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Turbulence of a Unidirectional Flow

Björn Birnir

Center for Complex and Nonlinear Science
and

Department of Mathematics
University of California, Santa Barbara

Abstract

Recent advances in the theory of turbulent solutions of the Navier-Stokes
equations are discussed and the existence of their associated invariant mea-
sures. The statistical theory given by the invariant measures is described
and associated with historically-known scaling laws. These are Hack’s law
in one dimension, the Bachelor-Kraichnan law in two dimensions and the
Kolmogorov’s scaling law in three dimensions. Applications to problems
in turbulence are discussed and applications to Reyolds Averaged Navier
Stokes (RANS) and Large Eddy Simulation (LES) models in computational
turbulence.

1 Introduction

Everyone is familiar with turbulence in one form or another.Airplane passengers
encounter it in wintertime as the plane begins to shake and isjerked in various
directions. Thermal currents and gravity waves in the atmosphere create turbu-
lence encountered by low-flying aircraft. Turbulent drag also prevents the design
of more fuel-efficient cars and aircrafts. Turbulence playsa role in the heat trans-
fer in nuclear reactors, causes drag in oil pipelines and influence the circulation in
the oceans as well as the weather.

In our daily lives we encounter countless other examples of turbulence. Surfers
use it to propel them and their boards to greater velocities as the wave breaks and
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becomes turbulent behind them and they glide at great speedsdown the unbroken
face of the wave. This same wave turbulence shapes our beaches and carries enor-
mous amount of sand from the beach in a single storm, sometimeto dump it all
into the nearest harbor. Turbulence is harnessed in combustion engines in cars and
jet engines for effective combustion and reduced emission of pollutants. The flow
around automobiles and downtown buildings is controlled byturbulence and so is
the flow in a diseased artery. Atmospheric turbulence is important in remote sens-
ing, wireless communication and laser beam propagation through the atmosphere,
see [35] and [36]. The applications of turbulence await us intechnology, biology
and the environment. It is one of the major problems holding back advances of
our technology.

Turbulence has puzzled and intrigued people for centuries.Five centuries ago
a fluid engineer by the name of Leonardo da Vinci tackled it. Hedid not have
modern mathematics or physics at his disposal but he had a very powerful inves-
tigative tool in his possession. He explored natural phenomena by drawing them.
Some of his most famous drawings are of turbulence.

Leonardo called the phenomenon that he was observing ”la turbolenza” in
1507 and he gave the following description of it:

”Observe the motion of the surface of the water, which resembles that of hair,
which has two motions, of which one is caused by the weight of the hair, the other
by the directions of the curls; thus the water has eddying motions, one part of
which is due to the principal current, the other to the randomand reverse motion.”

This insightful description pointed out the separation of the flow into the av-
erage flow and the fluctiations that plays an important role inmodern turbulence
theory. But his drawings also led Leonardo to make other astute observations that
accompany his drawings, in mirror script, such as:
• Where the turbulence of water is generated
• Where the turbulence of water maintains for long
• Where the turbulence of water comes to rest
These three observations are well-known features of turbulence and they are all
illustrated in Leonardo’s drawings.

One reason why turbulence has not been solved yet is that the mathematics or
the calculus of turbulence has not been developed until now.This situation is anal-
ogous to the physical sciences before Newton and Leibnitz. Before the physical
sciences could bloom into modern technology the mathematics being the language
that they are expressed in had to be developed. This was accomplished by Newton
and Leibnitz and developed much further by Euler. Three centuries later we are at
a similar threshold regarding turbulence. The mathematicsof turbulence is being
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born and the technology of turbulence is bound to follow.
The mathematics of turbulence is rooted in stochastic partial differential equa-

tions. It is the mathematical theory that expresses the statistical theory of turbu-
lence as envisioned by the Russian mathematician Kolmogorov, one of the fathers
of modern probability theory, in 1940. The basic observation is that turbulent
flow is unstable and the white noise that is always present in any physical system
is magnified in turbulent flow. In distinction, in laminar flowthe white noise in
the environment is suppressed. The new mathematical theoryof turbulence ex-
presses how the noise is magnified and colored by the turbulent fluid. This then
leads to a computation or an approximation of the associatedinvariant measure
for the stochastic partial differential equation. The whole statistical theory of Kol-
mogorov can be expressed mathematically with this invariant measure in hand.

The problems that mathematicians have with proving the existence of solu-
tions of the Navier-Stokes equations in three dimensions has lead to the mistaken
impression that turbulence is only a three dimensional phenomenon. Nothing is
further from the truth. Turbulence thrives in one and two dimensions as well as in
three dimensions. We will illustrate this by describing onedimensional turbulence
in rivers.

Although we will coach it in terms of river flow in his paper, this type of
modeling and theory have many other applications. One such application is to the
modeling of fluvial sedimentation that gives rise to sedimentary rock in petroleum
reserves. The properties of the flow through the porous rock turn out to depend
strongly on the structure of the meandering river channels,see [20]. Another
application is to turbulent atmospheric flow. Contrary to popular belief, in the
presence of turbulence, the temperature variations in the atmosphere my be highly
anisotropic or stratified. Thus the scaling of the fluid modelcorresponding to a
river or a channel may have a close analog in the turbulent atmosphere, see [32].

Two dimensionless numbers the Reynolds number and the Froude number are
used to characterize turbulent flow in rivers and streams. Ifwe model the river as
an open channel withx parameterizing the downstream direction,y the horizontal
dept andU is the mean velocity in the downstream direction, then the Reynolds
number

R=
fturbulent

fviscous
=

Uy
ν

is the ratio of the turbulent and viscous forces whereas the Froude number

F =
fturbulent

fgravitational
=

U

(gy)1/2
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is the ratio of the turbulent and gravitational forces.ν is the viscosity andg is the
gravitational acceleration. Other forces such as surface tension, the centrifugal
force and the Coriolis force are insignificant in streams andrivers.

The Reynolds number indicates whether the flow is laminar or turbulent with
the transition to turbulence starting atR= 500 and the flow usually being fully
turbulent atR= 2000. The Froude number measures whether gravity waves, with
speedc = (gy)1/2 in shallow water, caused by some disturbance in the flow, can
overcome the flow velocity and travel upstream. Such flow are called tranquil
flows, c > U , in distinction to rapid or shooting flows,c < U , where this cannot
happen; they correspond to the Froude numbers

1. F < 1, subcritical,c > U

2. F = 1, critical,c = U

3. F > 1, supercritical,c < U

Now for streams and rivers the Reynolds number is typically largeO = 105−
106, whereas the Froude numbers is small typicallyO = 10−1−10−2, see [24].
Thus the flows are highly turbulent and ought to be tranquil but this is not the
whole story as we will now explain.

In practice streams and rivers have varied boundaries whichare topologically
equivalent to a half-pipe. These boundaries are rough and resist the flow and this
had lead to formulas involving channel resistance. The mostpopular of these are
Chézy’s law, where the average velocityV is

V = ucCr1/2s1/2
o , uc = 0.552m/s

and Manning’s law, with

V = um
1
n

r2/3s1/2
o , um = 1.0m/s

whereso is the slope of the channel andr is the hydraulic radius.C is called
Chézy’s constant and measures inverse channel resistance. n is Manning’s rough-
ness coefficient, see [24]. We get new effective Reynolds andFroude numbers
with these new averaged velocitiesV,

R∗ =
g

3u2
cC2R, F∗ =

(

g
u2

cC2so

)1/2

F
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from Chézy’s law.
It turns out that in real rivers the effective Froude number is approximately one

and the effective Reynolds number is also one, whenR= 500 for typical channel
roughnessC = 73.3. Thus the transition to turbulence typically occurs in rivers
when the effective turbulent forces are equal to the viscousforces.

The reason for the transition to turbulence is that at this value of R∗ the am-
plification of the noise that grows into fully developed turbulence is no longer
damped by the viscosity of the flow. The damping by the effective viscosity is
overcome by the turbulent forces.

Now let us ignore the boundaries of the river. The point is that in a straight
segment of a reasonably deep and wide river the boundaries donot influence the
details of the river current in the center, except as a sourceof flow disturbances.
We will simply assume that these disturbances exist, in the flow at the center of
the river and not be concerned with how they got there. For theoretical purposes
we will conduct a thought experiment where we start with an unstable uniform
flow and then put the disturbances in as small white noise. Then the mathematical
problem is to determine the statistical theory of the resulting turbulent flow. The
important point is that this is now a theory of the water velocity u(x) as a function
of the one-dimensional distancex down the river. Thus ifu is turbulent it describes
one-dimensional turbulence in the downstream direction ofthe river.

The flow of water in streams and rivers is a fascinating problem with many
application that has intrigued scientists and laymen for many centuries, see Levi
[26]. Surprisingly it is still not completely understood even in one or two-dimensional
approximation of the full three-dimensional flow. Erosion by water seems to de-
termine the features of the surface of the earth, up to very large scales where the
influence of earthquakes and tectonics is felt, see [37, 38, 34, 7, 5, 39]. Thus wa-
ter flow and the subsequent erosion gives rise to the various scaling laws know for
river networks and river basins, see [12, 8, 9, 10, 11].

One of the best known scaling laws of river basins is Hack’s law [17] that
states that the area of the basin scales with the length of themain river to an expo-
nent that is called Hack’s exponent. Careful studies of Hack’s exponent, see [11]
show that it actually has three ranges, depending on the age and size of the basin,
apart from very small and very large scales where it is close to one. The first range
corresponds to a spatial roughness coefficient of one half for small channelizing
(very young) landsurfaces. This has been explained, see [5]and [13], as Brow-
nian motion of water and sediment over the channelizing surface. The second
range with a roughness coefficient of 2/3 corresponds to the evolution of a young
surface forming a convex (geomorphically concave) surface, with young rivers,
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that evolve by shock formation in the water flow. These shocksare called bores
(in front) and hydraulic jumps (in rear), see Welsh, Birnir and Bertozzi [39]. Be-
tween them sediment is deposited. Finally there is a third range with a roughness
coefficient 3/4. This range that is the largest by far and is associated with what is
called the mature landscape, or simply the landscape because it persists for a long
time, is what this paper is about. This is the range that is associated with turbulent
flow in rivers and we will develop the statistical theory of turbulent flow in rivers
that leads to Hack’s exponent.

Starting with the three basic assumption on river networks:that the their struc-
ture is self-similar, that the individual streams are self-affine and the drainage
density is uniform, see [8], river networks possess severalscalings laws that are
well documented, see [31]. These are self-affinity of singlechannels, which we
will call the meandering law, Hack’s law, Horton’s laws [30]and their refinement
Tokunaga’s law, the law for the scaling of the probability ofexceedance for basin
areas and stream lengths and Langbein’s law. The first two laws are expressed
in terms of the meandering exponentm, or fractal dimension of a river, and the
Hack’s exponenth. Horton’s laws are expressed in terms of Horton’s ratio’s of
link numbers and link lengths in a Strahler ordered river network, Tokunaga’s
law is expressed in term of the Tokunaga’s ratio’s, the probability of exceedance
is expressed by decay exponents and Langbein’s law is given by the Langbein’s
exponents, [8].

In a series of paper’s Dodds and Rothman [12, 8, 9, 10, 11] showed that all
the above ratios and exponents are determined bym andh, the meandering and
Hack’s exponents, see [17], [12]. The origin of the meandering exponentm has
recently been explained, see [6], but in this paper we discuss how it and Hack’s ex-
ponent are determined by the scaling exponent of turbulent one-dimensional flow.
Specifically,m andh are determined by the scaling exponent of the second struc-
ture function, see [14], in the statistical theory of the one-dimensional turbulent
flow.

The break-through that initiated the theoretical advancesdiscussed above was
the proof of existence of turbulent solutions of the full Navier-Stokes equation
driven by uniform flow, in dimensions one, two and three. These solutions turned
out to have a finite velocity and velocity gradient but they are not smooth instead
the velocity is Hölder continuous with a Hölder exponent depending on the di-
mension, see [4]. These solutions scale with the Kolmogorovscaling in three
dimensions and the Batchelor-Kraichnan scaling in two dimension. In one di-
mensions they scale with the exponent 3/4, that is related to Hack’s law [17] of
river basins, see [7] and [5]. The existence of these turbulent solutions is then
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used to proof the existence of an invariant measure in dimensions one, two and
three, see [4]. The invariant measure characterizes the statistically stationary state
of turbulence and it can be used to compute the statisticallystationary quantities.
These include all the deterministic properties of turbulence and everything that
can be computed and measured. In particular, the invariant measure determines
the probability density of the turbulent solutions and thiscan be used to develop
accurate sub-grid modeling in computations of turbulence,bypassing the problem
that three-dimensional turbulence cannot be fully resolved with currently existing
computer technology.

2 The Initial Value Problem

Consider the Navier-Stokes equation

wt +w·∇w = ν∆w−∇p(1)

w(x,0) = wo,

whereν = ν0/VL, V being a typical velocity,L the length of a segment of the river
andν0 the kinematic viscosity of water, with the incompressibility conditions

∇ ·w= 0 (2)

Eliminating the pressurep using (2) gives the equation

wt +w·∇w = ν∆w+∇{∆−1[trace(∇w)2]} (3)

We want to consider turbulent flow in the center of a wide and deep river and to do
that we consider the flow to be in a box and impose periodic boundary conditions
on the box. Since we are mostly interested in what happens in the direction along
the river we take ourx axis to be in that direction.

We will assume that the river flows fast and pick an initial condition of the
form

w(0) = Uoe1 (4)

whereUo is a large constant ande1 is a unit vector in thex direction. Clearly
this initial condition is not sufficient because the fast flowmay be unstable and
the white noise ubiquitous in nature will grow into small velocity and pressure
oscillations, see for example [3]. But we perform a thought experiment where
white noise is introduced into the fast flow att = 0. This experiment may be hard
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to perform in nature but it is easily done numerically. It means that we should
look for a solution of the form

w(x, t) = Uoe1 +u(x, t) (5)

whereu(x, t) is smaller thatUo but not necessarily small. However, in a small
initial interval [0, to] u is small and satisfies the equation (3) linearized about the
fast flowUo

ut +Uo∂xu = ∆u+ f(6)

u(x,0) = 0

driven by the noise

f = ∑
k6=0

h1/2
k dβk

t ek

Theek = e2πik·x are (three-dimensional) Fourier components and each comeswith
its own independent Brownian motionβk

t . None of the coefficients of the vectors

h1/2
k = (h1/2

1 ,h1/2
2 ,h1/2

3 ) vanish because the turbulent noise was seeded by truly
white noise (white both is space and in time).f is not white in space because the

coefficientsh1/2
k must have some decay ink so that the noise term in (6) makes

sense. However to determine the decay of theh1/2
k s will now be part of the prob-

lem. The form of the turbulent noisef expresses the fact that in turbulent flow
there is a continuous sources of small white noise that growsand saturates into

turbulent noise that drives the fluid flow. The decay of the coefficients h1/2
k ex-

presses the spatial coloring of this larger noise in turbulent flow. We have set the
kinematic viscosityν equal to one for computational convenience, but it can easily
be restored in the formulas.

This modeling of the noise is the key idea that make everything else work.
The physical reasoning is that the white noise ubiquitous innature grows into the
noise f that is charateristic for turbulence and the differentiability properties of
the turbulent velocityu are the same as those of the turbulent noise.

The justification for considering the initial value problem(6) is that for a short
time interval[0, to] we can ignore the nonlinear terms

−u ·∇u+∇{∆−1[trace(∇u)2]}

in the equation (3). But this is only true for a short timeto, after this time we have
to start with the solution of (6)

uo(x, t) = ∑
k6=0

h1/2
k

Z t

0
e(−4π2|k|2+2πiUok1)(t−s)dβk

sek(x) (7)
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as the first iterate in the integral equation

u(x, t) = uo(x, t)+

Z t

to
K(t−s)∗ [−u ·∇u+∇∆−1(trace(∇u)2)]ds (8)

whereK is the (oscillatory heat) kernal in (7). In other words to getthe turbulent
solution we must take the solution of the linear equation (6)and use it as the first
term in (8). It will also be the first guess in a Picard iteration.The solution of (6)
can be written in the form

uo(x, t) = ∑
k6=0

h1/2
k Ak

t ek(x)

where the

Ak
t =

Z t

0
e(−4π2|k|2+2πiUok1)(t−s)dβk

s (9)

are independent Ornstein-Uhlenbeck processes with mean zero, see for example
[29].

Now it is easy to see that the solution of the integral equation (8)u(x, t) satis-
fies the driven Navier-Stokes equation

ut +Uo∂xu = ∆u−u ·∇u+∇∆−1(trace(∇u)2)+ ∑
k6=0

h1/2
k dβk

t ek, t > t0

(10)

ut +Uo∂xu = ∆u+ ∑
k6=0

h1/2
k dβk

t ek, u(x,0) = 0, t ≤ t0

and the above argument is the justification for studying the initial value problem
(10). We will do so from here on. The solutionu of (10) still satisfies the periodic
boundary conditions and the incompressibility condition

∇ ·u = 0 (11)

The mean of the solutionuo of the linear equation (6) is zero by the formula (7)
and this implies that the solutionu of (10) also has mean zero

u(t) =
Z

T3
u(x, t)dx= 0 (12)
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Figure 1: The traveling wave solution of the heat equation for the flow velocity
Uo = 85. The perturbations are frosen in the flow. Thex axis is space, they axis
time and thez axis velocityu.

2.1 Stability

The uniform floww = Uoe1 seem to be a stable solution of (6) judging from the
solution (7). Namely, all the Fourier coefficients are decaying. However, this is
deceiving, first the Brownian motionβk is going to make the amplitude of the kth
Fourier coefficient large in due time with probability one. More importantly ifUo

is large then (6) has traveling wave solutions that are pertubations ”frozen in the
flow”, and forUo even larger these traveling waves are unstable and start growing.
ForUo large enough this happens after a very short initial time interval and makes
the flow immediately become fully turbulent. The role of the white noise is then
not to cause enough growth eventually for the nonlinearities to become important,
but rather to immediately pick up (large) perturbations that grow exponentially.
These are the large fluctuations that are observed in most turbulent flows. In Fig-
ure 1, we show the traveling wave solution of the transportedheat equation (6),
with Uo = 85. In Figure 2, where the flow has increased toUo = 94, the travel-
ing wave has become unstable and grows exponentially. Notice the difference in
vertical scale between the figures.

Thus the white noise grows into a traveling wave that grows exponentially.
This exponential growth is saturated by the nonlinearitiesand subsequently the
flow becomes turbulent. This is the mechanism of explosive growth of turbu-
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lence of a uniform stream and describes what happens in our thought experiment
described in Section 2.

Figure 2: The traveling wave solution of the heat equation for the flow velocity
Uo = 94. The perturbations are growing exponentially. Thex axis is space, they
axis time and thezaxis velocityu.

3 One-dimensional Turbulence

In a deep and wide river it is reasonable to think that the directions transverse to
the main flow,y the direction across the river, andz the horizontal direction, play
a secondary role in the generation of turbulence. As a first approximation to the
flow in the center of a deep and wide, fast-flowing river we willnow drop these
directions. Of coursey andz play a role in the motion of the large eddies in the
river but their motion is relatively slow compared to the smaller scale turbulence.
Thus our initial value problem (10) becomes

ut +Uoux = uxx−uux +∂−1
x ((ux)

2)−
Z 1

0
∂−1

x ((ux)
2)dx

+ ∑
k6=0

h1/2
k dβk

t ek,(13)
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We still have periodic boundary condition on the unit interval but the incompress-
ibility condition can be dropped at the price of subtractingthe term

b =

Z 1

0
∂−1

x ((ux)
2)dx

from the right hand side of the Navier-Stokes equation. Thisterm keeps the mean
of u, u =

R 1
0 udx= 0, equal to zero, see Equation (12). This equation (13) now

describes the turbulent flow in the center of relative straight section of a fast river.
The full three-dimensional flow will be treated in a subsequent publication.

The following theorem and corollaries are proven in [4]. It states the existence
of turbulent solutions in one dimension. First we write the initial value problem
(13) as an integral equation

u(x, t) = uo(x, t)+
Z t

to
K(t−s)∗ [−

1
2
(u2)x +∂−1

x (ux)
2−b]ds (14)

HereK is the oscillatory heat kernal (7) in one dimension and

uo(x, t) = ∑
k6=0

h1/2
k Ak

t ek(x)

theAk
t s being the Ornstein-Uhlenbeck processes from Equation (9).

If q
p is a rational number letqp

+ denote any real numbers > q
p, andE the

expectation with a probability measureP on a set of eventsΩ.

Theorem 3.1 If the solution of the linear equation (6) satisfies the condition

E(‖uo‖
2
( 5

4
+

,2)
) = ∑

k6=0

(1+(2πk)(5/2)+)hkE(|Ak
t |

2)(15)

≤
1
2 ∑

k6=0

(1+(2πik)(5/2)+)

(2πk)2 hk < ∞

and U0 is sufficiently large, then the integral equation (14) has a unique solution
in the space C([0,∞);L 2

( 5
4

+
,2)

) of stochastic processes with

‖u‖2
L

2

(5
4

+
,2)

= E(
Z T

0
‖u‖2

( 5
4

+
,2)

dt) < ∞

for any finite T .
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Corollary 3.1 The solution of the linearized equation (6) uniquely determines the
solution of the integral equation (14).

Corollary 3.2 Onsager’s Conjecture
The solutions of the integral equation (14) are Hölder continuous with exponent
3/4.

Remark 3.1 The hypothesis (15) is the answer to the question we posed in Section

2 how fast the coefficientsh1/2
k had to decay in Fourier space. They have to decay

sufficiently fast for the supremum int of the expectation of theH
5
4

+

= W( 5
4

+
,2)

Sobolev norm of the initial functionuo, to be finite. In other words the sup int of
theL 2

( 5
4

+
,2)

norm has to be finite.

4 The Existence and Uniqueness of the Invariant Mea-
sure

We can define the invariant measuredµfor a stochastic partial differential equation
(SPDE) by the limit

lim
t→∞

E(φ(u(t))) =
Z

L2(T1)
φ(u)dµ(u) (16)

whereE denotes the expectation,u(t) is the solution of the SPDE, parametrized
by time, andφ is any bounded function onL2(Tn). L2(Tn) is the space of square
integrable functions on a torusTn which means that we are imposing periodic
boundary conditions on an interval, rectangle or a box, respectively n = 1,2,3
dimensions. However, the theory also carries over to other boundary conditions.
One first uses the lawL of the solutionu(t)

Pt(w,Γ) = L (u(w, t))(Γ), Γ ⊂ E ,

wherew = uo is the initial condition for the SPDE andE is theσ algebra gener-
ated by the Borel subsetsΓ of L2(Tn), to define transition probabilitiesPt(w,Γ)
on L2(Tn). A stochastically continuous Markovian semi-group is called a Feller
semi-group, see [29], and for such Feller semi-groups

1
T

Z T

0
Pt(w, ·)dt
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defines a probability measure. This is how one forms probability measures on
L2(Tn) by taking these time averages of the transition probabilities and then one
uses the Krylov-Bogoliubov Theorem, see [29], to show that the sequence of the
resulting probability measures, indexed by timeT, is tight. This is the first step,
then the invariant measure exists and is the (weak) limit

dµ(·) = lim
T→∞

1
T

Z T

0
Pt(w, ·)dt

Once the existence of the invariant measure has been established, one wishes to
prove that it is unique. To prove this one first has to prove that Pt is in fact a strong
Feller semi-group or that for allT > 0 there exists a constantC > 0, such that for
all ϕ ∈ B(L2), the space of bounded functions onL2, andt ∈ [0,T]

|Ptϕ(x)−Ptϕ(y)| ≤C‖ϕ‖∞‖x−y‖, x,y∈ L2.

Here‖ · ‖ denotes the norm inL2. Then one must prove the irreducibility of the
Pt , namely that for anyΓ ⊂ L2 andw∈ Γ

Pt(w,Γ) = PtχΓ(w) > 0,

whereχΓ is the characteristic function ofΓ. The strong Feller property and irre-
ducibility are usually defined for a fixedt but by the semi-group property, if these
hold at onet they also hold at any othert. Now if the transition semi-groupPt asso-
ciated with the equation (17) below is a strong Feller semi-group and irreducible,
then by Doob’s Theorem on Invariant Measures, see [29],

1. The invariant measureµ associated withPt is unique.

2. µ is strongly mixing and

lim
t→∞

Pt(w,Γ) = µ(Γ),

for all w∈ L2 andΓ ∈ E whereE (L2) denotes the sigma field generated by
the Borel subsets ofL2.

3. µ is equivalent to all measuresPt(w, ·), for all w∈ L2 and allt > 0.
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5 The Statistical Theory

The invariant measure can be used to compute statistical quantities characterizing
the turbulent state. The mathematical model consists of theNavier-Stokes equa-
tion where we have used the incompressibility condition to eliminate the pressure,

∂u
∂t

+u ·∇u = ν∆u+∇∆−1[trace(∇u)2]+ f , (17)

ν is the kinematic viscosity andf represents turbulent noise as in Equation (6).
The velocity also satisfies the incompressibility condition

∇ ·u = 0. (18)

In one dimension, modeling a fast turbulent flow in a relatively narrow river, one
can ignore the dimension transverse to the flow and the equation becomes,

ut +uux = νuxx+∂−1
x (ux)

2−b+ f , (19)

as discussed above. The existence of turbulent solutions ofthis equation and
their associated invariant measures was established in [4], following the method
of McKean [27]. The existence of invariant measures for the one-dimensional
Navier-Stokes equation (dissipative Burger’s equation) with stochastic forcing
was established by Sinai [33], see also [23], and McKean [27]. The existence
in the two-dimensional case was established by Mattingly, see for example [18]
and [19]. If one considers the second structure function

S2(y) = E[|u(x+y)−u(x)|2]

of the solution, one can show that it scales with the power 3/2in the lag variabley
for the equation (19), in one dimenson, see [7, 5, 4], and 2/3 for the equation (17),
in three dimension, the latter is Kolmogorov’s theory. The Kolmogorov scaling of
the second structure function is usually written as

S2(y) = Cε2/3y2/3.

whereε is the dissipation rate. In two dimension the scaling is morecomplicated
due to the existence of the inverse cascade, see Kraichnan [22], and two scaling
regimes may exist (Kraichnan and Batchelor [22, 1], and Kolmogorov [21]). It
is still an open problem to examine the higher moments for different scalings or
multifractality, see [14] and [25], and the scalings at verysmall scales below the
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Kolmogorov scale. The latter is the scale below which dissipation and dissipative
scaling is supposed to dominate. Finally, one needs to examine the scaling in time,
that we have suppressed in the above formula, to see if one cancharacterize the
transients to the stationary (fully developed turbulence)state.

If φ is a bounded function onL2(T1), then the invariant measuredµ for the
SPDEs (13) is given by the limit

lim
t→∞

E(φ(u(t))) =

Z

L2(T1)
φ(u)dµ(u), (20)

see Equation (16). In [4] it is proven that this limit exists and is unique. We get
the follwing theorem, as explained in Section 4,

Theorem 5.1 The integral equation (14) possesses a unique invariant measure.

Corollary 5.1 The invariant measure dµ is ergodic and strongly mixing.

The corollary follows immediately from Doob’s Theorem for Invariant Measures
above, see for example [29].

The equations describing the erosion of a fluvial landsurface consist of a sys-
tem of PDEs, one (u) equation describing the fluid flow, the other equation de-
scribing the sediment flow, see [7]. Using these equations, Hack’s law is proven
in the following manner. In [5] the equations describing thesediment flow are lin-
earized about convex (concave in the terminology of geomorphology) surface pro-
files describing mature surfaces. Then the colored noise generated by the turbulent
flow (during big rainstorms) drives the linearized equations and the solutions ob-
tain the same color (scaling), see Theorem 5.3 in [5]. The resulting variogram
(second structure function) of the surfaces scales with theroughness exponent
χ = 3

4, see Theorem 5.4 in [5]. This determines the roughness coefficient χ of
mature landsurfaces.

The final step is the following derivation of Hack’s law is copied from [7].

5.1 The Origin of Hack’s Law

The preceding results allow us to derive some of the fundamental scaling results
that are known to characterize fluvial landsurfaces. In particular, the avalanche
dimension computed in [7] and derived in [5], given the roughness coefficientχ,
allows us to derive Hack’s Law relating the length of a riverl to the areaA of
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the basin that it drains. This is the area of the river networkthat is given by the
avalanche dimensions

A∼ lD

and the avalanche dimensions isD = 1+ χ. This relation says that if the length
of the main river isl then the width of the basin in the direction, perpendicular
to the main river, islχ. Stable scalings for the surface emerge together with the
emergence of the separable solutions describing the maturesurfaces, see [7]. We
note that in this caseχ = 3

4, hence we obtain

l ∼ A
1

1+χ(21)

≈ A0.57

a number that is in excellent agreement with observed valuesof the exponent of
Hack’s law of 0.58, see [16].

It still remains to explain how the roughness of the bottom and boundary of a
river channel gets spread to the whole surface of the river basin over time. In [6]
it is shown that the mechanism for this consists of the meanderings of the river.
As the rivers meanders over time it sculpts a roughness of thesurface with the
roughness exponent 3/4.

6 Invariant Measures and Turbulent Mixing

Now how does the existence of the invariant measure help in determining the
turbulent mixing properties on a small scale? First, it is know that the invariant
measure is not only ergodic but in fact strongly mixing, see [4]. Secondly, the
invariant measure allows one to compute the statistical properties, in particular
the mixing rates. This, of course sounds, a little too good tobe true so what is the
problem?

The main problem one has to tackle first is that no explicit formula exist for the
invariant measure, such as the explicit formula one has for the Gaussian invariant
measure of Brownian motion. Indeed no such formula can exist, no more than one
can have an explicit formula for a general turbulent solution of the Navier-Stokes
equation. However, since the invariant measure is both ergodic and weakly mix-
ing, by Doob’s theorem, see for example [29], one can use the ergodic theorem
and approximate the invariant measure by taking the long-time time average. In
practice this means that we take the limit of the expectationof a computed solu-
tion or rather it substitute: an ensamble average of many computed solutions and
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the time average of this ensamble average, when time becomeslarge. Roughly
speaking this means that we can approximate the invariant measure to the same
accuracy as the computed solution. However, this means thatwe also have an
approximation of the probability density and this can be used to make a sub-grid
model for (LES) computations.

It is desirable to go beyond the above approximation and develop approxima-
tions of the invariant measure that are independent of the computational accuracy.
This requires one to find an approximations of the invariant measure by a se-
quence of measures that can be computed explicitly and an estimate of the error
one makes by each approximation. There are some proposals for doing this that
need to be explored. One also needs to investigate the properties of the invariant
measure, what its continuity properties are with respect toother measures, etc.
The discovery of these properties that now are completely unknown will help in
determining good and efficient approximations to the invariant measure and the
probability density.

If methods are found to efficiently approximate the invariant measure then
there are no limits to the spatial and temporal scales that can be resolved except
the theoretical one given by the Kolmogorov and dissipativescales. In other words
with good methods to approximate the invariant measures theturbulent mixing
problem can be solved and the mixing rates of the various components due to the
turbulence computed. Furthermore, at least theoreticallythis can be done to any
desired accuracy.

7 Approximations of the Invariant Measure

It is imperative for application to be able to approximate the invariant measure up
a high order. This permits the computation of statistical quantities to within the
desired accuracy in experiments or simulations. The first step in the approxima-
tion procedure is to use the same method that was used to construct the solutions
to construct approximations of the invariant measure. If welinearize the Navier-
Stokes equation (17) around a fast unidirectional flowUoe1 wheree1 is a unit
vector in thex direction and include noise then we get a heat equation with a
convective term that has the solution

uo(x, t) = ∑
k6=0

h1/2
k

Z t

0
e(−4π2|k|2+2πiUok1)(t−s)dβk

sek(x) (22)
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as explained in Section 2. Theβk
t s are independent Brownian motions and the

eks are Fourier components. Then if we look for a solution of (17)of the form
U = Uoe1+u thenu satisfies the integral equation

u(x, t) = uo(x, t)+

Z t

to
K(t−s)∗ [−u ·∇u+∇∆−1(trace(∇u)2)]ds (23)

whereK is the (oscillatory heat) kernal in (7). The solution of the integral equation
is constructed by subsitutinguo as the first guess into the integral and then iterating
the result. This produces a sequence of (Picard) iterates that one proves converges
to the solution of the integral equation. No explict formulacan exist for the limit
in general but one can iterate the integral equation as oftenas desired to produce
an approximate solution. The formulas get more and more complicated but it is
possible that one quickly get a good approximation to the real solutions. This
obviously depends on the rate of convergence. In any case themth iterateum of
the integral equation withu0 = uo is an approximate solution that can be compared
to a numerical solution of the equation (17).

It is conceivable that these approximations can be implemented by a symbolic
or partially symbolic and partially numerical computation.

By the ergodic theorem the time average of the solution

1
T

Z T

0
u(t)dt

converges to the invariant measure. In fact,

lim
T→∞

1
T

Z T

0
φ(u(t))dt =

Z

L2(T1)
φ(u)dµ(u) (24)

whereφ ∈B(L2) is any bounded function onL2. Thus we can find approximations
µm to the invariant measureµ by considering the sequence

1
Tm

Z Tm

0
um(t)dt ∼

Z

L2(T1)
udµm(u)

u0 in these formulas is simply the solution of the linear equation (6) for uniform
flows and the invariant measureµ0 is obtained in the limit is a weighted Gaussian,
see [5]. The higher Picard iterates will give more complicated limits. Again, these
approximations can probably be implemented by a symbolic orpartially symbolic
and partially numerical computation.

The problem is that this way of approximating the invariant measure may not
be very inefficient. Thus it is important to seek more efficient ways of implement-
ing these approximations first theoretically and then numerically.
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8 RANS and LES Models

The objective of RANS (Reynolds Averaged Navier Stokes) computations is to
compute the spatial distribution of the mean velocity of theturbulent flow. To do
this the velocity and pressure are decomposed into the meanu and the deviation
from the meanu = U −u (or fluctuation)

U(x, t) = u(x, t)+u(x, t)

The average denoted here by a bar is an ensamble average. Then, by definition,
the mean ofu is equal to zero. Similarly, the pressure is decomposed as

P(x, t) = p(x, t)+ p(x, t)

The divergence condition (18) gives that

∇ ·u = 0 = ∇ ·u

and averaging the Navier-Stokes equation (17) gives the equation for the mean
velocity

∂u
∂t

+u·∇u+∇ ·u⊗u = ν∆u−∇p (25)

Thus the mean satisfies an equation similar to (1) except for an additional term
due the Reynolds stress

R = u⊗u

The additional term in (25) acts as an effective stress on theflow due to momentum
transport cause by turbulent fluctuation. Until recently ithas been impossible to
determine this term from first principle and various approximations have been
used. The simplest formulation is to set the Reynolds stresstensor to

R = −νT(x)∇u

whereνT(x) is called the turbulent eddy viscosity. This makes the additional term
in the equation act as an additional (viscous) diffusion term. A better approxima-
tion is to develop an evolution equation forR. This equation turns out to depend
on theu⊗u⊗u and so on. Thus an infinite sequence of evolution equations for
higher and higher moments is obtained and it must be closed atsome level. This
is done by approximating some higher moment by a formula depending only on
lower moments. The closure problem is the problem of how to implement this
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moment truncation. A good recent exposition of the RANS models is contained
in [2].

The approximate invariant measure discussed above gives usa new insight
into RANS models. In particular the mean is nothing but the expectation

u(x, t) ∼
Z

L2
udµm(u)

This obviously does not determineusinceu is unknown but we can now work with
the various closure approximations and improve them knowing what the spatial
average actually means. This can be done and the result simulated. The hope is
to develop RANS models that are less dependent on the available data and the
parameter regions covered by that data.

In LES, see [28], the velocity is decomposed into Fourier modes and then the
expansion truncated at some intermediate scale that are usually given by the grid
resolution. Then one computes the large scales explicitly and models the effects
of the small scales, smaller than the cutoff, on the large scales with asubgrid
model. The cutoff is usually done with a smooth Gaussian filter. LESthus assumes
that the small scale turbulence structures are not significally dependent on the
geometry of the flow and therefore can be respresented by a general model. This
method is able to handle transition to turbulence and the resulting tubulent regimes
in the flow better than RANS that usually needs to be told explicity where the
transition occurs. Now if we letu andu denote resolved velocity and pressure
then the Navier-Stokes equation for the resolve quantitiescan be written as

∂u
∂t

+u ·∇u+∇ · (u⊗u) = ν∆u−∇p−∇ · τ (26)

whereτ represents the subgrid stress tensor (SGS)

τ = u⊗u−u⊗u

and the resolved scales are divergence free

∇ ·u = 0

τ describes the effects of the subgrid scales on the resolved velocity.
The most common subgrid models use a relationship between SGS ande the

resolved strain tensor

e =
1
2
(∇u+(∇u)T)
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where(∇u)T denotes the transpose. The relationship betweenτ ande is

τ−
1
3

traceτ δi j = −2νTe

Hereδi j denotes the Kronecker’s delta and the eddy viscosity is

νT = Cε2
√

2e(e)T

The ε is a characteristic length scale for the subgrid. As it stands this subgrid
model is purely dissipative and excessively so. If the constant in front of |e| =
√

2e(e)T is allowed to vary with time, see [15], a much better result isobtained.
Then the constant is computed dynamically during the simulation and with this
modfication the so-called Smagorinsky subgrid model does not produce excessive
dissipation. However, it only work with situations where the flow is homogeneous
in at least one direction and thus does not permit general geometries.

In general when modeling an experiment we want the subgrid model to repro-
duce
• The Kolmogorovk−5/3 energy spectrum of homogenous isotropic turbulence
• The statistics of turbulent channel flow
The advantage that we have with the approximate invariant measure is that we can
base the cutoff on the approximately correct probability density function instead
of a Gaussian that has nothing to do with the details of the small scale flow. This
holds the promise that we can reproduce the correct scaling in the subgrid model.
Ultimately this tests that the LES is producing the correct scaling down to the size
of the computational grid.

9 Validation of the Numerical Methods

Turbulent fluids are highly unstable phenomena that are sensitive to noise and
perturbation. Velocity trajectories depend sensitively on their initial conditions
and it is not clear that they can be given a deterministic interpretation. This means
that computations of such fluids are highly sensitive to truncation and even round-
off errors. One must regards turbulent phenomena to be structurally unstable and
stochastic. Statistical quantities associated to the turbulent fluids are deterministic
and can be computed by taking appropriate statistical ensambles. However, one
must be careful that the numerical methods one uses can be trusted to converge
to the correct statistical quantity. It turns out that it is not enough to check that
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the conventional quantities such as energy or momentum and make sure that they
converge. One must also consider the scalings of the statistical quantities and
check that they show the correct scalings over a sufficientlylarge parameter range.
In doing this one must choose the numerical methods carefully.

In a series of papers the author and his collaborators, [38, 37, 7, 5], showed that
whereas explicit methods generally fail to produce the correct scalings over a large
parameter interval, implicit methods do. This reason for this is that in an implicit
method the time step is independent of the spatial discretization and does not go
to zero as the spatial discretization decreases. Explicit methods obtain stability by
inserting artificial viscosity into the problem and this artificial viscosity destroys
the small scale scalings. Before the scaling of the small scales is obtained the
time step goes to zero in the explicit method and the computation grinds to a
halt. This makes implicit methods the methods of choice. Although the implicit
methods also induce some viscosity, it is much smaller and does not interfere with
the small scale scaling to the same extent as for explicit methods. The problem
is that implicit methods are much slower than explicit and although this is not a
serious obstacle in one dimension it is in two dimensions andmakes the turbulence
problem intractable in three dimensions. Thus it becomes imperative to compute
correct closure approximations for RANS and subgrid modelsfor LES in order
to be able to solve these by implicit methods and produce numerically the correct
scalings. One way of implementing this is to use the (approximate) invariant
measure to develop tests on numerical methods to see if they produce correct
scalings down to the size of the numerical grid.
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