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Abstract

Recent advances in the theory of turbulent solutions of @nae-Stokes
equations are discussed and the existence of their ashai@ariant mea-
sures. The statistical theory given by the invariant messis described
and associated with historically-known scaling laws. Ehae Hack’s law
in one dimension, the Bachelor-Kraichnan law in two dimensiand the
Kolmogorov’'s scaling law in three dimensions. Applicagoto problems
in turbulence are discussed and applications to Reyoldsageel Navier
Stokes (RANS) and Large Eddy Simulation (LES) models in cataponal
turbulence.

1 Introduction

Everyone is familiar with turbulence in one form or anoth&rplane passengers
encounter it in wintertime as the plane begins to shake afetked in various
directions. Thermal currents and gravity waves in the aphere create turbu-
lence encountered by low-flying aircraft. Turbulent dragpgbrevents the design
of more fuel-efficient cars and aircrafts. Turbulence playsle in the heat trans-
fer in nuclear reactors, causes drag in oil pipelines andenfie the circulation in
the oceans as well as the weather.

In our daily lives we encounter countless other examplesrbtdence. Surfers
use it to propel them and their boards to greater velocisegb@wave breaks and



becomes turbulent behind them and they glide at great spesdsthe unbroken
face of the wave. This same wave turbulence shapes our lseacti€arries enor-
mous amount of sand from the beach in a single storm, somédmemp it all
into the nearest harbor. Turbulence is harnessed in corobwstgines in cars and
jet engines for effective combustion and reduced emisdipolutants. The flow
around automobiles and downtown buildings is controlledinlgulence and so is
the flow in a diseased artery. Atmospheric turbulence is majpbin remote sens-
ing, wireless communication and laser beam propagatiaugir the atmosphere,
see [35] and [36]. The applications of turbulence await ug@mnology, biology
and the environment. It is one of the major problems holdiagkbadvances of
our technology.

Turbulence has puzzled and intrigued people for centuFigs. centuries ago
a fluid engineer by the name of Leonardo da Vinci tackled it. ditbnot have
modern mathematics or physics at his disposal but he hadygwearerful inves-
tigative tool in his possession. He explored natural phesrarby drawing them.
Some of his most famous drawings are of turbulence.

Leonardo called the phenomenon that he was observing "bolemza” in
1507 and he gave the following description of it:

"Observe the motion of the surface of the water, which redesiiat of hair,
which has two motions, of which one is caused by the weightehtir, the other
by the directions of the curls; thus the water has eddyinganst one part of
which is due to the principal current, the other to the ran@mch reverse motion.”

This insightful description pointed out the separationhef flow into the av-
erage flow and the fluctiations that plays an important roleadern turbulence
theory. But his drawings also led Leonardo to make othetastioservations that
accompany his drawings, in mirror script, such as:

e Where the turbulence of water is generated

e Where the turbulence of water maintains for long

e Where the turbulence of water comes to rest

These three observations are well-known features of tarnweél and they are all
illustrated in Leonardo’s drawings.

One reason why turbulence has not been solved yet is thatatieematics or
the calculus of turbulence has not been developed until mbg. situation is anal-
ogous to the physical sciences before Newton and Leibnigfor® the physical
sciences could bloom into modern technology the matheslaéing the language
that they are expressed in had to be developed. This was atisbed by Newton
and Leibnitz and developed much further by Euler. Threewresd later we are at
a similar threshold regarding turbulence. The mathemafitgrbulence is being
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born and the technology of turbulence is bound to follow.

The mathematics of turbulence is rooted in stochasticalalifferential equa-
tions. It is the mathematical theory that expresses thesttai theory of turbu-
lence as envisioned by the Russian mathematician Kolmegone of the fathers
of modern probability theory, in 1940. The basic observai®that turbulent
flow is unstable and the white noise that is always presentyrmpaysical system
is magnified in turbulent flow. In distinction, in laminar flaive white noise in
the environment is suppressed. The new mathematical tleddoybulence ex-
presses how the noise is magnified and colored by the turbillésh This then
leads to a computation or an approximation of the associatediant measure
for the stochastic partial differential equation. The wehsiatistical theory of Kol-
mogorov can be expressed mathematically with this invanaasure in hand.

The problems that mathematicians have with proving thetexe® of solu-
tions of the Navier-Stokes equations in three dimensiosdd® to the mistaken
impression that turbulence is only a three dimensional phramon. Nothing is
further from the truth. Turbulence thrives in one and two esions as well as in
three dimensions. We will illustrate this by describing diraensional turbulence
in rivers.

Although we will coach it in terms of river flow in his paper,ishtype of
modeling and theory have many other applications. One spglcation is to the
modeling of fluvial sedimentation that gives rise to seditagnrock in petroleum
reserves. The properties of the flow through the porous nackdut to depend
strongly on the structure of the meandering river chanrsds, [20]. Another
application is to turbulent atmospheric flow. Contrary t@plar belief, in the
presence of turbulence, the temperature variations intthesphere my be highly
anisotropic or stratified. Thus the scaling of the fluid mocmiresponding to a
river or a channel may have a close analog in the turbulermasgirere, see [32].

Two dimensionless numbers the Reynolds number and the Ermuwdber are
used to characterize turbulent flow in rivers and streamselfnodel the river as
an open channel witk parameterizing the downstream directigithe horizontal
dept andJ is the mean velocity in the downstream direction, then thgnBlels
number

R— fturbulent: U_y

fuiscous \%
is the ratio of the turbulent and viscous forces whereas tbede number

F— frurbulent _ U
fgravitational ~ (QY)
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is the ratio of the turbulent and gravitational forcess the viscosity andg is the
gravitational acceleration. Other forces such as surfagsidn, the centrifugal
force and the Coriolis force are insignificant in streams ravets.

The Reynolds number indicates whether the flow is laminaudiuient with
the transition to turbulence starting Rt= 500 and the flow usually being fully
turbulent alR = 2000. The Froude number measures whether gravity waves, wit
speedc = (gy)l/ 2 in shallow water, caused by some disturbance in the flow, can
overcome the flow velocity and travel upstream. Such flow atled tranquil
flows, c > U, in distinction to rapid or shooting flows,< U, where this cannot
happen; they correspond to the Froude numbers

1. F < 1, subcriticalc > U
2. F =1, critical,c=U
3. F > 1, supercriticalg < U

Now for streams and rivers the Reynolds number is typicaligeO = 10° —
10°, whereas the Froude numbers is small typic@ly= 101 — 1072, see [24].
Thus the flows are highly turbulent and ought to be tranquilthis is not the
whole story as we will now explain.

In practice streams and rivers have varied boundaries vareopologically
equivalent to a half-pipe. These boundaries are rough aist tbe flow and this
had lead to formulas involving channel resistance. The pogtlar of these are
Chézy’s law, where the average velodityis

V = uCrt/2s}/?, u. = 0.552n/s
and Manning’s law, with
1 2/31/2
wheres, is the slope of the channel amds the hydraulic radiusC is called
Chézy’s constant and measures inverse channel resistaisdglanning’s rough-

ness coefficient, see [24]. We get new effective ReynoldsFandde numbers
with these new averaged velocitiés

1/2
. 9 x g
R=—>_R F'=(—=_] F
3uicz <u§C250)
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from Chézy’s law.

It turns out that in real rivers the effective Froude numbBeapproximately one
and the effective Reynolds number is also one, WRen500 for typical channel
roughnes€ = 73.3. Thus the transition to turbulence typically occurs irerss
when the effective turbulent forces are equal to the viséones.

The reason for the transition to turbulence is that at thisevaf R* the am-
plification of the noise that grows into fully developed tuldnce is no longer
damped by the viscosity of the flow. The damping by the effectiscosity is
overcome by the turbulent forces.

Now let us ignore the boundaries of the river. The point ig tha straight
segment of a reasonably deep and wide river the boundariastdofluence the
details of the river current in the center, except as a soofrflew disturbances.
We will simply assume that these disturbances exist, in the &t the center of
the river and not be concerned with how they got there. Faréteeal purposes
we will conduct a thought experiment where we start with astainle uniform
flow and then put the disturbances in as small white noisen Themathematical
problem is to determine the statistical theory of the r@sglturbulent flow. The
important point is that this is now a theory of the water véoa(x) as a function
of the one-dimensional distaneeown the river. Thus itiis turbulent it describes
one-dimensional turbulence in the downstream directichefiver.

The flow of water in streams and rivers is a fascinating problath many
application that has intrigued scientists and laymen fonyr@enturies, see Levi
[26]. Surprisingly itis still not completely understoodesvin one or two-dimensional
approximation of the full three-dimensional flow. Erosionvsater seems to de-
termine the features of the surface of the earth, up to vegelacales where the
influence of earthquakes and tectonics is felt, see [37,887,3%, 39]. Thus wa-
ter flow and the subsequent erosion gives rise to the varaalisg laws know for
river networks and river basins, see [12, 8, 9, 10, 11].

One of the best known scaling laws of river basins is Hackis [[&7] that
states that the area of the basin scales with the length of#eriver to an expo-
nent that is called Hack’s exponent. Careful studies of Féaekponent, see [11]
show that it actually has three ranges, depending on theraysize of the basin,
apart from very small and very large scales where itis clogme. The first range
corresponds to a spatial roughness coefficient of one ha#frf@ll channelizing
(very young) landsurfaces. This has been explained, seenfb]13], as Brow-
nian motion of water and sediment over the channelizingasetf The second
range with a roughness coefficient of 2/3 corresponds toubleigon of a young
surface forming a convex (geomorphically concave) surfagth young rivers,
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that evolve by shock formation in the water flow. These shaclkscalled bores
(in front) and hydraulic jumps (in rear), see Welsh, BirmdaBertozzi [39]. Be-
tween them sediment is deposited. Finally there is a thindeavith a roughness
coefficient 3/4. This range that is the largest by far and s®aiated with what is
called the mature landscape, or simply the landscape bedaessists for a long
time, is what this paper is about. This is the range that isaated with turbulent
flow in rivers and we will develop the statistical theory ofdulent flow in rivers
that leads to Hack’s exponent.

Starting with the three basic assumption on river netwattkat the their struc-
ture is self-similar, that the individual streams are sdffre and the drainage
density is uniform, see [8], river networks possess sewsaings laws that are
well documented, see [31]. These are self-affinity of sirgjflannels, which we
will call the meandering law, Hack’s law, Horton’s laws [3}d their refinement
Tokunaga'’s law, the law for the scaling of the probabilitye@teedance for basin
areas and stream lengths and Langbein’s law. The first twe & expressed
in terms of the meandering exponent or fractal dimension of a river, and the
Hack’s exponenh. Horton’s laws are expressed in terms of Horton’s ratio’s of
link numbers and link lengths in a Strahler ordered rivemioek, Tokunaga’s
law is expressed in term of the Tokunaga’s ratio’s, the podita of exceedance
is expressed by decay exponents and Langbein’s law is giyeéhebLangbein’s
exponents, [8].

In a series of paper’s Dodds and Rothman [12, 8, 9, 10, 11] stdhat all
the above ratios and exponents are determinechlaydh, the meandering and
Hack’s exponents, see [17], [12]. The origin of the meamdpeaxponeni has
recently been explained, see [6], but in this paper we dsslbaw it and Hack’s ex-
ponent are determined by the scaling exponent of turbulestdimensional flow.
Specifically,mandh are determined by the scaling exponent of the second struc-
ture function, see [14], in the statistical theory of the -@m@ensional turbulent
flow.

The break-through that initiated the theoretical advaditesussed above was
the proof of existence of turbulent solutions of the full NavStokes equation
driven by uniform flow, in dimensions one, two and three. Ewslutions turned
out to have a finite velocity and velocity gradient but they mot smooth instead
the velocity is Holder continuous with a Holder exponeapending on the di-
mension, see [4]. These solutions scale with the Kolmogesmaling in three
dimensions and the Batchelor-Kraichnan scaling in two disien. In one di-
mensions they scale with the exponept 3that is related to Hack’s law [17] of
river basins, see [7] and [5]. The existence of these turitidelutions is then

6



used to proof the existence of an invariant measure in dimmeg®ne, two and
three, see [4]. The invariant measure characterizes ttistgtally stationary state
of turbulence and it can be used to compute the statististdlyjonary quantities.
These include all the deterministic properties of turbaégeand everything that
can be computed and measured. In particular, the invari@asare determines
the probability density of the turbulent solutions and ttas be used to develop
accurate sub-grid modeling in computations of turbulebgpassing the problem
that three-dimensional turbulence cannot be fully resbivieh currently existing
computer technology.

2 Thelnitial Value Problem

Consider the Navier-Stokes equation

Q) w+w-Ow = vAw—[p
w(x,0) = Wp,

wherev =vo/V L,V being a typical velocityl the length of a segment of the river
andvg the kinematic viscosity of water, with the incompresstiitonditions

O-w=0 2
Eliminating the pressurp using (2) gives the equation
W +w- Ow = vAw-+ O{A~ Y [trace(Ow)?]} (3)

We want to consider turbulent flow in the center of a wide arebdeser and to do
that we consider the flow to be in a box and impose periodic Banconditions
on the box. Since we are mostly interested in what happemeiditection along
the river we take oux axis to be in that direction.
We will assume that the river flows fast and pick an initial dion of the
form
w(0) = Uoer (4)

whereUy is a large constant angl is a unit vector in thex direction. Clearly
this initial condition is not sufficient because the fast flovay be unstable and
the white noise ubiquitous in nature will grow into small gty and pressure
oscillations, see for example [3]. But we perform a thougtgeziment where
white noise is introduced into the fast flowtat 0. This experiment may be hard
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to perform in nature but it is easily done numerically. It meahat we should
look for a solution of the form

W(X,t) = Uger + u(x,t) (5)

whereu(x,t) is smaller thatJ, but not necessarily small. However, in a small
initial interval [0,t,] u is small and satisfies the equation (3) linearized about the
fast flowUq

(6) U +Ugd = Au+ f
uix,0) = 0
driven by the noise
2
f= 5 h/%dBe
K70
Theg, = €™ gre (three-dimensional) Fourier components and each cwaittes
its own independent Brownian moti@f. None of the coefficients of the vectors

h&/ = (hi/ 2,h§/ Z,hé/ ?) vanish because the turbulent noise was seeded by truly
white noise (white both is space and in timé)is not white in space because the

coefficientshﬁ/2 must have some decay knso that the noise term in (6) makes

sense. However to determine the decay ofhi’@s will now be part of the prob-
lem. The form of the turbulent noisk expresses the fact that in turbulent flow
there is a continuous sources of small white noise that geovdssaturates into
turbulent noise that drives the fluid flow. The decay of theffanents hi/ 2 ex-
presses the spatial coloring of this larger noise in turtiulew. We have set the
kinematic viscosityw equal to one for computational convenience, but it canasil
be restored in the formulas.

This modeling of the noise is the key idea that make evergtleise work.
The physical reasoning is that the white noise ubiquitousature grows into the
noisef that is charateristic for turbulence and the differentipbproperties of
the turbulent velocity are the same as those of the turbulent noise.

The justification for considering the initial value probl€) is that for a short
time interval[0,t,] we can ignore the nonlinear terms

—u- Ou+0{AH[trace(Ou)*]}

in the equation (3). But this is only true for a short titpeafter this time we have
to start with the solution of (6)

t .
() = 5 /% [ & AR Sl g )
KZ0 0
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as the first iterate in the integral equation

t
u(x,t) = Ug(x,t) + [ K(t—8)*[—u-Ou+OA Y(trace(Ou)?)|ds  (8)
to
whereK is the (oscillatory heat) kernal in (7). In other words to tiet turbulent
solution we must take the solution of the linear equatiora(g) use it as the first
term in (8). It will also be the first guess in a Picard iteratithe solution of (6)
can be written in the form

Uo(x.t) = 5 hy “Afe(x)

K70
where the .
A= /0 e(74n2|k\2+2niuok1)(tfs)dBIS< )

are independent Ornstein-Uhlenbeck processes with meansae for example
[29].

Now it is easy to see that the solution of the integral equa(®) u(x,t) satis-
fies the driven Navier-Stokes equation

W+Ugdu = Au—u-Ou+ DA‘l(trace(Du)z) + ; hi/zdﬁfa(, t>to
KZ0
(10)

U +Ugdy = Au+§h§/2d[3tka<, u(x,0) =0, t<to
k=£0

and the above argument is the justification for studying tiitéai value problem
(20). We will do so from here on. The solutiorof (10) still satisfies the periodic
boundary conditions and the incompressibility condition

O-u=0 (11)

The mean of the solution, of the linear equation (6) is zero by the formula (7)
and this implies that the solutianof (10) also has mean zero

ad

(t) = /Tg u(x,t)dx=0 (12)



Figure 1: The traveling wave solution of the heat equatiorttie flow velocity
Uo = 85. The perturbations are frosen in the flow. Mexis is space, thg axis
time and thez axis velocityu.

2.1 Stability

The uniform floww = Uye; seem to be a stable solution of (6) judging from the
solution (7). Namely, all the Fourier coefficients are decgy However, this is
deceiving, first the Brownian motidBy is going to make the amplitude of the kth
Fourier coefficient large in due time with probability oneoi importantly ifU,
is large then (6) has traveling wave solutions that are pations "frozen in the
flow”, and forU, even larger these traveling waves are unstable and stavirgyo
ForU, large enough this happens after a very short initial timerirell and makes
the flow immediately become fully turbulent. The role of theite noise is then
not to cause enough growth eventually for the nonlinearttbebecome important,
but rather to immediately pick up (large) perturbationd tp@w exponentially.
These are the large fluctuations that are observed in mdstlént flows. In Fig-
ure 1, we show the traveling wave solution of the transpanieat equation (6),
with Uy = 85. In Figure 2, where the flow has increasedJto= 94, the travel-
ing wave has become unstable and grows exponentially. &ltie difference in
vertical scale between the figures.

Thus the white noise grows into a traveling wave that growsoaerntially.
This exponential growth is saturated by the nonlinearitied subsequently the
flow becomes turbulent. This is the mechanism of explosiwsvtr of turbu-
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lence of a uniform stream and describes what happens in ougtt experiment
described in Section 2.

Figure 2: The traveling wave solution of the heat equatiorttie flow velocity
Uo = 94. The perturbations are growing exponentially. khaxis is space, thg
axis time and the axis velocityu.

3 One-dimensional Turbulence

In a deep and wide river it is reasonable to think that thectlimas transverse to
the main flow,y the direction across the river, amdhe horizontal direction, play
a secondary role in the generation of turbulence. As a finstagimation to the
flow in the center of a deep and wide, fast-flowing river we wilw drop these
directions. Of coursg andz play a role in the motion of the large eddies in the
river but their motion is relatively slow compared to the derascale turbulence.
Thus our initial value problem (10) becomes

1
U+ Ut = = Ui+ 8, () = [ 05 (0%

(13) +Y hdple.
KZ0
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We still have periodic boundary condition on the unit inerut the incompress-
ibility condition can be dropped at the price of subtracting term

b= [ oM

from the right hand side of the Navier-Stokes equation. Tdns keeps the mean
ofu U= fol udx= 0, equal to zero, see Equation (12). This equation (13) now
describes the turbulent flow in the center of relative stresgction of a fast river.
The full three-dimensional flow will be treated in a subseadymiblication.

The following theorem and corollaries are proven in [4].tétes the existence
of turbulent solutions in one dimension. First we write thitial value problem
(13) as an integral equation

u(x,t) = Uo(X,t) + ttK(t—s)*[—%(uz)eraXl(ux)z—b]ds (14)

HereK is the oscillatory heat kernal (7) in one dimension and

o(xt) = 5 ht/2Ak
Uo(X;t) k;O K Are(X)

theAt"s being the Ornstein-Uhlenbeck processes from Equation (9)
If % is a rational number lef ™ denote any real number> g, andE the
expectation with a probability measuPeon a set of eventQ.

Theorem 3.1 If the solution of the linear equation (6) satisfies the ctiodi
(15) E(lluoll%r ) = 5 (1+ (21 ¥2 " heE(AP)
(4 72) KZ0
(1+ 2Tuk 5/2> )
<3 ;

and W, is sufficiently large, then the integral equation (14) hasnque solution

in the space {0, oo);L(Z5+ 2)) of stochastic processes with
4 >

hg < oo

2
o = ([ ul?, 0 <

for any finite T.
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Corollary 3.1 The solution of the linearized equation (6) uniquely deteasthe
solution of the integral equation (14).

Corollary 3.2 Onsager’s Conjecture
The solutions of the integral equation (14) ar@élder continuous with exponent
3/4.

Remark 3.1 The hypothesis (15) is the answer to the question we poseztims

2 how fast the coefficiemkqi/ % had to decay in Fourier space. They have to decay

sufficiently fast for the supremum inof the expectation of thé P = W(?’Z)

Sobolev norm of the initial function,, to be finite. In other words the sup tirof
theL(Z5+ , norm has to be finite.
4

)

4 TheExistenceand Uniguenessof thelnvariant M ea-
sure

We can define the invariant measdigfor a stochastic partial differential equation
(SPDE) by the limit

lim E(g(u(t)) = [

@(u)dp(u) (16)
L2(T1)

whereE denotes the expectation(t) is the solution of the SPDE, parametrized
by time, andpis any bounded function ol?(T"). L?(T") is the space of square
integrable functions on a tord®" which means that we are imposing periodic
boundary conditions on an interval, rectangle or a box,eetyelyn =123
dimensions. However, the theory also carries over to otbanbary conditions.
One first uses the law of the solutionu(t)

R(w, ") =2 (uwt))(l), T CeE,

wherew = U is the initial condition for the SPDE and is theo algebra gener-
ated by the Borel subsefsof L?(T"), to define transition probabilitie® (w,I")
on L2(T"). A stochastically continuous Markovian semi-group is ela Feller
semi-group, see [29], and for such Feller semi-groups

1 T
= /0 R (w,-)dt
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defines a probability measure. This is how one forms proipaliiieasures on
L?(T") by taking these time averages of the transition probadslisind then one
uses the Krylov-Bogoliubov Theorem, see [29], to show thatdequence of the
resulting probability measures, indexed by timeis tight. This is the first step,
then the invariant measure exists and is the (weak) limit

_T"L“OOT/

Once the existence of the invariant measure has been ssiadhlione wishes to
prove thatitis unique. To prove this one first has to proveRhis in fact a strong
Feller semi-group or that for all > O there exists a consta@t> 0, such that for
all ¢ € B(L?), the space of bounded functions of) andt € [0, T]

RO(X) —ROY)| < Cl]lolx—Yll, Xy € L%

Here|| - || denotes the norm ib?. Then one must prove the irreducibility of the
R, namely that for any ¢ L2andw e I

H(W7r) - HXI_(W) >0,

wherexr is the characteristic function ®f. The strong Feller property and irre-
ducibility are usually defined for a fixedout by the semi-group property, if these
hold at ond they also hold at any othérNow if the transition semi-groulg asso-
ciated with the equation (17) below is a strong Feller seraisg and irreducible,
then by Doob’s Theorem on Invariant Measures, see [29],

1. The invariant measugeassociated witl is unique.
2. Uis strongly mixing and

tlmpt<wv r) = H(r),

for allw e L? andl € £ wherez (L?) denotes the sigma field generated by
the Borel subsets df?.

3. pis equivalent to all measur@(w, -), for allw € L? and allt > 0.
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5 The Statistical Theory

The invariant measure can be used to compute statisticatitjga characterizing
the turbulent state. The mathematical model consists dNtheer-Stokes equa-
tion where we have used the incompressibility conditioritnieate the pressure,

ou

5 Hu-Ou=vau+ DA~ Y[trace(Ou)?] + f, (17)

v is the kinematic viscosity anél represents turbulent noise as in Equation (6).
The velocity also satisfies the incompressibility conditio

O-u=0. (18)

In one dimension, modeling a fast turbulent flow in a reldyiverrow river, one
can ignore the dimension transverse to the flow and the exguibéicomes,

Ut + ULy = VUxx+ 0 H(U)® — b+ 1, (19)

as discussed above. The existence of turbulent solutionki®fequation and
their associated invariant measures was established,ifoffwing the method
of McKean [27]. The existence of invariant measures for the-dimensional
Navier-Stokes equation (dissipative Burger’'s equatioith wtochastic forcing
was established by Sinai [33], see also [23], and McKean. [ZHe existence
in the two-dimensional case was established by Mattinglg, fer example [18]
and [19]. If one considers the second structure function

Sa(y) = E[Ju(x+y) —u(x)[?]

of the solution, one can show that it scales with the poweinBiRe lag variable
for the equation (19), in one dimenson, see [7, 5, 4], and&/8k equation (17),
in three dimension, the latter is Kolmogorov's theory. Th@rogorov scaling of
the second structure function is usually written as

Siy) = Ce?3y?%.

wheree is the dissipation rate. In two dimension the scaling is noomaplicated
due to the existence of the inverse cascade, see Kraich@gmajid two scaling
regimes may exist (Kraichnan and Batchelor [22, 1], and KaJorov [21]). It
is still an open problem to examine the higher moments fdeht scalings or
multifractality, see [14] and [25], and the scalings at vemyall scales below the
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Kolmogorov scale. The latter is the scale below which detsim and dissipative
scaling is supposed to dominate. Finally, one needs to exaihe scaling in time,
that we have suppressed in the above formula, to see if onehzaacterize the
transients to the stationary (fully developed turbulersta)e.

If @is a bounded function oh?(T?), then the invariant measutiu for the
SPDEs (13) is given by the limit

lim E(o(u(t)) = [

Q(u)dp(u), (20)
L2(T2)

see Equation (16). In [4] it is proven that this limit existedas unique. We get
the follwing theorem, as explained in Section 4,

Theorem 5.1 The integral equation (14) possesses a unique invariansorea

Corollary 5.1 The invariant measure dy is ergodic and strongly mixing.

The corollary follows immediately from Doob’s Theorem fowariant Measures
above, see for example [29].

The equations describing the erosion of a fluvial landsertamsist of a sys-
tem of PDEs, oneld) equation describing the fluid flow, the other equation de-
scribing the sediment flow, see [7]. Using these equatioaskid law is proven
in the following manner. In [5] the equations describing $kediment flow are lin-
earized about convex (concave in the terminology of geohwiqgy) surface pro-
files describing mature surfaces. Then the colored noiserged by the turbulent
flow (during big rainstorms) drives the linearized equagiand the solutions ob-
tain the same color (scaling), see Theorem 5.3 in [5]. Theltiag variogram
(second structure function) of the surfaces scales withrélnghness exponent
X = %, see Theorem 5.4 in [5]. This determines the roughness cieeffiy of
mature landsurfaces.

The final step is the following derivation of Hack’s law is aeg from [7].

51 TheOrigin of Hack’sLaw

The preceding results allow us to derive some of the fund&henaling results
that are known to characterize fluvial landsurfaces. Ini@adr, the avalanche
dimension computed in [7] and derived in [5], given the rouggs coefficienyg,
allows us to derive Hack’s Law relating the length of a rivdo the areaA of
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the basin that it drains. This is the area of the river netwibét is given by the
avalanche dimensions
A~|P

and the avalanche dimensionsds= 1+ X. This relation says that if the length
of the main river id then the width of the basin in the direction, perpendicular
to the main river, idX. Stable scalings for the surface emerge together with the
emergence of the separable solutions describing the msudieces, see [7]. We
note that in this casg = 3, hence we obtain

1) | ~ ALX
~ A0.57

a number that is in excellent agreement with observed valtidge exponent of
Hack’s law of 058, see [16].

It still remains to explain how the roughness of the bottom boundary of a
river channel gets spread to the whole surface of the riveinkaver time. In [6]
it is shown that the mechanism for this consists of the meamgke of the river.
As the rivers meanders over time it sculpts a roughness ofuhface with the
roughness exponent'3.

6 Invariant Measuresand Turbulent Mixing

Now how does the existence of the invariant measure help terméing the
turbulent mixing properties on a small scale? First, it iswrthat the invariant
measure is not only ergodic but in fact strongly mixing, s [Secondly, the
invariant measure allows one to compute the statisticgbgutaes, in particular
the mixing rates. This, of course sounds, a little too godoktérue so what is the
problem?

The main problem one has to tackle first is that no explicitfigla exist for the
invariant measure, such as the explicit formula one hady®aussian invariant
measure of Brownian motion. Indeed no such formula can,exastore than one
can have an explicit formula for a general turbulent solutbthe Navier-Stokes
equation. However, since the invariant measure is bothdezgmd weakly mix-
ing, by Doob’s theorem, see for example [29], one can usertede theorem
and approximate the invariant measure by taking the lamg-time average. In
practice this means that we take the limit of the expectatios computed solu-
tion or rather it substitute: an ensamble average of manypoted solutions and
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the time average of this ensamble average, when time becanges Roughly

speaking this means that we can approximate the invariaasune to the same
accuracy as the computed solution. However, this meansmbatlso have an
approximation of the probability density and this can bedusemake a sub-grid
model for (LES) computations.

It is desirable to go beyond the above approximation andidpapproxima-
tions of the invariant measure that are independent of thgotational accuracy.
This requires one to find an approximations of the invariapasure by a se-
guence of measures that can be computed explicitly and anagstof the error
one makes by each approximation. There are some proposalsifg this that
need to be explored. One also needs to investigate the pirxpef the invariant
measure, what its continuity properties are with respedther measures, etc.
The discovery of these properties that now are completeponn will help in
determining good and efficient approximations to the iraratrimeasure and the
probability density.

If methods are found to efficiently approximate the invariareasure then
there are no limits to the spatial and temporal scales thabeaesolved except
the theoretical one given by the Kolmogorov and dissipaoades. In other words
with good methods to approximate the invariant measuresutiioellent mixing
problem can be solved and the mixing rates of the various comts due to the
turbulence computed. Furthermore, at least theoretitiaiéycan be done to any
desired accuracy.

7 Approximationsof the Invariant Measure

It is imperative for application to be able to approximate ithvariant measure up

a high order. This permits the computation of statisticargities to within the
desired accuracy in experiments or simulations. The fiegi Bt the approxima-
tion procedure is to use the same method that was used taquctisie solutions

to construct approximations of the invariant measure. linearize the Navier-
Stokes equation (17) around a fast unidirectional fldye; wheree; is a unit
vector in thex direction and include noise then we get a heat equation with a
convective term that has the solution

t .
Uo(x) = 5 (% [l 4k 2riuda)(t-s)gpie (x (22)
KZ0 0
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as explained in Section 2. THi¥s are independent Brownian motions and the
es are Fourier components. Then if we look for a solution of (@f7)he form
U = Uqe; + u thenu satisfies the integral equation
t
u(x,t) = Uo(X,t) + | K(t—s)*[—u-Ou+DO0A Ytrace(Ou)?)ds  (23)
0
whereK is the (oscillatory heat) kernal in (7). The solution of theegral equation
is constructed by subsituting as the first guess into the integral and then iterating
the result. This produces a sequence of (Picard) iteraé¢sitie proves converges
to the solution of the integral equation. No explict formaémn exist for the limit
in general but one can iterate the integral equation as aefiatesired to produce
an approximate solution. The formulas get more and more toated but it is
possible that one quickly get a good approximation to thé semtions. This
obviously depends on the rate of convergence. In any casetthiéerateu, of
the integral equation withy = u, is an approximate solution that can be compared
to a numerical solution of the equation (17).
It is conceivable that these approximations can be impléaadoy a symbolic
or partially symbolic and partially numerical computation
By the ergodic theorem the time average of the solution

%/OT u(t)dt

converges to the invariant measure. In fact,

1 (T
Iim—/ u(t))dt= u)dp(u 24
Jim = | etuo)de= [ i @4
whereg < B(L?) is any bounded function dr?. Thus we can find approximations
U to the invariant measueby considering the sequence

1 [Tm
— Um(t)dt ~ udpm(u
m it [ udin(u)

Up in these formulas is simply the solution of the linear equa(i6) for uniform
flows and the invariant measyugis obtained in the limit is a weighted Gaussian,
see [5]. The higher Picard iterates will give more compeddtmits. Again, these
approximations can probably be implemented by a symbol@arally symbolic
and partially numerical computation.

The problem is that this way of approximating the invariaiasure may not
be very inefficient. Thus it is important to seek more effitiays of implement-
ing these approximations first theoretically and then nicady.
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8 RANSand LESModels

The objective of RANS (Reynolds Averaged Navier Stokes) patations is to
compute the spatial distribution of the mean velocity oftimbdulent flow. To do
this the velocity and pressure are decomposed into the mead the deviation
from the mearu = U — 1 (or fluctuation)

U (x,t) =1(x,t) +u(xt)

The average denoted here by a bar is an ensamble average. byraefinition,
the mean ofiis equal to zero. Similarly, the pressure is decomposed as

P(xt) =P(xt) + p(xt)
The divergence condition (18) gives that
U-u=0=0-u

and averaging the Navier-Stokes equation (17) gives thategqufor the mean
velocity
ou
ot
Thus the mean satisfies an equation similar to (1) exceptrf@daitional term
due the Reynolds stress

+U-00+0-u®u=VvAU— Op (25)

R=u®u

The additional termin (25) acts as an effective stress ofiahedue to momentum
transport cause by turbulent fluctuation. Until recentligas been impossible to
determine this term from first principle and various appneiions have been
used. The simplest formulation is to set the Reynolds stegsor to

R =—vy(x)0U

wherevt(X) is called the turbulent eddy viscosity. This makes the @it term

in the equation act as an additional (viscous) diffusiomteA better approxima-
tion is to develop an evolution equation flar This equation turns out to depend
on theu®u®u and so on. Thus an infinite sequence of evolution equatians fo
higher and higher moments is obtained and it must be closgoha¢ level. This

is done by approximating some higher moment by a formulami#ipg only on
lower moments. The closure problem is the problem of how tplément this
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moment truncation. A good recent exposition of the RANS nfotecontained
in[2].

The approximate invariant measure discussed above givasnesv insight
into RANS models. In particular the mean is nothing but theeetation

U(x,t) ~ /LZ udpm(u)

This obviously does not determinesinceu is unknown but we can now work with
the various closure approximations and improve them kngwihat the spatial
average actually means. This can be done and the resultadedulThe hope is
to develop RANS models that are less dependent on the aladala and the
parameter regions covered by that data.

In LES, see [28], the velocity is decomposed into Fourier esoahd then the
expansion truncated at some intermediate scale that aalyugiven by the grid
resolution. Then one computes the large scales expliaiityraodels the effects
of the small scales, smaller than the cutoff, on the largéesoaith asubgrid
model The cutoff is usually done with a smooth Gaussian filter. s assumes
that the small scale turbulence structures are not sighyfidependent on the
geometry of the flow and therefore can be respresented byaalenodel. This
method is able to handle transition to turbulence and thdtieg tubulent regimes
in the flow better than RANS that usually needs to be told eigliwhere the
transition occurs. Now if we lei andU denote resolved velocity and pressure
then the Navier-Stokes equation for the resolve quantaesbe written as

§+U-DU+D-(U®U):VAU—D_D—D-T (26)
wheret represents the subgrid stress tensor (SGS)

T=URU—-UX®TU
and the resolved scales are divergence free

U-u=0

T describes the effects of the subgrid scales on the resobledity.
The most common subgrid models use a relationship betwe&a®@e the
resolved strain tensor

e= %(Du—l—(Du)T)
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where(Ou)T denotes the transpose. The relationship betweerde is
1
T— étraceT gjj = —2vre
Heredjj denotes the Kronecker’s delta and the eddy viscosity is

vt =Ce2,/2e(e)T

The € is a characteristic length scale for the subgrid. As it statis subgrid
model is purely dissipative and excessively so. If the cmtsin front of |e] =
\/2¢e(e)T is allowed to vary with time, see [15], a much better resutibgained.
Then the constant is computed dynamically during the sitrmraand with this
modfication the so-called Smagorinsky subgrid model doepmaluce excessive
dissipation. However, it only work with situations where flow is homogeneous
in at least one direction and thus does not permit generahgtes.

In general when modeling an experiment we want the subgriditto repro-
duce
e The Kolmogorow /3 energy spectrum of homogenous isotropic turbulence
e The statistics of turbulent channel flow
The advantage that we have with the approximate invariaasore is that we can
base the cutoff on the approximately correct probabilitygity function instead
of a Gaussian that has nothing to do with the details of thdlsoale flow. This
holds the promise that we can reproduce the correct scalitigeisubgrid model.
Ultimately this tests that the LES is producing the correeliag down to the size
of the computational grid.

9 Validation of the Numerical Methods

Turbulent fluids are highly unstable phenomena that areitsen$o noise and

perturbation. Velocity trajectories depend sensitivatytbeir initial conditions

and itis not clear that they can be given a deterministicpmégation. This means
that computations of such fluids are highly sensitive to¢ation and even round-
off errors. One must regards turbulent phenomena to betstally unstable and
stochastic. Statistical quantities associated to theiten fluids are deterministic
and can be computed by taking appropriate statistical elplesmHowever, one
must be careful that the numerical methods one uses can diedrto converge
to the correct statistical quantity. It turns out that it & enough to check that
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the conventional quantities such as energy or momentum aike sure that they
converge. One must also consider the scalings of the gtatisfuantities and
check that they show the correct scalings over a sufficidautfye parameter range.
In doing this one must choose the numerical methods cayefull

In a series of papers the author and his collaborators, [38,,%], showed that
whereas explicit methods generally fail to produce theesmtirscalings over a large
parameter interval, implicit methods do. This reason fa ihthat in an implicit
method the time step is independent of the spatial disatétiz and does not go
to zero as the spatial discretization decreases. Explatihads obtain stability by
inserting artificial viscosity into the problem and thisifactal viscosity destroys
the small scale scalings. Before the scaling of the smalesaa obtained the
time step goes to zero in the explicit method and the comiputajrinds to a
halt. This makes implicit methods the methods of choicehdligh the implicit
methods also induce some viscosity, it is much smaller aed dot interfere with
the small scale scaling to the same extent as for explicihatst The problem
is that implicit methods are much slower than explicit arth@lgh this is not a
serious obstacle in one dimension it is in two dimensionsaakkes the turbulence
problem intractable in three dimensions. Thus it become®mative to compute
correct closure approximations for RANS and subgrid motal4.ES in order
to be able to solve these by implicit methods and produce noaily the correct
scalings. One way of implementing this is to use the (appnaxe) invariant
measure to develop tests on numerical methods to see if ttoelupe correct
scalings down to the size of the numerical grid.
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