UCLA

UCLA Previously Published Works

Title
The Effect of Set on Visual Perception

Permalink
https://escholarship.org/uc/item/4834r802

Author
Cooper, Joel

Publication Date
2023-12-14

Copyright Information
This work is made available under the terms of a Creative Commons AttributionNonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

Joel Cooper

Introduction:

Milgard $(6,609)$ describes set as, "1 preparatory adjustment or readiness for a particular kind of action or experience. usually coming about as a result of instructions e.go, the set to respond with a sord opposite in meaning to the stimulus word in an experiment on controlled association." woodworth (10,0624) sces perception as a inind of response and that this response is controlled by the central factors of set and meaning. He feels that any momentary stimulus is received in the brain already adjusted to the experience perceived. "Thus the immediately past ecperience is a very important factor which is embodied in the adjustment or set for the situation."

Siipola (8) using nonsen:je words tachistoscopically pree sented, measured the eifect of set on the interpretation of amm biguous stimuli. By pre entinc two ;roups of 30 subjects each with the same nonsense words and surrestinf to one group that the words would have somethin; to do with travel or transportm ation and to the other that the vords vould have something to do with birds or animals he found that the "travel or trinsportation ${ }^{\prime \prime}$ oriented group responded 74 io of the time with rem sponses appropriate to the set and with "animal or bird" responses 11, of the time. Conversely, the "bird or andmal" ore iented group responded with "bird or ani...21" responses 63.0 of the time and with "travel or transportation" responses 14,6 of the time. The words presented were such that they could be seen either "ay, e.ge, the sord "wharl" being secn as either "whale"
or "wharli"。
Bruner and Postman (3) examined the effect of tendency to relate new or novel experience to the familiar. By exhibit ing incongruous playing caras such as a red four of spades they found that 27 out of 28 subjects named it either as a red four of hearts or a black four of spades on the first meeting. They also found that once the subjects had identified an incongruous card their perceptual rexdiness changed so that they expected Incongruous cards, and, as a consequence, then incongruous cards Here again presented they made fever fajse identifications. Bruner, Postman and Rodrigues (4) further substantiate this with an experiment in the influence of set on color matching. Subjects Were shown two dimensional objects such as fruit, and were asked to match the painted colors of the object against a color wheel. The subjects saw the object first and turned away from the object to match it on the color wheel. There was a marked tendency to match the color with the natural color of the object rather than the color it was painted. Langfeld (7) showed that subjects were willing to accept as high 47\% of his false suggestions as interpretztions of racial expressions even thourh subjects had previousw ly correctly named the expressions.

One of the tasks of the present experiment is to present a visual stimulus with 7hich there jould b: no past associations so that any set which was introduced could be considered as the basic influencing fictor. It was felt that previous associations or subjective orientations might offer a contaminating effect or present a posuible conflict situation. A possible method was using an unfamiliar and illusory perception, thereby allowing for
ambiguity in the perception. Finding that subjects had not been shown the "Ames trapezoidnl sindow demonstration" it was decided to use this as a basis for the experiment.

Procedure:

Apparatus: The appiratus consisted of a copy of the lmes trapezoidal window as shown in figure 1. The window is mounted on a shaft which projects vertically from a 2 r. $p_{0} m_{0}$ motor. Due to the perspective cues incorporated in the illusion, it is viewed In a darkened room with small lights placed propurly and the illusion set so that there is little or no frames of reference, there is a general tendency to see the findow as oscillating rather than revolving. The illusion is further enhanced by either monocular viewing or by binocular viewing at distances in excess of fifteen feet. If the bar is placed so that it hangs from the center lateral support and projects through the lower center pane, the window seems to continue to o.icillate while the bar, having no perspective cues, continues to revolve. Hence, there is an inconsruity present the bar seemingly traveling in the same direction as the window for a part of the cycle and in an opposite direction for the balance of the cycle. The subject, therefore, wust compensate for this incon gruity in some manner, and usually does so by either "seeing" the bar bend in a sort of modified "S" or "seeing" it "cutting through" the pane.

Figure 1

Subfects: The subjects were students in four different sections of courses in General Psychology. The if's were 33. 25. 21, and 35 respectively. Classes tere chosen on the basis of availability and naivete with reference to the Ames de..ono strations. Inasiuch as the course is a general education requirement for all students at the college, there is a crosssectional representition from all major fields. Random selectIon was used to deteruine which sections mould receive what "set"。

Methodology: The subjects were shown the illusion being given time to see the oscillating effect after being told of the effect that vas to be seen. (Actual instructions as read appear In appendix 1. Note: Explanations of terms used in the appendices appear on the page preceeding the appendices.) The illusion was stopped and the bar was hung by two fine threads inserted through the center pane. Is the illusion was then run the subjects were instructed that they would see it either (1) "cut through" or, (2) "bend about" or. (3) "either cut through or bend about" 01. (4) given no information as to what to expect. The lichts were then turned on and the illusion was stopped. A questionnaire was then passed out which corresponded to the given "set"。group M1. being given question "H etc. The subjects were asked to not sign their names and to try to give an honest answer. The subjects were also asked at the beginning to please not talk until the experimeat was over. The actual questions used are shown in appendix B_{0}

Results:

The data most pertinent to the comparasion of "set" response is the mean percentage of "set" agreement answers. How ever, this measure is somewhat lo:vered by the fact that there
was a propensity on the part of the subjects in the unstructured situation to "see" a particular evento $1 s$ seen in Table 1 , subo jects tended to see, in an unstructured situation having been given no set, the bar "cutting" through. This tendency is used as the basic "normal" sample and calculations proceed from this base.

Table 1

Cut set Bend Set Either set No set

Respond cut	33	1	10	22
Respond bend	0	21	6	1
Uncl. response	0	3	0	11
Respond both	0	0	5	0

Table 1 indicates that these were four difierent categore Les of responses. Since it can be seen (Appendix B) that the subjects could agree with the "set" by checking a space or dise agree by indicating what was seen, it was possible for subjects to see the oppositc of the suggested set or see nothing at all. It was hoped that all answers could be categorized in ejther respond "cut" or respond "bend" categories. The results show that some subjects disagreed but either saw nothing or gave descrip. tions that were insuifvcient for categorical definition. Answers such as " bent around", "forwed an "So" "turned at the ends" etc. were accepted as indicaiing that the ubject sa.j ihe bar bend: answars such as "cut through", "passed through", "cut the vanes". etc. जere accepted as indicating "cut". swm snswess vere not clearly indicative of either sugmestion and so mere grouped under "unclassifiable" responses. In the case of bein; set by the suge gestion that either response uas possible, there ap yeared a
fourth cate;ory in which subjects reported they saw both"cut" and "bend"。

Appendix C sives t.e overall X^{2} distribution for the 4×4 matrix. It is evident that there are significant dirierences at the , 001 level. To tike account of the basis of these differences, reference is made to ap sendix D. Comparing each of these classes against the "no" suggestion class, it can be seen that the major contribution of the differences steus from the class to which the "bend" sug;estion was mide. Since the "no" suggestion class basically "sees" the bir "cuttin?" there is more room for more effect as a result of the contrary sugrestion. However, the elass to which "cut" was bugrested was sufliclently set by the suggestion to reveal significint differences at the .01 level.

Analysis of the comparison between the "either" sugrestion class and the "no" sug;estion class as shown in ppendix. D must be looked at with the logic of the data in mind. The chi square reveals that if all cells are included there are significant differences at the . 001 level. If 111 cells with an expected f of less than 2 are dropped it is still significant at the .001 Ievel. If 111 cells with an expected f of leas than 3 are dropped it is still significant at the 001 level. and i: all cells with an expected f of less than 4 are dropped it is still significant at the .02 level. Guilford $(5,235)$ notes that in a 2×2 table the lates' correction for continuity can be applied to take care of small expected frequencies, however it is not applicable to tables with more than I degree of freedom. He further notes that the need for correction is not as great in larger tables
and that it can be overcome by combining categories. Ho revers here the combining of categories would deieat the information revealed by the data. Applying the results of this 2×4 table shows a significance at the 02 level if all cells with expected frequencies of less than 4 are deducted. In the face of the iact that the same N is maintained while the cell effects are com pletely lost, the significince would seem greater than indicated. This would be substaatiated by the fact that the class to which the "either" susgestion was made was the only class to indicate a response of "both". Answering "both" to the question necessitated the writin; of an ans.ver rather than simply checking off an answer. Additionally, this is the only class \%hich supplied no "unclassifiable" answers.

The rosults can Justifiably be said to indicate that under the particular presentation of this illusion subjects tend to "see" the baz "cutting" through the panes. If the subject is given a "cut" set it heightens the illusion of "cutting"; if subjects are given a "bend" set they tend to see it "bend" to a. great extent while losing the illusion of "cutting"; if subjects are given an "either"sset they tend to exhibit a response that is closer to chance but is weighted by t:eir natural tendency to see it "cut", additionally, the "either" set seens to Influence subjacts to see "both" phenomena. Discussion:

Sinc: tifs expeximent was basoci on the theory that set will influence visual perception, the statistical tests of difierence amoms separate classes support the original hypothesis. This is in line with the experinentul results cited in the "Introduction".

The point of departure lies in the fact that subjects had no familiarity with the stimulus used and consequently no intecedent set. Nlthough the antecedent set is a necossary concomitant of the experiments cited and the results show significant differences from the assumed set, there is no way to measure the strength of this antecedent set and consequently no measure of the strength of the induced set.
T. 10 questions must be condidered in relation to the results of this experiment: (1) Is there any previous set that may influence these data and is so is it measureable or controllable and 2 (2) Is there any tendency on the part of the subjects to "help" the experimenter by ans:rerins as they feel the experiuenter :rould "like" them to?

In examinin; some further aspects of set the sane experinental apparatus with the same given set was used. llowever, the questionnaire distributed did not necessarily agree with the given set. The classes werc drawn from other sections of General Rsychology。 Inadvertently, a class was included which it was later learned had sean the film of the Ames demonstrations. The film fenerally gives the impression that the bar "bends". This was sabstantiated by que;tioning the class after this experionce was learned. The experimenter had given the sug estion, "out". but the question distributed was question $/{ }^{1 / 4}$, an open ended one. From an N of 17,12 reported seein; the bar "cut" and the other 5 ansuers were "unclassifiable". Appendix \& examines these data comparing them with "no" set and "cut" set in the present experiment. Since they were fiven a "cut" set it would be expected that
they would not differ sirnificantly from this class in the present experianent.

However, the data indicite quite the opposite; there is a significant difference at the 01 level with the present "cut" class but the null hypothesis must be accepted in the case of the comparison with the present "no" set class. There would then seem to be a strong indication that previous set would have a marked effect on any set which is experimentally induced. There would therefore be an assumption of a previous "normal" set In which the class with "no" suggestion would respond "bend" significantly. On the basis of this assumption, Appendix F compares this class against the "bend" surgested class of this experiment. The differences here are significant at the .001 level. Hence it would seem that the previous "bend" set was overcome by the pre:sent "cut" set but significantly different from the extent that a naive class if as set by the "cut".

The subjects seemed intensely interested in the experiment and it was felt that rapport was established. Although the subjects were specifically requested to answer honestly and cautioned not to sien their names, there is always the possibility that they were anxious to "help". However, reference to Table 1 will show that of the "bend" set class there were 4 out of 25 who did not see the set and answered so; from the "either" set class there were 5 out of 21. This would indicate that in light of previous findings and the inferences presented here that the various samples tried to do an objective job of answering. Since
they were requested to cooperate by answering honestly, it is more likely that any desire on their part to "help" would be directed toward an attempt at objectively stating that they seem to see.

There is a definate indication then that on the basis and within the scope of these findings that set can definately in Pluence what a subject seems to see. There is also the notion that those things mich a subject tends "naturally" to see can be reinforced by set in the same direction Ilowever, it still seems possible to change this tendency to some degree by a set. The Indication is that there is some sort of a gradient beiween dee gree of previous set and change by the induced set, but whether this relationship is linear, logaxithmic, exponential or some other form cannot be concluded on the basis of these data. Further work may reveal this possible relationship.

Summary:
The effect of set on perception was studied by using the Ames" trapezoidal windon as the stimulus. Subjects from four classes in General Psychology acted as experimental groups. Wach class was given a different set, one class being told that the bar would appear to cut the pane, one that it would appear to bend about the pane, one that either one or the other would appear to happen and the fourth class vas given no set. Bach class answered questionnaire on that appeared to then to be happening. Differences among the responses to the various sets are significant. Using X^{2} distribution, overall differences are significant at the .001 level. Inter class differences are signi-
ficant at the .001 level between "bend" and "no" suggestion at the . 001 level betseen cut and "no" suggestion; at the . 02
level bet"een "either" and Hno" suggestion. dditionally, a
fifth class, which had seen a film on the lmes' delionstrations was compared after suggestion. The previous set introduced by the seeing of the film was sufficiently offective to cause sige nificant differences between the set from the film and the set from the experiment.

Using unfamiliar and illusory perception the experimental findings bore out the results obtained by previous experimenters in the field.

Bibliography:

(I) Boring, Edwin G., 1 History of Pxperimental Psychology. New York, Appleton-CenturywCrofts, 1950
(2). Boring, Bdwin Ge, Sensation and Perception in the fisw tory of Experimental Psychology, New York, 1942. $D_{\text {. }}$ Appletonocentury
(3) : Bruner, $J_{0} S_{2,}$ and Postman, $I_{0,}$ On the perception of incongruity: a paradigm. J. Personal. 1949, 18, 206-223
(4). Bruner, JsSo, Postman, Le, and Rodrigues, Jn Expectation and the perception of color. Amers J. Pyychol. 21951. 64. 216-227
(5). Guilford, J. Po, Fundmental Statistics in Psychology and Eiducation, Nea York, McGrawnHill Book Co $=1956$
(6). Hilgard E. R. Introduction to Psychology, New York, Harcourt Brace and Co.e 1953
(7). Langield, H. S. J Abn Soc Ps 1918, 13, 172-134 (sic.) as quoted in Robert S. .oodworth, Ryperimental Psych ology. (New York, Henry Holt and Co. 1938) p 243
(8). Siipola, E. Me, 1 group study of some effects of prepaxm atory set. Psychol. Konogro, 2935,46 No: 210
(9). Underwood Benton Jo, Experimental Psychology. New York. AppletonwCenturywCrofts 1949
(10). woodrrorth, K. S. Experiment 21 Psychology, News York. Henry Holt and Co. 1938
(11). Joodworth, R_{0} So, and Schlosberg, Ho \&rperimental Psycholony, New Xork, Henry Holt and Con, 1956

Explanatory Notes to the Appendices

Appendix B
Class - Section of General Psychology used as a Troup of subjeets. Class number is random and does not identify a particular section.

Appendices $C_{0} D_{0} \mathcal{B}_{9} F$
Columan identify the set given to the class.
Ross identify the responses. e.g. "Cut group" are those subjects who responded cut to the set given in the columan.

Unel. are those responses which could not be properly
fixed as to meaning and so were called "unclassified".
exp. $=$ expected frequency of response.
obse = observed frequency of response.

General instructions for all classes

This is a demonstration of the trapezoidal window as suge gested by the hmes demonstratrons in perception. It is used to show how we perceive things, what cues we use, what frames of reference. Thile we are interesced in showing you this for your information, we are 31 so interested in collecting some data for our information. Therefore, I am soing to ask that you cooperate by observing certain practices during the demonstratione ifirsty please do not discuss this with your neighbos or talk to anyone until after you have filled out the short questionnaire which I will distribute after the denonstration. Second, as the Iirghts are turned out please place one hand over your left eye so as to keep it closed durins the demonstration. (NHE EINHTS RAS TURNAD OUP LWD RHA IELUSION IS SPL.iPMD.) Zou will notice that the window seems to go back and forth, seeming to oscillate. If you do not seem to see this shift your head sliphtly until you
 TIONS. STOP PLS IELUNION LiE PUP RH二 BIR IN ROSIHTON.)

Further instructions for Class 1 (Cut set)
Is you watch the 111 usion, the bar will seen to cut through the windom, see if you see thiso

Murther instructions for Class 2 (Bend set)

As you watch the illusion, the bar will seem to bend in an "S" about the window, see if you see thiso

Further instructions for Glass 3 (Either set)

As people view this they have either one of two sensations, the bar is cutting through the mindon or the bar is beading in an "S" about the window, see if you do see one or the other.

Class 4 (Ho set) is given no instructions during this time.

Further instructions for all classes

 LIGHTS AHD SIOP ILLUSIUN.) I an going to distribute a short questionnaire to each of you, please do not sign your name. For the purposes of data, I am going to ask that you answer completeIy honestly, the anonimity will be preserved. It should not take more than thirty seconds to a minute to answer the questionnaires
 UHPIL ALL THL SLIPS kIV: BUGN COLLSCRD.)

Appendis B

Class 1 Cut set question
please put a check mark on the appropriate line.
The bar appeared to cut through the window. Yes No \qquad If no, then what did you seem to see? \qquad

Class 2 Bend set question
Please put a check raxk on the appropriate line.
The bar appesred to bend about the vindow. Yes No If no, then what did you seem to see? \qquad

Cless 3 Either set question
Please put a check mark on the approprixte line.
The bar appeared to cut through the window. \qquad
The bar appeared to bend about the window. \qquad
Other \qquad
\qquad

Class 4 No set question
Briefly describe what you seemed to see as far as the relationship between bar and mindow.

Overall x^{2} distribution

at $d f=9$ significant at .001 level
Contribution of cells with expected if less than 5

$$
\begin{aligned}
= & \frac{(0-4.09)^{2}}{4.09}+\frac{(3-3.10)^{2}}{3.10}+\frac{(0-2.50)^{2}}{2.60}+\frac{(11-4.21)^{2}}{4.21} \\
& \frac{(0-1.46)^{2}}{1.46}+\frac{(0-1.11)^{2}}{1.11}+\frac{(5-.93)^{2}}{.93}+\frac{(0-1.50)^{2}}{1.50}=39.55
\end{aligned}
$$

$112.53-39.55=72.98$ significant at .001 level with $\mathrm{d} f=9$

Appendix D

Comparison of suggested bend vs. no suggestion
Set

Comparison of suggested cot vs. no suggestion
Set

$$
\begin{aligned}
x^{2}= & \frac{(33-27.06)^{2}}{27.06}+\frac{(2 i-27.89)^{2}}{27.89}+\frac{(0-.49)^{2}}{.49}+\frac{(1-.51)^{2}}{.51}+ \\
& (0.5 .41)^{2}+(11-8.06)^{2}=14.20 \text { at 2df sig. at .001 level }
\end{aligned}
$$

Contribution of cells with expected f of less than 5

$$
=\frac{(0-.49)^{2}}{.49}+\frac{(1-.51)^{2}}{.51}=.96 \quad 14.20-.96=13.24 \text { at 2df sigo at. } 01 \text { level }
$$

Comparison of either sugestion vs. no suggestion

Set

	Bither	Hone	Total
Cut group obs.	$\begin{gathered} 12.19 \\ 10 \end{gathered}$	$\begin{aligned} & 19.78 \\ & 22 \end{aligned}$	32
Bend group obs.	$\begin{gathered} 2.67 \\ 6 \end{gathered}$	$\begin{gathered} 4.33 \\ 1 \end{gathered}$	7
Uncl. ${ }^{\text {expo }}$ group obs.	$\begin{gathered} 4.19 \\ 0 \end{gathered}$	$\begin{aligned} & 6.80 \\ & 11 \end{aligned}$	11
Both exp. group obs.	$\begin{gathered} 1.91 \\ 5 \end{gathered}$	$\begin{gathered} 3.09 \\ 0 \end{gathered}$	5
Total	21	34	$55=\mathbb{N}$

$$
\begin{aligned}
X^{2}= & \frac{(10-12.19)^{2}}{12.19}+\frac{(22-19.78)^{2}}{19.78}+\frac{(6-2.67)^{2}}{2.67}+\frac{(1-4.33)^{2}}{4.33}+ \\
& \frac{(0-4.19)^{2}}{4.19}+\frac{(11-6.80)^{2}}{6.80}+\frac{(5-1.91)^{2}}{1.91}+\frac{(0-3.09)^{2}}{3.09}=22.18
\end{aligned}
$$

22.18 significant at 001 level at 3 df

Contribution of cells with expected f of less than 2
$(5-1.91)^{2}=4.93 \quad 22.18-4.93=17.25$ significant at .001 level 1.91

Contribution of cells with expected if of less than 3

$$
\frac{(6-\operatorname{ta} \cdot 67)^{2}}{2.67}=4.15 \quad 17.25-4.15=13.10 \text { significant at } 01 \text { level }
$$

Contribution of cells with expected I of less than 4

$$
\frac{(0-3.09)^{2}}{3.09}=3.09 \cdot 13.10-3.09=10.01 \text { signipicant at } .02 \text { level }
$$

Appendsx \mathbb{E}

Comparison of previous bend set vs. no suggestion

Comparison of previous bend set vs, cut suggestion

expo Cut group obs.	$\begin{gathered} 15.30 \\ 12 \end{gathered}$	$\begin{gathered} 29.70 \\ 33 \end{gathered}$	45
Bend group oxpo obs.	$\begin{gathered} 1.70 \\ 5 \end{gathered}$	$\begin{gathered} 3.30 \\ 0 \end{gathered}$	5
Total	17	33	$50=\mathrm{N}$

Applying Yates correction for continuity

$$
\begin{gathered}
x=\frac{[(12-15.30)-5]^{2}}{15.30}+\frac{[(33-29.70)-.5]^{2}}{29.70}+\frac{[(5-1.20)-.5]^{2}}{2.70}+ \\
{[(0-3.30)=.5]^{2}=7.76 \text { at 1di significant at .01 level }}
\end{gathered}
$$

* Class given cut set but sophisticated by having seen film with consequent "previous bend set".
* $=$ Class given but set with no previous axposure。

$$
\text { Appendtx } \mathrm{F}
$$

Comparison of previous bend set vso bend suggestion

	Cut*	Bend	Sotal
Cut group obs.	$\begin{gathered} 5.25 \\ 12 \end{gathered}$	$\begin{gathered} 7.74 \\ 1 \end{gathered}$	13
Bend group obs.	8.48 0	$\begin{aligned} & 12.50 \\ & 21 \end{aligned}$	21
Uncze $\begin{aligned} & \text { oxpo } \\ & \text { group } \\ & \text { obs. }\end{aligned}$	$\begin{gathered} 3.23 \\ 5 \end{gathered}$	$\begin{gathered} 4.76 \\ 3 \end{gathered}$	8
Total	25	37	$42=17$

Applying Yates correction for continuity

$$
\begin{aligned}
& X^{2}=\left[\frac{(2-5.25)-.5]^{2}}{5.25}+\left[\frac{(1-7.74)-.5]^{2}}{7.74}+\frac{[(0-8.48)-.5]^{2}}{8.48}+\frac{[(21-12.50)-.5]^{2}}{22.50}+\right.\right. \\
& {\left[\frac{[(5-3.23)-.5]^{2}}{3.23}+[(3-4.76)-.5]^{2}\right.} \\
& 4.76
\end{aligned}+25.89 \text { at 208 sigut ficant at .001 levol. }
$$

s=Class given cut set but sophtsticated by having geen film with consequent "previous bend set".

