Angelina.”) In fact, this pair is not a match, but it could easily be
counted as one. Ideally, our algorithm would be sensitive enough to count pair 2 as a match but
not pair 21, but in a large dataset it will be difficult to specify rules sensitive enough to identify all
such borderline cases.

With these examples in mind, we can form a decision rule for the pairs in Table 2. Suppose that
we consider a pair of observations a match if all of the following are true:

1. The last names are identical.
2. The first names have the same first four letters, perhaps with a single transposition, or one

of the first names is missing.
3. The years of birth are the same, or one can be obtained from the other with a simple

transposition.
4. Gender either matches or is missing in one dataset.

This set of rules links the two datasets perfectly. It correctly identifies the four pairs that are true
matches – rows 2, 9, 13, and 20 in Table 2 –but does not identify any of the other pairs that are
not in fact linked, including the difficult pair in row 21. Thus, this decision rule would be perfectly
accurate for this dataset.

There are no guarantees that this perfect performance would remain in a larger linking exercise,
however – one might easily identify pairs as matches that are not, while still failing to identify other
pairs that are matches as such. In particular, Rule 1 is likely to lead to overlooking a great many true
matches. It is common for last names to fail to match perfectly across datasets, whether because of
misspellings, name changes upon marriage, or different conventions for entering hyphenated or
compound names. In real-world settings, rules that are more forgiving are likely to be desirable. But
more relaxed rules may lead to identification of some non-matches as pairs.

Unfortunately, it is not possible to construct an overarching set of linking rules that can be applied
to all data matching problems. The rules need to take account of the data fields that are available,
the frequency of data entry errors in the component datasets, and the relative costs of over- and
under-identifying matches. Even the appropriate weight to put on different information will vary
across settings. For example, a link between education records of individuals who graduated during
the Great Recession and income tax records, conducted to evaluate the effect of the Recession on
earnings, might give less weight to birth-year matches, as most individuals in this cohort will have
been born within the same 4 or 5-year window. If linking data pertaining to Korean or Korean-
American populations, one might want to put lower priority on last name matches, since it is quite
common in these populations for unrelated individuals to share the same last name.

capolicylab.org Linking Administrative Data: Strategies and Methods 10

Good linking algorithms require tailoring to the data and extensive calibration, but not all data
linking is purely idiosyncratic. This paper highlights a common decision-making framework that is
useful across real world data linking problems.

Measuring Accuracy

While we can match the records in the two small datasets in the example above with perfect
accuracy, it is unlikely that it would be possible to achieve this in larger samples. It is therefore
helpful to distinguish two types of errors that can occur when linking datasets. One is failing to
identify a true pair as a match. For example, a rule that is too restrictive might count pair 2 in Table
2 as a non-match due to the dissimilarity of the first names and a missing gender field. This error is
known as a “false negative.” Another type of error is counting a pair as a match when it is not. A
rule that is too permissive might have made this mistake, a “false positive,” with pair 21.

These two types of errors are illustrated in Figure 1. The rectangle represents all possible pairs of
records. Here, the blue area represents pairs that are in fact true matches, and the red area
represents pairs that are not matches. (This schematic is not to scale. In any matching problem, the
blue area will be much, much smaller than the red area – typically a tiny fraction of the full
possibility set.) The green oval encloses those pairs that have been identified as matches by a
hypothetical matching algorithm. This oval includes more blue pairs than red pairs, but the matched
set depicted is not perfect. There are some red pairs inside the green area – these are false
positives, pairs incorrectly selected as matches. There are also blue pairs outside the green oval –
these are false negatives, or pairs that should have been identified but were overlooked.

Figure 1: Possible Pairs Between 2 Datasets

capolicylab.org Linking Administrative Data: Strategies and Methods 11

Both types of errors are undesirable, but it is rarely possible to eliminate either. We can adjust the
size of the green oval representing identified matches in Figure 1 by being more or less stringent in
our matching criteria. But this introduces a tradeoff: more stringent criteria for judging a pair to be
a match will reduce the number of false positives but increase the number of false negatives, while
more lenient criteria will reduce false negatives but drive up false positives.

Whether it is more important to maximize the identification of true matches, thereby avoiding false
negatives, or to minimize the identification of false matches, and thereby avoid false positives, is
highly dependent on the context of the matching exercise. In some situations, false positives are
very costly. An airline matching passengers to a “trusted traveler” list would very much like to avoid
giving expedited screening to someone who is not actually on the list – the cost of a false negative
is a few minutes of extra screening time for the “trusted traveler” who has been misidentified as a
non-trusted traveler, but a false positive might allow a dangerous passenger to slip through.

Conversely, consider a match between a social welfare participant database and child welfare
records performed for the purpose of offering additional voluntary parenting assistance services to
the welfare program participants who need them. Here, it is more important to identify everyone
who might need services, as the cost of over-identification is only to offer services to people who
do not need them and are unlikely to take them up. In this case, we might want to minimize false
negatives and might be willing to tolerate a higher rate of false positives.

A common way to measure the frequency of the two types of error is via precision and recall
rates. Precision measures the share of all identified matches that are true matches, and thus the
method’s ability to avoid false positives. Recall measures the share of all true matches that are
identified, or the method’s ability to avoid false negatives.

Formally, precision is computed as:

P = # true matches found = True Positives
#all matches found True Positives + False Positives

Recall is:

R = # true matches found = True Positives
#all true matches True Positives + False Negatives

As the number of false positives and false negatives move in opposite directions, so too do
precision and recall rates. Recall can be increased by relaxing match criteria to properly classify a
larger share of true matches (that is, expanding the green oval in Figure 1), while this will generally
lower precision (by increasing the red area that is captured by the green oval). Conversely, applying
more stringent match criteria (shrinking the green oval) will improve the precision but reduce recall
(by reducing both the blue and red areas captured by the green oval).

There are only two methods for increasing both precision and recall together (moving the green
oval to the left in Figure 1). The first is obtaining better data: collecting more information about the

capolicylab.org Linking Administrative Data: Strategies and Methods 12

individuals in the two datasets being linked can make it easier to judge whether a pair is a match,
thereby increasing both dimensions of accuracy. The second is making better use of the data that
are collected. The process we used to arrive at the decision rules for our sample data illustrates
this second method. Early alternatives to the set of rules we ultimately selected would have
achieved mediocre accuracy. For example, a version of Rule 2 requiring a perfect match on first
names would have produced false negatives in pairs 2, 13, and 20, and thus would have reduced
recall to 1/4 or 25%, while precision would remain at 100%. However, careful consideration of the
data at hand led us to modify this rule and ultimately craft a set of rules that achieved perfect
precision and perfect recall.

Unfortunately, in real-world linking problems it is generally not possible to measure precision and
recall. Any data that we attempt to link will not come equipped with an answer key to identify the
true matches across datasets. When we obtain a set of potential matches, we cannot easily classify
them into true and false positives, nor can we isolate the false negatives from among non-matches.
While it may be possible to identify false positives, and thus approximate precision, through a
careful hand-evaluation of identified matches, it is nearly impossible to accurately estimate the
number of matches that an algorithm has failed to identify. Nevertheless, the concepts are useful
and provide a framework for considering the accuracy of the different approaches to administrative
data linking we describe below.

Another important dimension of accuracy is representativeness: whether the likelihood of
capturing a true match is similar across different groups in the datasets, so that the set of identified
matches is representative of the true matches in the population. This can be hard to achieve – the
example discussed above of differences in last name frequencies across ethnic groups suggest that
linking rules which rely on last names are likely to achieve lower precision among Korean
Americans than among Americans with European-derived last names. These rules may also have
lower recall among populations that use Spanish-derived traditions of combining maternal and
paternal last names, as such names are often recorded inconsistently in datasets not designed to
accommodate them. Like precision and recall, representativeness may not be measurable in real-
world linking problems, but it may be an important equity criterion that guides the development of
a linking process.

With these important considerations in mind, we turn now to the mechanics of data linking.

Methods of Linking

It is not hard to scan the possible pairs in Table 2 and distinguish the four real matches from the 21
non-matches, with pairs 2, 13, and 21 representing the only remotely ambiguous cases. The human
brain is quite good at this kind of pattern matching task – it is relatively simple to recognize that
“Kerri” and “Kerry” are more likely to represent the same person than are “Denzel” and “John.”
We are also good at identifying a sequence of near misses across multiple records. However, this
process is not scalable. We need to examine each pair one at a time, and even someone moving
fairly quickly (say, just a couple of seconds per pair) will take a long time to move through a large
set of pairs.

capolicylab.org Linking Administrative Data: Strategies and Methods 13

Unfortunately, even modest-sized input datasets lead to a very large number of potential pairs that
must be considered. Our two sample datasets had only five records each, yielding 25 potential
pairs. Two datasets with 100 records each, quite small for any real linking application, would have
generated 10,000 potential pairs to consider. In real-world linking exercises, datasets often have
tens of thousands of records or more. Clearly, the many millions or billions of resulting potential
pairs, of which only a tiny fraction represent true matches, cannot be evaluated by hand;
automated methods are required.

These methods typically take a four-step process to identifying matches.

1. Data Preparation: Data is cleaned and otherwise prepared, with spurious sources of
inconsistencies between the two datasets (e.g., differences in capitalization or abbreviation)
resolved.

2. Blocking: A preliminary rule (or set of rules) is applied to eliminate a large number of
potential pairs that are quite unlikely to represent true matches, and thus dramatically
reduce the number of potential pairs that must be considered more carefully. This step is
necessary with large datasets, where the number of possible pairs is too large to consider
them all carefully.

3. Field comparisons: Pairs are compared on a field-by-field basis, and field scores are
constructed for each pair of corresponding fields that measure the alignment between
them.

4. Pair comparisons: The scores from the field comparisons are aggregated across each of
the identifying fields (and sometimes across pairs as well) to construct a pair score, and
pairs are classified as identified matches or not based on whether this pair score is above or
below a threshold.

We discuss each of these steps in turn.

Step 1: Preparing the Data

Two datasets to be linked rarely arrive in forms suitable to be fed directly into automated linking
algorithms. An initial data preparation step is generally required to permit meaningful comparisons.
This is not just a formality but requires careful consideration of linking-specific issues. The
goal is to address systematic sources of differences in the way that information is recorded in the
two datasets, to make it easier to identify when the corresponding fields in the two input samples
represent the same information.

The preparation that is required is entirely specific to the characteristics of the data that are being
used. In some cases, it is as simple as converting capital letters to lowercase (or vice versa), so that
“John” and “JOHN” are not coded as different in three of their four letters. We might also remove
punctuation or abbreviations that may not be included consistently across the two datasets, for
example to enable “Boulevard” and “Blvd.” (or “Ninth” and “9th”) to be recognized as representing
the same thing. Similarly, when information is coded differently in the two datasets, we will need to
correct this – a computer will need assistance to recognize that month of birth coded as 1 through
12 in one dataset matches to the same information coded as “January” through “December” in the
other.

capolicylab.org Linking Administrative Data: Strategies and Methods 14

As these examples make clear, there are elements of data cleaning that are common across many
linking situations, and there exist a number of resources to assist those engaged in this process,
some with example code.3 However, there are often tricky aspects of the specific datasets being
used that require new solutions, and the analyst managing the linking process will typically have to
devote a great deal of time to thinking through possible inconsistencies in the datasets. Any
spurious inconsistencies that can be identified and fixed here will pay off later in terms of higher
recall rates. For example, in one linking exercise that we were part of, initial runs yielded very low
match rates. We eventually discovered that names in one dataset had been padded with extra
spaces at the end, so that “John ” in that dataset did not appear to match with “John” in the
other. When the spaces were removed, the recall rate improved dramatically.

This kind of data preparation is tedious and easy to overlook, but it is by far the most important
part of a linking exercise. The implications for accuracy of decisions made and time invested in
subsequent steps are generally tiny relative to getting the data preparation and cleaning right.

Step 2: Blocking

The number of potential pairs to be considered grows with the product of the number of
observations in the two data sets being merged. Imagine a mid-size city wants to study a recently
implemented policy designed to combat the school-to-prison pipeline. Measuring the program’s
effectiveness would require linking data on school discipline records with data from the criminal
justice system. A match between 100,000 student records and 10,000 criminal justice RAP sheets,
as might arise in such a city, yields one billion potential pairs. This can quickly get overwhelming
even for fast computers, particularly if the evaluation of each pair involves a large number of
calculations (as is often required to identify similar strings of text).

Importantly, the vast majority of the potential pairs are not true matches. Of the billion pairs in our
school-to-prison pipeline example, there can be no more than 10,000 true matches. Thus, the
share of all possible pairs that are true matches is under 0.001%. If we can quickly discard many of
the 99.999% of pairs that are not matches, we can devote more attention and computing time to
the harder cases.

This strategy is called “blocking.” The idea is to use a preliminary and limited assessment to make
an initial cut, discarding the pairs that are clearly not matches. At the most basic level, this involves
considering only pairs that match on a particular characteristic. For example, one might block on
gender and discard without further consideration any potential pair where gender does not match.
This quickly reduces the number of pairs to be considered more carefully by half, but raises
concerns about false negatives when gender may be miscoded. Using other characteristics that are
more dispersed in the population (e.g., first letter of the last name, or zip code) for blocking cuts
the sample of potential pairs much more dramatically – often leaving only a fraction of the initial set
of potential pairs.

3 See Chapter 4 of “Linking Data for Health Services Research: A Framework and Instructional Guide” (Dusetzina et
al., 2014) for a helpful reference table and example SAS code.

capolicylab.org Linking Administrative Data: Strategies and Methods 15

Blocking is not without cost, however. If there are any true pairs that do not match on the blocking
variable – perhaps there were transcription errors, or people moved – these will be discarded as
well. Thus, it is important to block carefully, only using variables that are likely to be quite stable
across the datasets. Blocking is typically performed on relatively crude measures. For example, one
might use only the first three digits of the zip code rather than the full five digits to reduce the risk
of failing to consider true matches due to transcription errors or short-distance moves. We face a
tradeoff – the coarser the blocking criteria, the more pairs that need to be considered; the more
specific the criteria, the lower the recall.

The costs of blocking can be mitigated by using multiple overlapping criteria, either
simultaneously or in sequence. For example, one can consider all potential pairs that have an
exact match on either the first or the last name. This strategy would reduce the number of pairs
that need to be considered in our example from Table 2 from 25 to 6, avoiding the need to more
carefully compare Angelina Jolie from dataset A with John Legend in dataset B but still allowing all
of the true matches to move forward. One could then more carefully consider possible matches
among this subset.4

In our simple example, blocking on exact matches on first name would have excluded three of the
four matches we arrived at by inspecting them by hand, while the compound rule that uses either
first or last name would not have produced any false negatives. As always, however, this block
might not be appropriate in other settings. In some datasets, first and last names are sometimes
switched; this would lead to failure on both blocking criteria. In fact, we would in general not
recommend using names as blocking variables, due to the frequency of misspellings and name
changes; we discuss it here merely as an illustration. Gender, year of birth, and large-scale address
measures like county or zip code (if people moving between data collection periods is not an
issue) are typically more appropriate.

Step 3: Field Comparisons

At the end of the blocking step, we have a long but manageable list of potential pairs to consider,
each preprocessed to minimize the number of spurious differences between them. The next step
is to score individual field comparisons, as in the color coding in Table 2. Here, our scoring may be
less crude than the simple criteria we used in blocking. In particular, we can use computationally
expensive calculations, as they don’t need to be applied to all possible pairs.

In our example above, there are four fields to compare: last name, first name, gender, and birth
year. The simplest way to score a field is just to measure whether it matches or not. Here, an
exact match between the information in the two component datasets (after preprocessing) yields a
score of 1, while a pair that does not match exactly gets a score of 0.

4 There are more complex and technically advanced ways to block data, which are beyond the scope of this paper. See
Human Rights Data Analysis Group’s 5-part blog series, for example, for more details (Ball, 2016).

capolicylab.org Linking Administrative Data: Strategies and Methods 16

One can clearly improve upon this. The specific methods that are used can be complex, but the
ideas are simple and designed to capture intuition about near misses. For example, it can be helpful
to give partial credit to cases where the values are non-missing and different, but “close” in some
metric that suggests a data entry error. Transpositions are common in data entry, so birth years of
1978 in one dataset and 1798 in the other might be judged closer, and given a higher score, than
cases where the differences are less likely to have arisen through data entry errors (say, 1978 and
1954).

Additionally, a failure to match a field because the information is missing from one or the other
dataset (e.g., the birth year in pairs 16-20 in Table 2) is less indicative of a non-match than is a case
where both datasets provide information but it is not aligned. One might want to give a partial
score – say, 0.5 – to this field comparison.

Generalizing this, researchers have developed a number of methods for scoring the distance
between two strings based on their phonetic pronunciation, the number of character changes it
would take to convert one to the other, or the number of characters (or perhaps initial characters)
that they have in common. These methods are designed to capture the intuition that “Angela” and
“Angelina,” for example, are more similar to each other than are “Kerri” and “Denzel,” and
therefore are more likely to represent different ways of presenting the same underlying
information.

At the most basic level, one might give credit to names that match on the first few letters but differ
afterward. More elaborately, one common string distance measure would code the distance
between “Angela” and “Angelina” as 2 and the distance between “Kerri” and “Denzel” as 5,
representing the number of changes that would be needed to convert one to the other.5 One
might then give a score of 1 to any pair with a distance below some specified threshold. A more
nuanced alternative to this is to give partial credit based on the string distance, with full scores of 1
reserved for exact matches.

Available data linking software packages often have a large number of built-in
comparisons of this sort that can be used to automate the field comparison scoring
process. These are often customized for the specific information that the fields contain – one can
take advantage of the structure of a birthdate or a street address, for example, to extract more
information than is available in a simple string comparison.

Some matching strategies go even further than this, allowing for gradations even among perfect
matches. These take advantage of the rarity of the information in the field. Two records with the
last name “Jolie,” for example, are much more likely to refer to the same person than are two
records with the last name “Washington.” One can use the distribution of names across
observations in the two datasets to make this notion precise, giving a higher score to the “Jolie”

5 These distances are computed by summing the number of deletions, insertions, and transpositions required to move
from one string to another. Transforming “Angela” into “Angelina” requires the insertion of 2 letters and zero
deletions or transpositions, so the distance between the two strings is 2. This metric is known as the known as the
Levenshtein distance, or edit distance (Gilleland, n.d.).

capolicylab.org Linking Administrative Data: Strategies and Methods 17

comparison than to the “Washington” comparison, though typically one would give both
comparisons higher scores than imperfect matches (e.g., “Braff”-“Brand”).

Step 4: Pair Comparisons

Having scored the individual field comparisons, the next step in linking is to use this information to
decide which pairs – of those that survived the blocking step – represent matches, and which do
not. In our Table 2 example, if all fields were compared strictly (requiring an exact comparison to
get a score of 1, otherwise getting a score of 0), pair 2, the “Angelina”-“Angela” pair, would have a
score list (0, 1, 1, 0) where the first entry represents the score for the first name, the second for
last names, the third for birthdates, and the fourth for gender. We need to convert this to a
decision: match or not.

The basic approach is simple – high scores across all of the pairwise field comparisons indicate a
match, while uniformly low scores indicate a non-match. The implementation can be quite
complex, however, using advanced computing algorithms to handle the more difficult cases where
some field scores are high and others are low. There are several different approaches available,
varying in the extent to which they use artificial intelligence and machine learning methods to
substitute for human expertise. We discuss three families of approaches, beginning with the one
that relies most on human involvement and moving toward the one that is most hands-off.

Rules-Based Linking

Rules-based linkage methods involve using rules set ex ante to decide whether two records are a
match, as in our proposed rules for our sample datasets discussed above. That is, the person
managing the data linkage process specifies a set of rules that convert the pairwise score lists into
decisions. These sets of rules can be simple or quite complex.

A simple, overly strict version of this can illustrate: suppose that we classify only pairs that perfectly
match one another on all fields as matches – the score list (1, 1, 1, 1) is counted as a match, and all
other score lists are classified as non-matches. This rule is quite rigid and can be expected to
produce many false negatives. In our example above, only pair 9 (Denzel Washington) would be
identified as a match.

More flexible approaches allow for some non-matches or partial scores. A less strict rule might
allow a match so long as all scores are above 0.8 and at least two are exactly 1, or if there are
scores of 1 on three of the four fields regardless of the score on the fourth field.

It is often helpful to treat the different field scores asymmetrically – a score of 1, indicating
an exact match, is less useful for identifying a true pair when it derives from a gender comparison
than from the exact date of birth. One might, for example, require a perfect score for the last
name and either the date of birth or first name, with a moderately high score on either the other
field or gender.

Although we did not require this in our simple example, matching rules often incorporate
information from across pairs, beyond the pure pairwise comparison score lists. In many cases, as in

capolicylab.org Linking Administrative Data: Strategies and Methods 18

our example, we are confident that each record in dataset A should match to no more than one
record in dataset B and vice versa. This can be used to avoid false positives. Suppose, for example,
that a larger version of dataset B contained, in addition to the “Angela Jolie” record, another
record for an “Angelina Jolie” who was also born in 1975. The presence of the latter record, which
certainly appears to match “Angelina Jolie” in dataset A, reduces our confidence that “Angela Jolie”
is a match for that record. A simple pairwise matching rule that uses only pair-level score lists might
conclude that both match the “Angelina Jolie” record in dataset A. We know that they cannot
both be true matches, however, so our rules might use this information to classify the “Angela
Jolie” record as a non-match on the grounds that a stronger candidate match has already been
found.

This type of exclusion, which has no effect in our simple example, can be quite important in larger
settings. It only functions, however, if we are certain that there are no duplicates in either dataset. If
it were the case that “Angela Jolie” and “Angelina Jolie” in dataset B are both records of the same
person, with some error in the first name field, any rule restricting each record to one match in the
other dataset would yield a false negative for the “Angelina Jolie” - “Angela Jolie” pair, and one
would not want to impose it.

A well-crafted set of rules can yield high levels of both precision and recall. Accurate results
typically come at a cost, however: a great deal of expert knowledge and time is required to define
the rules and check that they are working as intended. The resulting rules are necessarily inflexible
and unlikely to be generalizable to other linking problems. Moreover, extensive audits are often
needed to understand whether rules inferred from consideration of a small sample of potential
pairs are operating reasonably at a larger scale.

Supervised Machine Learning

Fortunately, the task of distilling field-level scores generated in Step 3 into decisions about which
pairs to accept as matches turns out to be a task for which machine learning methods are very well
suited. These methods can be quite fast to implement, and often generate diagnostic scores that
can speed auditing.

There are two broad approaches to record linking with machine learning. The first is known as
“supervised” machine learning. Supervision refers to the role of the human operator: in supervised
machine learning, the operator classifies a modest number of pairs as matches or not, using his or
her judgment. This is known as “training” the algorithm. The list of classified pairs is then turned
over to a machine learning algorithm. The algorithm infers a set of rules that can best reproduce
the decisions made by the human trainer. Once those rules have been formed, they are applied to
additional data to classify pairs as matches or not.

This strategy clearly requires initial human input, which can be time consuming (though less so than
it would be to develop a rules-based approach without machine learning). The more training that is
done, the better the rules that the algorithm will create. However, a well-crafted algorithm will
select pairs for scoring that maximize the information that can be extracted from a small amount of
training. It is often possible to achieve a surprising degree of accuracy from training samples of only
50 or 100 pairs.

capolicylab.org Linking Administrative Data: Strategies and Methods 19

Unsupervised Machine Learning

A second approach, known as “unsupervised” machine learning, requires no training at all (though
human input is still required in constructing the field comparison scoring rules in Step 3). The
algorithm is able to infer a rule solely from the distribution of field scores across possible pairs.

This seems magical, but it is actually fairly straightforward. The basic idea is that each pair is either a
match or non-match. If it is a match, we expect that the linking fields will generally be closely
aligned – there may be missing values and transcription errors, but field match scores will tend to
be fairly high across all fields. If it is not a match, the opposite is the case: it is quite unlikely that any
single non-matching pair will have a score above zero on any of the matching fields, and more
unlikely still that it will have high scores on several of those fields. Therefore, if a pair has high
scores on several fields the probability that it is a match is quite high, while a pair with zero scores
on most or all fields has a very low chance of being a match.

Implementation of this idea requires a fair amount of computing power, but it can yield
surprisingly accurate matches, particularly when the datasets are clean and there are more than
two or three fields to use in forming the score lists. As the number of transcription errors or other
sources of low pairwise field comparison scores among true matches rises, this method’s
performance can deteriorate, both in terms of computing difficulty and accuracy.

A key assumption of unsupervised machine learning algorithms is that field-level mismatches are
random and independent of one another – that if a pair is a true match, the presence of a
transcription error or other mismatch in one field does not affect the probability of an error in
another field. As a result, true pairs with one mismatched field are much more common than true
pairs with two mismatched fields, which are themselves much more common than true pairs with
three mismatched fields (Enamorado, Fifield, and Imai, 2017). However, it is easy to think of real-
world situations that would violate this assumption. For example, it is not uncommon to see
records in administrative datasets in which the first and last name have been switched, or a middle
and last name are separated in one dataset and condensed into a double last name in another.
These records will match poorly to their true pairs in other datasets on both fields, a violation of
the independence assumption that unsupervised machine learning algorithms rely on. One would
expect that unsupervised algorithms will perform poorly in the presence of this type of error,
though to our knowledge there has not been a formal exploration of this supposition.

While machine learning approaches generally require less human input and set-up time than rules-
based approaches, a drawback relative to a rules-based approach is that the decisions machine
learning algorithms make are often opaque. Rules developed by a machine learning algorithm often
involve complex combinations of individual field scores, and it may be hard to explain why an
algorithm concluded that one pair is a match and another is not. However, when implemented
correctly, machine learning algorithms can yield highly accurate results in terms of both precision
and recall.

capolicylab.org Linking Administrative Data: Strategies and Methods 20

Evaluating Matching Algorithms

Each approach to linking data has strengths and weaknesses, as do the various software options for
implementation. One wants a method that is accurate, easy to implement and customize, that runs
quickly on available systems with the data that must be linked, and that requires minimal operator
time to learn, apply, or train. We discuss some of the key criteria below, followed by profiles of
some of the most common software packages available for data linking. Which of these criteria are
most important, and which software is most fitting, depends on the context.

Accuracy

Accuracy is arguably the most important metric upon which any method or package should be
judged. As discussed earlier, accuracy is commonly measured by precision and recall, and by the
representativeness of identified matches. Within any method, there can be tradeoffs between
these criteria, with higher precision often achievable at the cost of lower recall (and vice versa),
though there may not be similar tradeoffs between packages.

For any algorithm and package, accuracy is likely to vary across specific linking problems. When
there are a large number of available identifying fields, and when these are recorded with high
fidelity and few changes across the original datasets, any algorithm is likely to yield very high
accuracy. Messier data will generally lead to lower accuracy.

Importantly, the decline in accuracy due to mistakes in the data may vary across algorithms. For
example, as discussed above, errors across several fields (e.g., switching the first and last name)
present a particular problem for unsupervised machine learning algorithms, while rules-based and
supervised machine learning algorithms should have no trouble with this type of error, provided
that the operator defines rules in Steps 2 and 3 to capture it. The pairwise comparison score list
created in Step 3could, for example, include a score for the similarity between the first name in
one input dataset and the last name in the other. This score will be high in cases where the two
names have been reversed.

Reproducibility

A criterion that relates to accuracy is reproducibility. Some methods – for example, human-written
rules-based linking – are reproducible by design: the same rules will identify the same pairs as
matches every time they are run. Machine learning-based algorithms may not have that feature. In
supervised machine learning algorithms, for example, there is typically some element of
randomness in the selection of pairs to be presented to the human operator in the training step.
Even with the same training sample, different human operators may make different decisions about
how to classify ambiguous pairs. Either may lead to differences in the inferred decision rule, and
thus in the set of pairs identified as matches.

Whether this variability represents a problem will, as with other criteria, differ across settings. In at
least some settings – for example, where results of the match will lead to decisions that are
consequential for the individuals involved, and where those individuals have due process rights – a

capolicylab.org Linking Administrative Data: Strategies and Methods 21

high degree of variability could be a very large problem, as it will not necessarily be evident which
results should be relied upon when output differs across runs.

Efficiency and usability

Another important aspect of a linking method’s performance is its efficiency. Linking of large
datasets can take days, weeks, or even longer, especially if the method is inefficient. All things equal,
one would prefer a method that economizes on the computer resources required, on the amount
of time required to configure the software and implement the match, and on the amount of
specific expertise needed. It often makes sense to trade these criteria off against accuracy,
accepting a few additional mistakes in order to get a match running quickly at limited expense.

We consider several sub-components of efficiency.

Accessibility of software

The practicality of implementing any particular approach depends at least in part on the availability
of relevant software and of operators who are able to use it. Relevant considerations include:

• Is software available to implement the approach?
• Is it costly?
• Is there transparent code available that is easy to interpret and adapt?
• Is the software easy to use, or does it require specialized knowledge?

Our discussion of particular packages below includes information about the accessibility of each.

Customizability

As we discuss above, a successful linking exercise will often require careful tuning of the linking
algorithm – adjusting the measures of similarity at the field level, determining the relative
importance of false positives and false negatives, and so on. Thus, it is important that a software
package be customizable to deal with the particularities of the linking problem to which it is being
applied. Moreover, software packages vary in how easy they are to customize – some are designed
with user-friendly interfaces, while others can be customized but only by a skilled programmer who
spends time learning the details of the package’s code.

Supervised machine learning algorithms introduce another aspect of customizability and
accessibility. Here, users must train the model on a sample of paired observations. Packages vary in
the way that this training is handled. Some offer graphical user interfaces that offer up pairs for the
trainer to score, while others are more rudimentary. A feature that can be useful is the ability to
feed a pre-labeled dataset of scored pairs to the program in lieu of training observations one by
one. However, if the package chooses training pairs that are hard to classify and therefore helpful
to developing an accurate algorithm, feeding in pre-labeled data may sacrifice some degree of
accuracy.

capolicylab.org Linking Administrative Data: Strategies and Methods 22

A final important aspect of customizability relates to what is being matched. Our discussion has
focused on linking problems that involve two datasets, each unduplicated, that need to be linked to
each other. But there are other sorts of linking problems. Sometimes, the problem to be solved is
linking a dataset to itself – identifying sets of records that all refer to the same person (referred to
as data deduplication). An example is a dataset of police-citizen encounters, where one wants to
aggregate all of a citizen’s various encounters. Other times, one wants to link two datasets together
that may each contain duplicates. And in some cases, there are more than two datasets that all
need to be linked to each other. In our profiles of specific software packages below, we discuss the
capability of each to achieve these tasks. However, none of the software packages we reviewed
supports linking three or more datasets simultaneously.

Time to implement

Our final criterion is at times unimportant but can become overwhelmingly important in some
applications: the time required to implement a match. This criterion is separate from the
accessibility considerations mentioned above; it refers to the time required to execute a match
between two datasets once the correct software has been acquired and learned. There are two
aspects of implementation time: the amount of operator time needed to configure a software
package, and the amount of computer time needed subsequently to carry out the match. As noted
earlier, the most time-consuming part of preparing for a match is data cleaning, and this generally
cannot be avoided. The development of field-specific comparison scores can also take a long time,
though some packages make this simpler than others.

Set-up time is generally shortest for unsupervised machine learning algorithms, followed by
supervised machine learning – provided that the number of training pairs to be scored is not too
large – and then rules-based strategies, which can take a very long time to develop.

Execution time is another matter. As we have noted, even modest-sized linking problems involve
consideration of millions or even billions of potential pairs. This can be a challenge even for
powerful modern computers. Some packages are perfectly suitable for modest-sized linking
problems but are simply too slow to consider for larger problems. Others are optimized for large
problems and scale better.

A rough guideline is that algorithms that require more set-up time then execute more quickly:
rules-based algorithms can be very fast, while supervised machine learning is somewhat slower and
unsupervised slower still. But this depends to a great extent on the degree to which the code has
been optimized for speed – a well-written unsupervised algorithm can be much, much faster than a
poorly written rules-based strategy. And aggressive blocking can make an enormous difference in
speed, enough to make up for large differences in the efficiency of the post-blocking steps.

Software Profiles

There are many different software packages available for the different approaches to data linking.
These packages typically include components that implement Steps 2 (blocking), 3 (field scoring),
and 4 (pair scoring), but assume that the operator has previously completed Step 1 as a
preprocessing stage. Bearing the above criteria in mind, we briefly summarize some of the most

capolicylab.org Linking Administrative Data: Strategies and Methods 23

common packages currently used linking here. Next, we present empirical results from our tests of
some of these approaches.

Hand-coded rules

Rules-based linking using human-defined rules typically does not require a specialized software
package. Rules can be defined directly in a general-purpose data processing language (e.g., SAS,
SQL, R, or Python). There is a high return to skilled programming here, as different ways of
handling the large number of pairs that must be considered can yield dramatically different
performance. SAS and SQL are particularly well suited to matching, as neither requires loading the
full set of potential pairs into memory at once, though careful programming can allow other
software to be used as well.

When coding rules-based linking by hand, it is tempting to combine blocking-style rules (Step 2)
with more sophisticated field-level comparisons (Step 3) in a single step. But this must be done
carefully. The goal of blocking is to eliminate cases based on quick, rough assessments, so that the
computationally difficult calculations that may be used in Step 3 can be applied only to cases where
they are helpful. Thus it is helpful to maintain the order we describe above; first, blocking the
data to retain only candidate pairs that may constitute a match based on our blocking criteria, and
only then implement more computationally expensive field comparisons such as string distance
calculations.

RecordLinkage (Python)

RecordLinkage is an open-source Python library that simplifies the linking process by providing an
easily customizable blueprint for Steps 2, 3 and 4. The package can support rules-based, supervised,
and unsupervised machine learning methods for Step 4 (“Python Record Linkage Toolkit”, n.d.).

RecordLinkage explicitly splits Steps 2, 3 and 4 into separate functions, giving users a great deal of
flexibility to determine which variables to block on (Step 2), which variables to match on and how
to consider them (Step 3), and what approach to use to aggregate these variable comparisons and
classify matches and non-matches (Step 4). Although flexible, the algorithms are not carefully
optimized for fast performance with large datasets and can be quite slow on larger problems.
Generally, performance is acceptable when the number of pairs to be considered is below about
25 million (corresponding to input datasets of 5,000 records each without blocking, or larger if
blocking is used). Above this point, it is likely worth considering other packages.

Dedupe (Python)

Dedupe is another Python library that is specialized for supervised machine learning. It can be used
both for linking two datasets, as we have discussed here, and for the closely related problem of
identifying duplicate records in a single dataset, discussed above (Gregg and Eder, 2018).

Unlike many other packages, Dedupe offers support for common data preprocessing tasks (Step
1), such as removing punctuation and standardizing the case of all string variables. Dedupe also

capolicylab.org Linking Administrative Data: Strategies and Methods 24

handles blocking (Step 2) automatically, though it provides little flexibility for the user to control
this process. However, the package does offer a great deal of flexibility for Step 3, allowing the user
to select which variables to include and how they will be compared.

As Dedupe is a supervised machine learning package, it relies on human training in Step 4. A
trainer is presented a set of training record pairs and asked to classify each as a match, non-match,
or uncertain. This is done through a rudimentary interface in the free version of the Dedupe
package, while a paid version simplifies the steps and offers a graphical interface. When training is
complete (after a minimum of 10 matches and 10 non-matches, though users can train for much
longer if desired), Dedupe uses the classified pairs to infer a decision rule and applies it to the rest
of the input dataset. Our empirical tests, discussed below, indicate quite high performance even
with very short training runs.

As an alternative to hand-training, a user can also feed Dedupe a pre-labeled data file that identifies
matches and non-matches. This approach is more replicable, but performance is generally lower as
hand-training allows the algorithm to select cases that are most useful to it in informing the choice
of rules.

Dedupe’s decision rules (Step 4) yield not just classifications of pairs as matches or not, but also
link scores for each identified match. These scores are numbers between 0 and 1 that represent
the algorithm’s judgment of the probability that the two records are actually a match, where lower
scores correspond to more questionable matches. This can aid auditing, by allowing the auditor to
focus on the hardest cases.

A limitation of Dedupe is that it does not allow for multiple matches – where one record in one
dataset matches to several in the other. In many administrative record settings, there may be
multiple component records for the same individual, and one wants to match all of them to the
other information. To implement this in Dedupe, one needs to first deduplicate each of the two
datasets, then link the deduplicated datasets together. But potentially useful information is lost at
the deduplication stage, making this an unattractive option.6

Dedupe’s design allows it to scale quite flexibly to extremely large datasets. It separates the
development of the rules, for which it uses a sample of the full set of pairs, from their application,
and it implements blocking by default. A consequence of this is that the rules do not take much
longer to develop for a large matching problem than for a smaller one, while the application of
these rules to the full set of pairs is quite fast.

fastLink (R)

FastLink is an R package that uses unsupervised machine learning to match records (Enamorado,
Fifield, and Imai, n.d.). The open source code is very easy to adapt to any pair of datasets.

6 An alternative that we do not explore here is to append the two datasets to be linked and then deduplicate that
combined dataset. This is less flexible with respect to data measured differently in the two data sets than are the
matching approaches we discuss, but can be useful when measurement is similar (e.g., when linking the same data
measured at different times).

capolicylab.org Linking Administrative Data: Strategies and Methods 25

Relative to the other packages considered above, the level of human input required to run fastLink
is very low. This is largely because there is no need to develop rules or train the algorithm. Users
must complete the data cleaning requirements described in Step 1 prior to using fastLink to match
two datasets.

Users can create blocks manually (Step 2), and fastLink can also look for clusters of records that
look most similar on a given measure. Steps 3 and 4 are done independently on each block, then
the matches found within the various blocks can be aggregated.

The program allows users to classify field-level matches (Step 3) either as exact matches – such
that “John” would not match with “Jhon” – or as a function of their string distance, and it lets users
select from a number of different string comparison options appropriate for different types of
fields. FastLink also allows for field comparisons to yield “partial matches” rather than a match or
non-match. This contrasts with many other packages, which may compute the string distance but
then dichotomize that information into “matches” that are below a threshold distance and “non-
matches” above it. FastLink allows for three categories. The thresholds for what constitute a match
and a partial match can also be adjusted by the user. This additional gradation can help identify
additional matches, but it is computationally more costly.

As in Dedupe, the difficult computational task of inferring a matching rule can be conducted on a
subset of the two datasets to be matched, then extrapolated to the full datasets. The speed
benefits are similar. However, fastLink is generally slower on large problems than is Dedupe, in part
because it lacks Dedupe’s capacity for automatic blocking.

As with Dedupe, fastLink assigns each pair a score between 0 and 1 that represents the probability
that it is a match, and settings can be altered to adjust the threshold for accepting a pair. Unlike
Dedupe, fastLink can accommodate matching problems in which there may be multiple matches
for a single record.

ChoiceMaker (Java)

ChoiceMaker is another supervised machine learning method, written in Java with a custom
language overlay (“ClueMaker”), that allows for highly customizable types of pairwise field
comparisons (“ChoiceMaker”, n.d.). The package is difficult to configure and to use and does not
have robust publicly available documentation. However, the Children’s Data Network have used it
to great success, including linking records across several departments within the California Health
and Human Services Agency. We do not present performance evidence for Choicemaker here.

BigMatch (C++)

BigMatch is one of the older linking packages in active use. Written in C++, it was built by the US
Census Bureau for use as an initial processing step when linking two files, one large and one of
moderate size, with the idea that its results could be further evaluated by other matching programs
(Yancey, 2002).

capolicylab.org Linking Administrative Data: Strategies and Methods 26

BigMatch is particularly well suited for enormous data files, where even re-sorting the input data
files is computationally expensive. It is designed to permit multiple blocking runs in succession
without resorting the data in the large input file. It also incorporates an unsupervised machine
learning algorithm following the initial blocking step. It does not include extensive capabilities for
flexible field-level scoring (Step 3).

Users can interact with BigMatch through graphical user interfaces without themselves knowing
C++. The user feeds two text files into the program, and receives a set of potential matched pairs,
along with the pair’s likelihood of being a match. The user can then define a threshold above which
a pair would be accepted as a match. We do not present performance evidence for BigMatch
here.

Exploring performance

Unfortunately, there are few general rules for the performance of different algorithms and packages
– a package that performs well on a particular problem may perform quite poorly by the very
same criteria on another problem. Nevertheless, there are some general patterns. To explore this,
we applied three of the approaches and packages discussed above to an example linking problem.
Specifically, we used Dedupe (supervised machine learning), fastLink (unsupervised machine
learning), and our own rules-based approach, developed in SAS.7

Our problem is to link records in Michigan voter registration databases across years. We used
random samples of one million records from the publicly available files listing Michigan registered
voters in 2015 and 2017.8 These datasets are very clean, so the linking problem is easier than in
many real-world settings. Crucially, the data files also contain an ID field that is accurately recorded
and can be used to test the quality of matches obtained from the other fields. While the voter ID
is subject to change over time if, for example, someone re-registers to vote and is assigned a new
ID, we assume that all records with the same voter ID refer to the same individual, and that
records with different voter IDs refer to different individuals. When we implement our matching
algorithms, we remove the ID field, to explore their ability to recover matches without it. Our
accuracy measures are based on comparisons to matches using the ID, which we treat as reflecting
the truth – if these ID-based matches generate false positives we may be under-estimating
precision, while if they fail to capture some true matches then we may be over-estimating recall.

We emphasize that each of the performance metrics we consider varies importantly
across linking problems. We do not claim that the Michigan database example is typical; we see
it as illustrative only.9

7 Additional resources, including code and publicly available data can be found at
https://github.com/californiapolicylab/data-linking.
8 This data was retrieved from “Registered voters in the State of Michigan, U.S.A. as of 31 October 2017” (2017).
9 We obtained similar results when we implemented a similar battery of tests on a pair of datasets from Christen
(2008).

capolicylab.org Linking Administrative Data: Strategies and Methods 27

Step 1
The Michigan data required little cleaning and preparing relative to real-world administrative data
with which we have worked. The files used for this linking exercise contain fixed-width fields, with
spaces filling the extra characters in the various fields. We trimmed these spaces, but did not need
to adjust for inconsistencies in the recording of addresses, street types, abbreviations, and
birthdates across datasets. The trimming procedures were undertaken manually before linking with
fastLink and the rules-based approach, while Dedupe implements the trimming procedures by
default.

Step 2
Given the large number of potential comparisons, we used birth year and gender as blocking
variables in our rules-based tests, comparing only records that matched on both of these fields.10
We did not include any explicit blocking criteria for linking runs with Dedupe and fastLink, though
Dedupe includes a blocking step by default.

Step 3
The fields that we used for linking are first name, last name, middle name, birth year, gender, and
address information (which includes street name, address number, city, and zip code). To construct
field comparison scores, we relied on the capabilities built into the various packages. For our rules-
based method, we used a common string distance measure (the Levenshtein or edit distance) for
the name and street name fields, and exact matches on the other fields. For fastLink, we compared
all fields based on their string distance, using the Jaro-Winkler distance measure. With Dedupe, we
used exact comparisons for gender and birth year, and compared all remaining fields using
Dedupe’s built-in string comparator, which uses the affine gap string distance measure.

Step 4
Our rules-based method was developed based on our knowledge of the data to address issues we
had uncovered. We came up with four different sets of rules by which two records could match,
counting a pair of records as a match if they satisfied any of the sets. As noted earlier, we first
blocked on birth year and gender. We then used the following rules to identify matches:

• Set 1: Exact alignment of street number and zip code and edit distance ratios less than
0.25 (on a scale of 0 to 1) for last name, first name, middle name, and street;

• Set 2: Exact alignment of zip code and edit distances less than 0.25 for first and last names;
• Set 3: Exact alignment of street number and zip code and edit distances less than 0.25 for

first name and street name;
• Set 4: Exact alignment of gender and edit distances less than 0.25 for first, middle, and last

names.

These rules were applied sequentially, and multiple matches were not allowed. Thus, if a match
was identified for a pair by Set 1, any pairs containing either of the component observations were

10 Note that with other data, it may make sense to use two overlapping blocks, keeping all records that match either
on gender or on birth year. This would allow for records to err on one of the two fields. We did not employ this
method due to the integrity of this data and the large number of records.

capolicylab.org Linking Administrative Data: Strategies and Methods 28

not evaluated by Sets 2-4.11 Due to this, Set 1 – which identifies only pairs that would also be
identified by Set 2 – is not redundant; in cases where there are multiple potential matches satisfying
Set 2, Set 1 ensures that the pairs that are closest in other dimensions will be selected first.

Dedupe, the supervised learning model, requires training to execute Step 4. We trained the
program on 100 pairs that the model selected and ran it with its default settings. We found that
Dedupe seemed to prioritize recall over precision, with many fewer false negatives than false
positives. We thus ran the algorithm a second time, using a higher threshold to accept pairs as
matches. This amounts to requiring more confidence that a pair is a match before accepting it.

FastLink, the unsupervised machine learning algorithm, does not require training. We ran it twice as
well, once using the default threshold for the probability that the match constitutes a pair, and once
increasing that threshold to require almost perfect confidence that the pair is a match before
accepting it.

Relative accuracy of different methods

To keep the problem manageable, we restricted the datasets to 1 million records each, then
further reduced the data to consider only voters with birth years of 1985 and 1986. This created
datasets small enough that each of the packages could handle them in reasonable time, yielding
36,525 records from the 2015 file and 30,493 records from the 2017 file. Of the more than 1
billion possible pairs between these two datasets there are 20,332 true matches.

Table 3 presents the results of our tests, as well as the results of an exact match between the two
datasets as a baseline. To be considered an exact match, a pair must match perfectly on all fields
used in the other matching exercises (first name, last name, middle name, birth year, gender, and
address information). Unsurprisingly, exact matching yields near-perfect precision, but a lower recall
score than the other methods – it misses twice as many pairs as the next method (rules-based).

Generally, we saw little difference among the different algorithmic approaches in overall accuracy.
All of the methods were extremely accurate, with precision scores uniformly above 0.90 and as
high as 0.99 for the more restrictive Dedupe run, and with recall scores of 0.98 or higher. In other
words, the methods missed very, very few true pairs, but (with one exception) falsely identified
somewhat more non-matching pairs as matches. As expected, when we used fastLink with more
restrictive settings, precision improved, though in these data recall did not get meaningfully worse.
The settings had less of an impact for Dedupe, which achieved high precision and recall on both
runs (though there is still clearly a tradeoff, albeit small, between precision and recall across the
two Dedupe runs). With the exception of the less restrictive fastLink run, accuracy was high
enough in each iteration for just about any linking application. This likely reflects the high quality of
the input data; in other, more difficult problems, accuracy will be lower.

11 In principle, a single rule could have identified multiple matched pairs for a single observation. In practice, this
happened only once. We reviewed the pairs manually to identify the correct match in this case.

capolicylab.org Linking Administrative Data: Strategies and Methods 29

We were interested in whether the methods made the same mistakes – whether the false
positives and false negatives in one method were the same as in another. Comparing the rules-
based approach with the output generated through the more restrictive settings for Dedupe and
fastLink, we found that all 3 methods correctly identified the same 19,609 of the 20,332 matches.
This represented 96% of the true matches in the data, and 97-99% of the true matches identified
by each of the individual methods. Among the false positives, 14% (167) of all false positives
incorrectly identified as a match by any method were identified by all 3 methods. The rest of the
false matches were relatively idiosyncratic – there was a great deal of overlap between the false
positives identified by the rules-based approach and Dedupe, though fastLink’s mistakes differed
from the others.

Given the limited overlap of the mistakes made by the three methods, there might be the potential
to improve accuracy by using an “ensemble” approach. We considered two, and the results are
presented in Table 4 below. The first, designed to maximize recall, counted a pair as a match if it
was identified as such by any of the three methods. (We used the more restrictive Dedupe and
fastLink runs for this, to avoid generating too many false positives.) This strategy produced 4 false
negatives (for a recall rate of 0.9998), but 1,170 false positives (for a precision of 0.95). Our
second ensemble method counted a pair as a match only if it was identified as such by 2 of the
three methods. (Here, we used the less restrictive runs). This had better precision, 0.97, with only
an almost undetectable sacrifice in recall. Ensemble methods appear worth exploring in situations
where implementation time is not a major concern and maximizing either precision or recall is an
important objective.

Table 3: Accuracy Results

Method

Pairs
found

True
matches

found

False
positives

False
negatives

Precision Recall

Exact Matching 19,437 19,426 11 906 1.00 0.96
Dedupe
(less restrictive) 20,782 20,145 637 187 0.97 0.99
Dedupe
(more restrictive) 20,028 19,910 118 422 0.99 0.98
fastLink
(less restrictive) 22,671 20,317 2,354 15 0.90 1.00
fastLink
(more restrictive) 21,075 20,315 760 17 0.96 1.00

Rules-based 20,443 19,865 578 467 0.97 0.98

capolicylab.org Linking Administrative Data: Strategies and Methods 30

Reproducibility

Our second investigation focused on the reproducibility of the set of matches identified by a given
run of a program. Both rules-based and unsupervised machine learning methods can be expected
to generate the same set of matches each time they are run, assuming that the input data and rules
or parameters don’t change,12 but supervised machine learning algorithms depend on the decisions
made by the human trainer. These decisions are judgment calls, and in ambiguous cases different
trainers can make different decisions. We were interested in how important this is to the
consistency of the set of matches identified.

To test the variability of Dedupe, the only supervised machine learning approach we explored in
depth, two different individuals trained the model to match the same two Michigan datasets. Each
trainer considered 100 training pairs, allowing the algorithm to select them. (The algorithm selected
different pairs in each case, so the runs differed not just in the trainers’ judgments but in the pairs
they were asked to evaluate.) We also trained the process a third time, again using 100 training
pairs but this time referring to the ID key as a reference to ensure that all training decisions were
made correctly. This run, which we refer to as the “ideal run” below, can be seen as an upper
bound to the accuracy that would be achievable by even the best human trainer in a relatively
short training session.

We used the same samples used in the previous accuracy assessment, with 20,332 true matches
along with 10,000-15,000 unmatched observations in each component sample.

12 Some methods depend on a random number generated within the algorithm, or perhaps on the original sort order
of the data. In these cases, reproducibility depends on beginning with the same sort order and using the same random
number seed.

Table 4: Accuracy results of ensemble methods

Method

Pairs
found

True
matches

found

False
positives

False
negatives

Precision Recall

1 out of 3 21,498 20,328 1,170 4 0.95 1.00

2 out of 3 20,880 20,299 581 33 0.97 0.99

capolicylab.org Linking Administrative Data: Strategies and Methods 31

Figure 2 demonstrates the very high agreement on true matches across the three training runs. All
three runs correctly identified 99% of the true matches in the data. 99.6% of the pairs identified by
Trainer 1’s run were also identified by Trainer 2, and 99% of the pairs identified by the ideal run
were identified by one or both of the human trainers. The ideal run identified only 81 true matches
that were not identified by either of the human-trained runs. Moreover, there were only 22 true
matches that were not identified by any run.

These results are naturally affected by the cleanness of the data on which we ran these tests – it is
possible, and even probable, that the variability across trainers would be greater in settings where
messier data yields more ambiguous pairings, making it difficult to distinguish between true matches
and non-matches.

False positives were more of a problem than false negatives in these data. There were 747 pairs
that were falsely identified as matches by one or more of the methods. Of these, nearly all were
identified by multiple methods: 66% were identified as pairs by both of the human-trained runs, but
not the ideal run, and 16% were identified by all three runs. Only 93 pairs were falsely identified by
the ideal run, but not by either human trainer, and only 40 pairs were falsely identified by one of
the human trainers but not the other. This suggests that the human trainers tended to make
mistakes in the same way – classifying the same or similar non-pairs as pairs during the training,
which led the models they trained to identify the same false positives, by and large.

Overall, these results point to a high degree of accuracy and stability in the Michigan
voter matching exercise, despite differences in who the trainer is or how the model is trained.
While these results are subject to change in different settings and with different data, this finding
suggests that sensitivity to operator training may be a smaller issue than we initially expected. This
is an important expectation to carry forward to real-world linking exercises where the true
matches across datasets are not known.

20,079

3

2

81

37 26

82

● Ideal run

● Human trainer 1

● Human trainer 2

Figure 2: Agreement on true matches across training runs

capolicylab.org Linking Administrative Data: Strategies and Methods 32

Sensitivity to amount of training

Even more important than variability across training runs is the impact of additional training. In the
above analysis, each trainer considered only 100 pairs when training Dedupe. This surely produces
some inaccuracy that could be avoided with a larger investment in training.

Surprisingly, this intuition was only partly borne out in our analysis. We implemented
several Dedupe matching runs on the same Michigan samples, increasing the number of training
pairs from 25 up to 200. Figure 3 shows how precision and recall varied across these runs.
Precision was extremely high even on the shortest training run; it remained steadily at 0.99 across
all runs, while recall improved from 0.77 to 0.99 when we increased the number of training pairs
from 25 to 50, but improved very little beyond that.

Overall, we found no benefit in terms of accuracy to training runs of more than 50 pairs – all were
equally precise, and recall was steadily high beyond a training on 50 pairs. For clean datasets like
these, minimal training is required to achieve high precision and recall. The amount of training
required for accurate results is likely to be higher where the datasets are messier.

Scalability

A final important criterion is execution time. In large linking problems, this can become
unmanageable, and it is important to choose methods that handle computationally difficult work
efficiently. To assess this, we tested each method on samples of varying sizes from the Michigan
data, using a powerful server available for this purpose at the California Policy Lab. We considered

Figure 3: Training sensitivity

capolicylab.org Linking Administrative Data: Strategies and Methods 33

problems of six sizes, linking two initial datasets of n=1,000, 5,000, 10,000, 15,000, 100,000, and
500,000 observations. Table 5 below shows the runtime (in seconds) for each method at each
sample size.

There was wide variability across the methods. Dedupe was fastest by a large margin, on all
but the smallest problem. Our rules-based method, implemented in SAS, was acceptably fast for
small problems, but execution time rose more than linearly with the size of the component
datasets; it appears that this approach becomes prohibitively slow for a problem of size n=500,000
or bigger. FastLink was the slowest method across the board, though it, too, is acceptably fast for
smaller problems and only becomes unmanageably slow at around n=500,000 where it took a full
48 hours.

The performance of Dedupe was the most remarkable. Figure 4 shows how its execution time
grew with the number of records in the component datasets. The curve is very nearly linear,
indicating that execution time rises roughly proportionally with the number of records across a
very large range, even though the number of pairs that must be considered rises much faster, with
the square of the number of records. This is attributable to two factors: first, this table reports on
execution time alone and does not include set-up time, which for Dedupe includes the hand-
training of the model. Second, Dedupe’s default settings block datasets before linking them,
meaning that the number of possible pairs to evaluate is greatly reduced before Dedupe does any
time consuming field-level comparisons.

Table 5: Runtimes by size of input datasets

n
Possible

pairs
Rules-
based

Dedupe fastLink

1,000 1 million 0.63
seconds 0.68 seconds 65.35 seconds

5,000 25 million 8.10
seconds 3.36 seconds 126.19

seconds

10,000 100 million 30.55
seconds 6.70 seconds 216.64

seconds

15,000 225 million 91.68
seconds 10.41 seconds 327.12

seconds

100,000 10 billion 73.3 minutes 80.31 seconds 100.1 minutes

500,000 250 billion 30.9 hours 11.2 minutes 48.1 hours

capolicylab.org Linking Administrative Data: Strategies and Methods 34

Nevertheless, the speed with which Dedupe matched the various sized datasets relative to the
other methods tested constitutes a strong argument for this approach in very large linking
problems.

Conclusions

Linked data are extremely valuable, both for program administration and for research. But available
data do not always have unique, overlapping identifiers. In these cases, linking requires combining
imperfect information from the two datasets, attempting to make judgments about which records
match (often despite some inconsistencies), and which records do not.

This is extremely time consuming to carry out by hand. Fortunately, there are a number of
different computer packages available that can perform data matching, using a variety of strategies.
These can often achieve accurate matches in a fraction of the time. The extent to which one
would want to use resulting linkages for individual decisions without further confirmation would
vary based on thresholds for accuracy, but for many purposes, including most research, the
achievable accuracy is quite adequate.13 Even when near-complete confidence in the individual
matches is required, automated linking algorithms can be a first step that leads to further
confirmation efforts where appropriate.

13 Tahamont et al. (forthcoming) explore how imprecise matching impacts the quality and reliability of different types of
economic analyses.

Figure 4: Dedupe run time on unblocked datasets (log-log scale)

capolicylab.org Linking Administrative Data: Strategies and Methods 35

This paper has reviewed the most common families of data matching strategies, the steps required
to implement them, the hazards that an analyst may encounter, and the criteria that may be used
to decide among alternative approaches. There is no one-size-fits-all strategy for data linking. A
successful matching exercise requires close knowledge of the datasets to be matched, the types of
errors that arise in these data, and a careful consideration of the objective of the exercise. In some
cases, the most important criterion is to minimize the number of matches that are incorrectly
identified; in others, it is to recover as many of the true matches as possible; and in still others the
major problem is to construct an algorithm that is implementable in a reasonable timeframe given
the size of the datasets involved and the amount of available computing power. The exercise will
be most successful if analytical choices are made in pursuit of the appropriate objectives.

capolicylab.org Linking Administrative Data: Strategies and Methods 36

Sources

Ball, P. (2016). “A Geeky Deep-Dive: Database Deduplication To Identify Victims Of Human Rights
Violations.” Available from: https://hrdag.org/2016/01/08/a-geeky-deep-dive-database-
deduplication-to-identify-victims-of-human-rights-violations/

Bell, A. et al. (2017). “Who Becomes an Inventor in America? The Importance of Exposure to
Innovation.” Available from: http://www.equality-of-opportunity.org/assets/documents/
inventors_paper.pdf

Chetty, R. et al. (2011). "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence
from Project STAR," The Quarterly Journal of Economics, Oxford University Press, vol. 126(4), pages
1593-1660. Available from: http://www.nber.org/papers/w16381

Chetty, R., Friedman, J. and Rockoff, J. (2014). "Measuring the Impacts of Teachers I: Evaluating Bias
in Teacher Value-Added Estimates." American Economic Review, 104(9): 2593-2632. Available from:
https://www.aeaweb.org/articles?id=10.1257/aer.104.9.2593.

“ChoiceMaker” (n.d.). Available from: https://oscmt.sourceforge.io/content/intro/index.html

Christen, P. (2008). “Febrl – An Open Source Data Cleaning, Deduplication and
Record Linkage System with a Graphical User." Available from:
http://users.cecs.anu.edu.au/~Peter.Christen/publications/kdd2008christen-febrl-demo.pdf

Christen, P. (2012). Data matching: concepts and techniques for record linkage, entity resolution, and
duplicate detection. Berlin: Springer Science & Business Media.

Dunn, H. (1946). “Record Linkage.” American Journal of Public Health 36(12),1412-16

Dusetzina SB, Tyree S, Meyer AM, et al. (2014) Linking Data for Health Services Research: A
Framework and Instructional Guide [Internet]. Rockville (MD): Agency for Healthcare Research and
Quality (US). Available from: https://www.ncbi.nlm.nih.gov/books/NBK253313/

Enamorado, T., Fifield, B., and Imai, K. ``fastLink: Fast Probabilistic Record Linkage.'' available
through The Comprehensive R Archive Network. https://cran.r-
project.org/web/packages/fastLink/index.html

Enamorado, T., Fifield, B., and Imai, K. (2017). Using a Probabilistic Model to Assist Merging of
Large-scale Administrative Records. American Political Science Review, Forthcoming. Available from:
https://imai.fas.harvard.edu/research/files/linkage.pdf

Fellegi, I.P. and Sunter, A.B. (1969). A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183-1210

capolicylab.org Linking Administrative Data: Strategies and Methods 37

Gilleland, M. (n.d.) “Levenshtein Distance, in Three Flavors.” Available from:
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20
Distance.htm

Gregg, F. and Eder, D. (2018). Dedupe. https://github.com/dedupeio/dedupe.

Harron, K. (2016). “Introduction to Data Linkage” in Mackay, E. & Elliot, M. (Eds.) Better Knowledge
Better Society. Essex, UK: Administrative Data Research Network

Kho, A. N., Cashy, J. P., Jackson, K. L., Pah, A. R., Goel, S., Boehnke, J., Humphries, J. E., Kominers, S.
D., Hota, B. N., Sims, S. A., Malin, B. A., French, D. D., Walunas, T. L., Meltzer, D. O., Kaleba, E. O.,
Jones, R. C., … Galanter, W. L. (2015). Design and implementation of a privacy preserving
electronic health record linkage tool in Chicago. Journal of the American Medical Informatics
Association : JAMIA, 22(5), 1072-80. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009931/

Kopcke, H. and Rahm, E. (2010). Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, 69: 197-210

“Python Record Linkage Toolkit” (n.d.). Available from:
https://recordlinkage.readthedocs.io/en/latest/index.html#

“Registered voters in the State of Michigan, U.S.A. as of 31 October 2017”. (2017). Retrieved from:
http://michiganvoters.info/

Yancey, William E. (2002). BigMatch: A Program for Extracting Probable Matches from a Large File
for Record Linkage. U.S. Bureau of the Census, Statistical Research Division. Available from:
https://www.census.gov/srd/papers/pdf/rrc2002-01.pdf

