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Abstract
Graph neural networks (GNNs) have become a de facto
paradigm for graph representation learning. Generally, GNNs
are trained in an end-to-end manner with supervision, requir-
ing considerable task-specific labeled data. To reduce the la-
beling burden, recent works leverage self-supervised tasks to
pre-train an expressive GNN model on abundant unlabeled
data and finetune the trained model on downstream datasets
with only a few labels. However, existing GNN pre-training
approaches only concentrate on a single view for graph self-
supervised learning while ignoring the rich semantic informa-
tion in graphs, leading to the lack of sample utilization effi-
ciency during the pre-training process. To tackle such chal-
lenges, we propose a multi-view graph contrastive encoding
for graphs during GNN pre-training, called MVRACE. The
critical insight is that we construct node and graph-level views
to capture local attribute information and global structure in a
graph. Concretely, the node-level view utilizes graph central-
ity and encodes the r-ego network to capture the local-whole
relationship in a graph. The graph-level view aims to encode
graph pairs to explore different graph structures and empower
the discrimination ability of the GNN encoder. In addition,
we combine multi-views with a joint contrastive loss func-
tion to integrate node- and graph-semantic information simul-
taneously. Comprehensive experiments on multiple domain
datasets demonstrate that our approach can significantly yield
competitive performance compared to state-of-the-art meth-
ods. Keywords: graph neural network; graph contrastive en-
coding; multi-view

Generally, GNNs are often trained in a (semi-) supervised
manner, which is arduously expensive and sometimes infeasi-
ble to access sufficient labeled data for domain-specific tasks.
For example, it is hard to collect enough correct annotation
for biological proteins and chemical molecules due to hard-
ware measurement limitations or human errors (Che, 2021;
Gedela, Bobby, & Bhatt, 2022). These natural science fields
have still faced the challenge of the lack of ground truth. In-
spired by remarkable success of pre-trained language models
(Devlin, Chang, & L., 2019), some advances (Z. Hu, Dong,
Wang, Chang, & Sun, 2020; Qiu et al., 2020; Lu, Jiang,
Fang, & Shi, 2021; W. Hu et al., 2020) concentrate on pre-
training GNNs and learn the transferable knowledge from
self-supervised tasks to downstream tasks, which further fa-
cilitates GNN performance and reduce the labeling burden.
However, existing GNN pre-training methods simply create
positive and negative samples in graph-based self-supervised
tasks, while they ignore the rich semantic information at the
node and graph levels, and lack the ability to distinguish sim-
ilar graph structures. At the node level, there are always some
key nodes in the graph. The local structures formed by these
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Figure 1: The illustration of multi-view graph contrastive
learning. The node-level view encode substructure to de-
scribe the key node semantic information. The graph-level
view encode the whole graph information and attempt to dis-
criminate different graph structure.

nodes and neighbors usually become an important compo-
nent of a graph, which requires us to put more efforts on ex-
tracting and identifying these local structures. In addition,
the graph structure is diverse and constantly changing, and
the description of a single view is likely to be incomplete
and one-sided. Therefore, we need to strengthen the abil-
ity of GNNs to distinguish graphs with different structures,
especially for graphs with similar structures but not the same
type, such as isomers in chemical molecules. Take Figure 1 as
an example, some very important atoms and chemical bonds
(i.e., oxygen atom and large π bond) dominate in a molecule
graph, which determines the unique properties of chemical
molecules. If we construct the positive and negative sample
pairs according to the graph data augmentaion strategy (You
et al., 2020) (e.g., dropping nodes, deleting edges), it is likely
to destroy the key atoms and chemical bonds, which reduces
the ability of GNNs to capture key local features and rela-
tionships. Meanwhile, these two chemical molecules are very
similar in structure, due to both of them containing benzene
rings, which brings difficulties to GNN learning the struc-
ture of the graph and may cause misclassfication on graphs.
The combination of multi-view information inside the graph
is often overlooked by above methods so that they have a de-
ficiency in the scalability and robustness.
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To overcome these limitations, we propose a novel Multi-
View gRAph Contrastive Encoding for GNN pre-training,
MVRACE for brevity, to explore rich multiview information
among nodes and graphs. Multi-view representation learning
is able to generate multiple views of a same object, which
has achieved state-of-the-art performance on image classifi-
cation (Chen, Kornblith, Norouzi, & Hinton, 2020; Bachman,
Hjelm, & Buchwalter, 2019). Inspired by this, we firstly in-
troduce two new views that reflect local and global seman-
tic information. We construct node and graph-level encod-
ing and incorporate attribute of nodes and structure of graph
to capture the different semantic relation in the graph. Fur-
thermore, we introduce a self-supervised technique to learn
graph representations by contrastive learning based on differ-
ent views. To help MVRACE learn the commonality between
two views well, we conbine node and graph contrastive learn-
ing loss to optimize the model and balance information from
different views better. Finally, we conduct a series of exper-
iments about on large-scale graph datasets, which shows the
superiority of our proposed methods. Our methods open the
direction of designing more complementary views for GNN
pre-training, which is significant and can learn the essential
and inherent feature of the graph. In summary, our contribu-
tions are summarized as follows:

• We propose a multi-view graph contrastive encod-
ing model for GNNs pre-training, called MVRACE.
MVRACE can effectively mine the semantic relationship
at the node- and graph- level, which can learn complex in-
teraction patterns among nodes and graphs.

• We design an effective contrastive learning method to learn
high-quality node embeddings from different views. Our
method is unsupervised and can effectively capture the fea-
tures and structure information of the graph without the
help of data labels.

• We conduct extensive experiments on large-scale graph
datasets in different domains for pre-training and evaluate
it on downstream task. The experiment results shows that
our approach achieves competitive or better performance
compared to baselines, even with few labeled training in-
stances.

Related Work
Graph Neural Network Pre-training
GNNs aggregate the features of neighbor nodes and itera-
tively update node representations. pre-training GNN in-
tends to transfer knowledge from source domain graphs to
target domain graphs. (W. Hu et al., 2020) utilizes the self-
supervised strategies to generate node and graph embeddings
and combines them to obtain local and global semantic in-
formation of the entire graph. GCC (Qiu et al., 2020) ex-
tracts positive and negative subgraph instances and distin-
guish them with contrast learning. GPT-GNN (Z. Hu et al.,
2020) masks the attributes of a graph and designs a genera-
tion task to capture the structural and semantic properties of

the graph. L2P-GNN (Lu et al., 2021) constructs parent tasks
and child tasks to make up the gap in the optimization objec-
tives between pre-training and fine-tuning.

Graph Contrastive Learning
Contrastive learning is one of the state-of-the-art self-
supervised representation learning algorithms, which can
capture inherent attribute of the data by constructing positive
and negative sample pairs (Jaiswal, Babu, Zadeh, Banerjee,
& Makedon, 2020; Jing, Zhu, Zang, & Wang, 2023). Re-
cently, graph contrastive learning attracts a lot of attention,
especially in the situation of label missing and complex graph
structure (Zheng et al., 2023; Tang, Liang, Guo, Zheng, &
Wu, 2022; Xu, Deng, Xie, & Ji, 2023). (You et al., 2020) de-
signs a graph augmentation strategy and performs mutual in-
formation maximization to complete graph contrastive learn-
ing. (Chu, Wang, Shi, & Jiang, 2021) is absorbed in nega-
tive graph samples and utilizes curriculum Learning (Bengio,
Louradour, Collobert, & Weston, 2009) to select more repre-
sentive negative samples. In addition, (Mo, Peng, Xu, Shi, &
Zhu, 2022) introduces a multiplet loss to explores the com-
plementary information between the structural information
and neighbor information, which enlarges inter-class varia-
tion and reduces intra-class variation.

Preliminaries
GNNs. Let G = (V,E,X,A) be a graph with nodes V and
edges E, where X ∈ Rn×d0 and A ∈ Rn×n are feature matrix
and adjacency matrix, respectively. n is the number of nodes
and d0 denotes the dimension of initial feature. GNNs lever-
age the aggregator function to cpature neighbor feature and
iteratively update node representation (Gilmer, Schoenholz,
& Riley, 2017), i.e.,

hk
i = Θ

(
hk−1

i ,δ j∈Ni
φ

k
(

hk−1
i ,hk−1

j ,ei, j

))
, (1)

where hk
i represents the k-th iteratively embedding of the

node i. h0
i = xi denotes the initial feature. ei, j represents

the edge feature between node i and j. Θ and φ represent dif-
ferentiable functions or network layers, such as multi-layer
perceptron (MLP). δ determines how to aggregate neighbor
node features such as sum, mean or max (Fey & Lenssen,
2019). To obtain graph representation hG, the READOUT
function pools node features from the final iteration k (W. Hu
et al., 2020), i.e.,

hG = READOUT (hi|i ∈ G), (2)

where READOUT is a permutation-invariant function, such
as averaging, maxing or a more sophisticated graph-level
pooling layers (Ying & You, 2018; Zhang, Cui, & Neumann,
2018).

Pre-training and Fine-tuning. The conventional GNN
pre-training process can be divided into a two step paradigm:
(1) Training GNNs on abundant graph datasets to abtain prior
knowledge, and perform the gradient descent to update pa-
rameters. (2) Saving the trained parameters, then fine-tuning
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Figure 2: The Overall framework of MVRACE. We create a multi-view encoding mechanism consisting of the node and graph
level. In the middle are the original graph and the negative sample graph. On the left is the node-level encoding, including
three ego network comparisons that describe the centrality of the diagram. On the right is the graph-level encoding, including
three graph structure comparisons with different graph enhancement strategies. Finally, the total loss function is obtained by
summing the node- and graph-level contrastive loss.

the GNNs on the downstream datasets. According to the de-
scription of (Lu et al., 2021), We can describe the step 1 and
2 by Eq. (3) and (4), respectively, i.e.,

θ0 = argmin
θ

L pre ( fθ;D pre) , (3)

θ1
update←− θ0−η∇θ0 L f ine ( fθ0 ;D f ine) , (4)

where L , f ,D pre,D f ine, and η denote loss function, GNNs,
pre-training datasets, downstream datasets and learning rate,
respectively.

Multi-view Graph Contrastive Encoding
In this section, we develop a novel multi-view contrastive
encoding strategy for GNN pre-training, named MVRACE,
which consists of node- and graph-level encoding. Figure 2
presents an overall framework of our method.

Node-level Encoding
Existing graph contrastive learning methods ignore the local
structure in a graph, of which rich semantic information is
stored in the nodes and their neighbors. The local structure
is closely related to the whole of the graph and can become
the symbolic feature of the graph. Therefore, we first de-
fine the r-ego network and graph centrality to find significant
nodes and utilize the r-ego network to include nodes and their
neighbors. We encode the r-ego network with a local-whole
contrastive loss to obtain node-level semantic information.

Definition 1. r-ego network. The Ego network originates
from social networks (Li, Wang, & Chang, 2014), which con-
sists of a focal node (i.e., ego) and plus the neighbors directly
connecting to the node. Given a vertex v, we can define the
r-ego network as a subgraph Sv = {(u,e) | d(v,u) ≤ r}. The
d(v,u) represents the shortest path distance between node v
and u in graph G.

Definition 2. Graph centrality. The importance of each
node is different in a graph, which forces us to select the most
representative nodes to capture the pivotal local structure.
Graph centrality (Bergamini, Borassi, Crescenzi, Marino, &
Meyerhenke, 2019) can be used to measure the importance
of nodes. We utilize the following graph centrality measure-
ment to sort the importance of nodes and pick up the node
with maximum centrality.

• Degree centrality. The degree centrality is the most di-
rect measure of node centrality in graph analysis. In the
graph, the greater the degree of a node, the higher the de-
gree centrality of the node, which means that the node is
more important in the graph, formulated as follows:

Cdeg = max{deg(i)}, (5)

where deg(i) represents the degree of node i.

• Closeness centrality. The closeness centrality denotes the
shortest distance from a node to all other nodes. The cen-
tral node has the best visual field in the graph and can
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quickly perceive what is happening at other nodes and the
direction of information flow, formulated as:

Cclo = max{ 1
∑ j di j

}(i 6= j), (6)

where di j denotes the shortest distance between node i and
j.

• Eigenvector centrality. The eigenvector centrality x de-
scribes the eigenvector of the adjacency matrix with the
largest eigenvalue λ, i.e., the solution of Ax = λx, which
can be defined as:

Ceig = λ, (7)

where A denotes the adjacency matrix and x represents the
eigenvector.

It should be noted that our purpose is not to utilize the
graph centrality directly for graph representation learning
but to take out the node corresponding to the centrality so
as to export the ego network of the central node, namely
{nodedeg,nodeclo,nodeeig|Cdeg,Cclo,Ceig}. Then we derive
the r-ego networks from these nodes. For each graph, it
has the three r-ego network, marked as r-ego network set
Gego = {gdeg,gclo,geig}.

The node-level encoding task treats each ego-network in-
stance as a distinct class of its own and learns to discriminate
between these instances from different graph, which can ex-
plore the local-whole relationship in a graph and capture the
representative features at the node level. To this end, we adopt
the InfoNCE loss (van den Oord, Li, & Vinyals, 2018). The
InfoNCE loss can be described as a process that only lever-
ages its own information to distinguish positive and negative
samples. Given a query key Gi, we calculate the values of
positive ego samples Gego

i and the values of K negative ego
sample Gego

j ( j 6= i), so as to maximize the value of positive
sample relative to query key, defined as:

Lnode =− log
exp

(
q>i hego

i /τ
)

∑
K
j=0 exp

(
q>i hego

j /τ

) ,ego ∈ {deg,clo,eig},

(8)
where τ is the temperature hyper-parameter. fθ represent
GNN encoder and obtain the node embeddings correspond-
ing to query instance and key instance (i.e., positive ego
samples and negative ego samples), marked as qi = fθ(Gi),
hego

i = fθ(G
ego
i ), hego

j = fθ(G
ego
j ), respectively.

Disscussion. In some graphs, the most important node
calculated from the graph centrality may be the same. In
this case, we will merge the same nodes and export the
corresponding ego networks for coding calculation to re-
duce the time of calculating the graph centrality and rank
the importance of nodes. The time complexity of degree
centrality, closeness centrality and eigenvector centrality are
O(|V | · |E|), O(|V |2) and O

(
|V |

log|λ1/λ2|

)
, respectively.

Graph-level Encoding
The graph-level view aims to encode the structure and at-
tribute of the whole graph and strengthen the recognition abil-
ity of the GNN encoder for graphs with different structures
during the pre-training process. In order to achieve our goal,
we use a graph augmentation strategy, which is widely used to
expand the number of samples and construct different sample
variants to strengthen the ability of the model. We employ a
predicting task whether two augmented graphs originate from
the same original graph or not to enhance the discrimination
of the GNN encoder.

Graph Augmentation. To perform graph-level encoding
on graphs, we employ graph augmentation to obtain posi-
tive and negative sample pairs at the graph level without af-
fecting the semantics label. Given a collection of original
graphs G∈ {Gn : n ∈ N}. We formulate the augmented graph
Ĝ ∼ q(Ĝ | G), where q(· | G) is the augmentation distribu-
tion conditioned on the original graph, which is pre-defined,
representing the human prior for data distribution. For in-
stance, some graphs can only delete nodes because the edges
are sparse. We select and use the graph augmentation method
introduced by (You et al., 2020). The following are graph
augmentation strategies.

• Node deletion. As shown in Figure 2, we randomly delete
a certain portion of nodes marked with slashes.

• Edge addition. As shown in Figure 2, we perturb the
connectivities in G by randomly adding a certain ratio of
edges, marked as the dotted line. It implies that the se-
mantic meaning of G has certain robustness to the edge
connectivity pattern variances.

• Subgraph Induction. As shown in Figure 2, we sample a
subgraph from G using a random walk, which assumes the
structure saved in the subgraph can effectively represent
the original graph.

The same as the node-level encoding, we still use the In-
foNCE loss (van den Oord et al., 2018) function to distinguish
different graphs. It can be represented as follows,

Lgraph =− log
exp

(
z>i ẑi/τ

)
∑

K
j=0 exp

(
z>i z j/τ

) , (9)

where τ is the temperature hyper-parameter. fθ is the GNN
encoder to obtain the graph embeddings corresponding to
query instance and key instance (i.e., original graph embed-
ding augmented graph embedding ), marked as zi = fθ(Gi),
ẑi = fθ(Ĝi), z j = fθ(G j), respectively.

Pre-training Schema
Figure 2 shows the overall scheme of the pre-training frame-
work. MVRACE employs the pre-training contrastive learn-
ing at both the node- and graph- levels on the graph G. We
minimize the following loss:

L = Lnode +λLgraph , (10)

where λ is the balance coefficient.
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Experiment
Datasets
We conduct experiments on two domain datasets: biology and
bibliography. In biology , we follow the (W. Hu et al., 2020)
setting in PPI (Zitnik, Feldman, & Leskovec, 2019) dataset,
of which about 306K protein ego-networks is used for pre-
training. In fine-tuning, we predict 40 fine-grained biologi-
cal functions with 88K labeled subgraphs derived from PPI.
The bibliographic graphs called PreDBLP, constructed by (Lu
et al., 2021), contains 1,054,309 paper subgraphs in 31 field
(e.g., artificial intelligence, data mining). We follow the set-
ting that (Lu et al., 2021) divides 794,862 subgraphs for pre-
training and 299,447 subgraphs for fine-tuning, of which the
task is to predict the research field from 6 different categories.

Baselines
To contextualize the empirical results of MVRACE on the
benchmarks, we compare against six baselines. (1) No
pre-train means training and testing GNNs on the down-
stream datasets directly. (2) Infomax (Velickovic, Fedus,
& H., 2019) aims to maximize mutual information between
local node representations and global graph representation.
(3) EdgePred (Hamilton, Ying, & Leskovec, 2017) predicts
whether there is an edge between nodes. (4) AttrMasking
(W. Hu et al., 2020) learns the regularities of the node or
edge attributes distributed by leveraging the graph structure.
(5) Context Prediction. (W. Hu et al., 2020) use ssubgraphs
to predict their surrounding graph structures. (6) L2P-GNN
(Lu et al., 2021) constructs task set and optimizing the GNN
pre-training process with node- and graph-level adaptation.

Settings
Pre-training. We pre-train four GNN architectures on each
dataset for 100 epochs and use Adam (Kingma & Ba, 2015)
as optimization with learning rate of 0.001, weight decay of
1e-4. For a fair comparison, we fix the hidden representation
dimension to be 300. In addition, we set the r-ego network to
1 hop in MVRACE, which means the nearest neighbors. The
default value of balance coefficient λ is 1.
Fine-tuning. We fine-tune the pre-trained GNNs on down-
stream datasets. The optimizer is still Adam (Kingma & Ba,
2015) with the learning rate of 0.001 and weight decay of 1e-
4. For all domain datasets, we split the downstream datasets
with an 8:1:1 ratio for train, validation, and test sets. All
downstream experiments are repeated with ten random seeds,
and we report the mean with standard deviation following
(Lu et al., 2021). (Our hardware environment: CPU: Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20GHz, GPU: NVIDIA RTX
3090@24GB, Memory: 128GB.)

Performance on Downstream Tasks
Table 1 compares the performance of MVRACE and state-
of-the-art pre-training baselines, w.r.t. four different GNN
architectures. After pre-training our MVRACE and the base-
lines on the biology and bibliography dataset, we apply the

pre-trained model to the fine-tuning datasets to predict graph
labels. We evaluate the test performance with average ROC-
AUC across the downstream task. We make the following
observations.

Overall, the MVRACE consistently yields the best per-
formance among all methods across different GNN archi-
tectures, which brings an average ROC-AUC improvement
by 0.41%-3.04% compared to suboptimal method L2P-GNN.
We believe that such significant improvements can be at-
tributed to the rich node- and graph- semantic information
captured during the pre-training process. Compared to the
no pre-train baselines, our MVRACE significantly improves
the performance by 1.91%-9.67% on two datasets. The im-
provements suggest that the multi-view contrastive encoding
on graphs is capable of learning transferable and informative
knowledge for the downstream tasks.

At the same time, in the face of different GNN architec-
tures, the effect of different pre-training methods is also very
different. On the biology dataset, GCN, GraphSAGE and
GIN have a large improvement without pre training, but GAT
has a small improvement. On the PreDBLP dataset, GCN,
GraphSAGE and GAT have a large increase, while GIN has
a small increase. However, in general, MVRACE can still
maintain considerable performance improvement in the face
of different GNN frameworks, which further shows the effec-
tiveness of our utilization of local and global graph structure
and semantic capture.

Model Analysis

In this section, we investigate the inherent mechanism of
MVRACE. As the node- and graph-level encoding play piv-
otal roles in MVRACE, we conduct the ablation experiment
to explore their respective impact. Furthermore, the influence
of different parameter values on the model’s performance is
verified by parameter analysis. Finally, we investigate the im-
provement of MVRACE in fine-tuning and the sample utiliza-
tion. Since similar trends are observed for different GNNs
architectures, we only report the GIN results.

Ablation Study. We conduct an ablation study to ex-
plore the effectiveness of node- and graph-level encoding in
pre-training, respectively. We compare three ablated vari-
ants, namely MVRACE-node, MVRACE-node (random),
and MVRACE-graph. The MVRACE-node only includes the
node-level encoding component, and MVRACE-node (ran-
dom) replaces the graph centrality nodes with random nodes.
The MVRACE (graph) only includes the graph-level encod-
ing component. As Table 2 shows, the three ablated variants
perform better than no pre-training baselines on Biology and
PreDBLP datasets, illustrating that either the node-level en-
coding or graph-level encoding is beneficial for pre-training.
The mean and standard deviation values of MVRACE-node
(random) are lower than MVRACE-node, denoting that en-
coding graph centrality nodes could further learn the signifi-
cant node information. In addition, our complete MVRACE
is superior to all variants, indicating capturing local and
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Table 1: Experimental results ROC-AUC (mean ± std in percent) of different pre-training strategies w.r.t. various GNN
architectures. The improvements are relative to the respective GNN without pre-training.

Model
Biology PreDBLP

GCN GraphSAGE GAT GIN GCN GraphSAGE GAT GIN

No pre-train 63.22±1.06 65.72±1.23 68.21±1.26 64.82±1.21 62.18±0.43 61.03±0.65 59.63±2.32 69.01±0.23

EdgePred 64.72±1.06 67.39±1.54 67.37±1.31 65.93±1.65 65.44±0.42 63.60±0.21 55.56±1.67 69.43±0.07
DGI 64.33±1.14 66.69±0.88 68.37±0.54 65.16±1.24 65.57±0.36 63.34±0.73 61.30±2.17 69.34±0.09

ContextPred 64.56±1.36 66.31±0.94 66.89±1.98 65.99±1.22 66.11±0.16 62.55±0.11 58.44±1.18 69.37±0.21
AttrMasking 64.35±1.23 64.32±0.78 67.72±1.16 65.72±1.31 65.49±0.52 62.35±0.58 53.34±4.77 68.61±0.16
L2P-GNN 66.48±1.59 69.89±1.63 69.15±1.86 70.13±0.95 66.58±0.28 65.84±0.37 62.24±1.89 70.79±0.17

MVRACE 68.50±1.21 71.12±1.54 69.51±1.47 71.09±1.10 67.40±0.53 66.11±0.33 63.89±1.34 71.98±0.41

Gain 8.35% 8.22% 1.91% 9.67% 8.39% 8.32% 7.14% 4.30%

Table 2: Ablation study

Variants
Dataset

Biology PreDBLP

MVRACE-node (random) 66.76±1.41 69.15±1.23
MVRACE-node 69.15±1.20 69.21±0.64
MVRACE-graph 68.42±1.21 69.51±0.45

MVRACE 71.09±1.10 71.98±0.41

global semantic information is necessary, while the lack of
any of them will lead to a sharp decline in performance.

Parameter Analysis. We present the sensitivity analysis
of two important hyper-parameters employed by MVRACE,
namely dimension d and balance coefficient λ. We adjust
the dimension d ∈ {100,200,300,400,500} and analyze the
effects of different dimensions. As Figure 3(a) shows, we ob-
serve that MVRACE achieves the optimal performance when
the dimension is 300 and is generally stable around the op-
timal setting, indicating that MVRACE is robust w.r.t. the
representation dimensions. Besides, we vary the balance co-
efficient λ from 0.1 to 1.0 with increments of 0.1. The results
in Figure 3(b) shows that we should keep λ in [0.6-1.0] to
obtain reliable performance.

Stability Analysis In this section, we analyze the im-
provement of fine-tuning on the biology dataset. As Figure
3(b) shows, we compare MVRACE to no pre-trained GIN.
Whether in the training set or the validation set, we can find
that the ROC-AOC curve of GIN without pre-training is more
tortuous, and the final optimal value is much lower than our
method. The above two observations further verify the ef-
fectiveness and stability of our strategy in GNN pre-training.
Since MVRACE could utilize the rich semantic information
at the node- and graph-level, we would like to know the per-
formance of MVRACE with a different number of labeled
training data by adjusting the training set ratio during pre-
training. As Figure 3(d) shows that our MVRACE achieves
high performance compared to other methods, validating its
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Figure 3: The results of ablation study, parameter analysis
and stability analysis.

superiority in the scenario with few labeled data.

Conclusion

In this paper, we introduce a multi-view contrastive encod-
ing mechanism for graph neural network pre-training called
MVRACE. In MVRACE, we consider the rich semantic re-
lationships contained in the graph and define the key nodes
and their local substructures by leveraging graph centrality.
In addition, we use the graph augmentation strategy to cre-
ate graph-level contrastive learning to enhance the ability of
GNNs to distinguish different graph structures. We combine
the node- and graph-level semantic information with a joint
loss to integrate rich multi-view graph information. Extensive
experiments demonstrate that MVRACE significantly outper-
forms the state of the art and can improve the stability of fine-
tuning as well as pre-training sample utilization.
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