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Stability of Partial Difference Equations
Governing Control Gains

in Infinite Dimensional Backstepping∗

Andras Balogha and Miroslav Krsticb

aDepartment of Mathematics, University of Texas–Pan American

Edinburg, TX 78539–2999
bDepartment of MAE, University of California at San Diego

La Jolla, CA 92093–0411

Abstract

We examine the stability properties of a class of LTV difference equations on an infinite–
dimensional state space that arise in backstepping designs for parabolic PDEs. The nominal
system matrix of the difference equation has a special structure: all of its powers have en-
tries that are -1, 0, or 1, and all of the eigenvalues of the matrix are on the unit circle. The
difference equation is driven by initial conditions, additive forcing, and a system matrix per-
turbation, all of which depend on problem data (for example, viscosity and reactivity in the
case of a reaction-diffusion equation), and all of which go to zero as the discretization step in
the backstepping design goes to zero. All of these observations, combined with the fact that
the equation evolves only in a number of steps equal to the dimension of its state space, com-
bined with the discrete Gronwall inequality, establish that the difference equation has bounded
solutions. This, in turns, guarantees the existence of a state-feedback gain kernel in the back-
stepping control law. With this approach we greatly expand, relative to our previous results,
the class of parabolic PDEs to which backstepping is applicable.

keywords: LTV difference equations; stability; parabolic PDEs; boundary control; gain kernel.
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1 Introduction

We consider parabolic PDEs of the form

ut (x, t) = εuxx (x, t)+b(x)ux (x, t)+λ(x)u(x, t)+g(x)u(0, t)+d (x)u(θx, t)

+

� x

0
f (x,ξ)u(ξ, t) dξ (1.1)

for x ∈ (0,1), t > 0, with initial condition

u(x,0) = u0 (x) , x ∈ [0,1] , (1.2)

with boundary conditions∗

ux (0, t) = qu(0, t) (1.3)

u(1, t) =

� 1

0
k1 (ξ)u(ξ, t) dξ (1.4)

and under the assumption

ε > 0, 0 < θ < 1, q ∈ R, b, λ, d, g ∈ L∞ (0,1) , f ∈ L∞ ([0,1]× [0,1]) (1.5)

where the feedback gain kernel k1 ∈ L∞ (0,1) is sought to stabilize the equilibrium u≡ 0. Through-
out the paper we will consider only real valued functions and the classical Lp (0,1), p ≥ 1 and
C2,1 ([0,1]× (0,∞)) spaces (see [13]). Relative to our previous work on the subject [1, 3], which
was under the assumptions g(x) = d (x) = f (x,ξ)/q = 0 for x,ξ ∈ [0,1], the results here are more
general, and the proof technique we develop is more elegant. Our approach is to use the backstep-
ping method for the finite difference semi–discretized approximation of (1.1) to derive an infinite
dimensional coordinate transformation that maps our system into an exponentially stable system.
The coordinate transformation results in a boundary feedback control law of the form (1.4). Our
result is formulated in the following theorem.

Theorem 1.1. For any c > 0 there exists a function k1 ∈ L∞ (0,1) such that for any u0 ∈ L∞ (0,1)
system (1.1)–(1.4) with assumption (1.5) has a unique classical solution u ∈ C2,1 ([0,1]× (0,∞))
and the trivial solution utriv ≡ 0 is exponentially stable in the L2 (0,1) and maximum norms with
decay rate c. More precisely, there exists a positive constant M such that for all t > 0

‖u(t, ·)‖L2(0,1) ≤ M ‖u0‖L2(0,1) e−ct (1.6)

and
max

x∈[0,1]
|u(x, t)| ≤ M sup

x∈[0,1]

|u0 (x)|e−ct . (1.7)

∗The case of Dirichlet boundary condition at the zero end (q = ∞) can be handled the same way.
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The problem of boundary feedback stabilization of general parabolic equations is not new.
Our papers [1, 3] contain a detailed discussion of prior work, and the reader is also referred to
[10, 14] for extensive surveys. While these previous approaches give an existence answer to our
stabilization problem, our approach offers an implementable, numerically simple solution that
avoids the tasks of estimating eigenfunctions or solving operator Riccati equations, which are
formidable in the case of nonconstant coefficients.

The present paper, besides generalizing the class of systems in [1, 3] (the expanded class now
includes, for example, the linearized model of the solid propellant rocket instability [2]), offers
a very different, and remarkably more elegant proof technique. Boundedness of the coordinate
transformation kernel, whose trace on the boundary is the gain kernel function k1, is the key result.
In [1, 3] this result involved deriving extremely complicated formulae for the exact form of the
transformation. In this paper the boundedness of the transformation is proved without solving
for it. The boundedness proof is essentially stability analysis for a complicated LTV difference
equation on an infinite–dimensional state space.

This paper is organized as follows. In Section 2 we lay out our strategy for the solution of
the stabilization problem. We design a coordinate transformation for a semi–discretization of our
system which maps it into an exponentially stable system and derive a recursive relationship for
the kernel of transformation in Section 3. The recursive relationship is written in the form of a
system of second order difference equations in Section 4. Our main theorem on the stability of
this system is proven in Section 5. The stability result shows the uniform boundedness of the
discretized coordinate transformations as the grid is refined. This implies the existence of the
stabilizing boundary control law (1.4), as it was shown in [1, 3]. For completeness we included in
Section 6 a theorem on the well posedness of the controlled system (1.1)–(1.4).

2 Backstepping Transformation

We look for a coordinate transformation

w(x, t) = u(x, t)−
� x

0
k (x,ξ)u(ξ, t) dξ, x ∈ [0,1] , t > 0 , (2.1)

that transforms system (1.1)–(1.4) into the exponentially stable system

wt (x, t) = εwxx (x, t)+b(x)wx (x, t)− cw(x, t) , x ∈ [0,1] , t > 0 , (2.2)

where c > q2 and the boundary conditions are

wx (0, t) = qw(0, t) ∀t > 0 , (2.3)

w(1, t) = 0 ∀t > 0 . (2.4)

Once transformation (2.1) is found, it is realized through the stabilizing boundary control (1.4)
with k1 (·) = k (1, ·).
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Substituting (2.1) into equation (2.2) and using equation (1.1) results in the following weak
formulation of a hyperbolic partial differential equation for the function k:

0 =
� x

0

(
εkxx (x,ξ)− εkξξ (x,ξ)+ kξ (x,ξ)b(ξ)+ kx (x,ξ)b(x)

)
u(ξ, t) dξ

−
� x

0
k (x,ξ)

(
λ(ξ)+ c−b′ (ξ)

)
u(ξ, t) dξ

−
� x

0
k (x,ξ)

(
g(ξ)u(0, t)+d (ξ)u(θξ, t)+

� ξ

0
f (ξ,s)u(s, t) ds

)
dξ

+ε2

(
d
dx

k (x,x)

)
u(x, t)+ ε

(
qk (x,0)− kξ (x,0)

)
u(0, t)+ k (x,0)b(0)u(0, t)

+(λ(x)+ c)u(x, t)+g(x)u(0, t)+d (x)u(θx, t)+
� x

0
f (x,ξ)u(ξ, t) dξ (2.5)

for all x ∈ [0,1].
In order to find (2.1) in a constructive way we first discretize (1.1)–(1.4), then we develop a

stabilizing coordinate transformation for the discretized system and finally we show that the dis-
cretization converges to an infinite dimensional transformation. We define kni j = k ((i−1)h,( j−1)h),
un

i = u((i−1)h, t), bn
i = b((i−1)h) for t > 0, i, j = 1, . . . ,n, n = 1,2, . . . where h = 1/n, and the

finite difference discretization of the rest of the functions is defined the same way. The discretized
version of coordinate transformation (2.1) now has the form

wn = un −hKnun n = 1,2, . . . (2.6)

where

wn = [wn
1,w

n
2, . . . ,w

n
n]

T , (2.7)

un = [un
1,u

n
2, . . . ,u

n
n]

T (2.8)

and
Kn =

[
kn

i j

]
n×n

(2.9)

with the convention that
kn

i j = 0, for j > i . (2.10)

A discretization of system (1.1)–(1.4) with respect to the spatial variable x using finite differences
is

un
1 −un

0

h
= qun

1 , (2.11)

u̇n
i = ε

un
i+1−2un

i +un
i−1

h2 +bn
i

un
i −un

i−1

h
+λn

i un
i

+gn
i un

1 +dn
i un

[θi]+1 +h
i

∑
j=1

f n
i ju

n
j , i = 1, . . . ,n , (2.12)

un
n+1 = h

n

∑
j=1

kn
n ju

n
j . (2.13)
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The exponentially stable transformed system (2.2)–(2.4) has the discretized form

wn
1 −wn

0

h
= qwn

1 , (2.14)

ẇn
i = ε

wn
i+1 −2wn

i +wn
i−1

h2 +bn
i

wn
i −wn

i−1

h
− cwn

i , i = 1, . . . ,n , (2.15)

wn
n+1 = 0 . (2.16)

As it was shown in [1, 3], the convergence of the finite dimensional transformation (2.6) to the in-
finite dimensional one (2.1) reduces to proving the uniform boundedness of ‖Kn‖m = max

i, j=1,...n

∣∣kn
i j

∣∣

in n. Since n plays an important role, we will keep the superscript n notation throughout the paper.
Any other superscript will refer to powers. We note here that ‖·‖m is different from the regular
matrix ∞–norm.

3 Finding the Gain Kernel

In this section we derive a recursive relationship for the kernel
{

kn
i j

}
i, j=1,...,n

. We have from (2.14)

wn
0 = (1−qh)un

1 (3.1)

and from (2.15)

εwn
i+1 =

(
2ε+ ch2 −bn

i h
)

wn
i − (ε−bn

i h)wn
i−1 +h2ẇn

i , i = 1, . . . ,n . (3.2)

With the help of equations (2.6) and (2.12) we get

ε

(
un

i+1 −h
i

∑
j=1

kn
i ju

n
j

)
=
(
2ε+ ch2 −bn

i h
)
(

un
i −h

i−1

∑
j=1

kn
i−1, ju

n
j

)

−(ε−bn
i h)

(
un

i−1 −h
i−2

∑
j=1

kn
i−2, ju

n
j

)
+h2

(
u̇n

i −h
i−1

∑
j=1

kn
i−1, ju̇

n
j

)

=
(
2ε+h2c−hbn

i

)
un

i −
(
2ε+h2c−hbn

i

)
h

i−1

∑
j=1

kn
i−1, ju

n
j − (ε−hbn

i )un
i−1

+(ε−hbn
i )h

i−2

∑
j=1

kn
i−2, ju

n
j +h2

(
ε

un
i+1 −2un

i +un
i−1

h2 +bn
i

un
i −un

i−1

h

)

+h2

(
λn

i un
i +gn

i un
1 +dn

i un
[θi]+1 +h

i−1

∑
l=1

f n
il u

n
l −h

i−1

∑
j=1

kn
i−1, ju̇

n
j

)

= εun
i+1 +h2 (c+λn

i )un
i −
(
2ε+h2c−hbn

i

)
h

i−1

∑
j=1

kn
i−1, ju

n
j
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+(ε−hbn
i )h

i−2

∑
j=1

kn
i−2, ju

n
j +h2gn

i un
1 +h2dn

i un
[θi]+1 +h3

i−1

∑
l=1

f n
il ul

−h3
i−1

∑
j=1

kn
i−1, j

(
ε

un
j+1 −2un

j +un
j−1

h2 +bn
j

un
j −un

j−1

h
+λn

ju
n
j +gn

ju
n
1

+dn
j un

[θ j]+1 +h
j−1

∑
l=1

f n
jlu

n
l

)
(3.3)

for i = 1, . . . ,n. Rearranging (3.3) and using (2.11) we obtain

ε
i

∑
j=1

kn
i ju

n
j =
(
2ε+ ch2 −bn

i h
) i−1

∑
j=1

kn
i−1, ju

n
j − (ε−bn

i h)
i−2

∑
j=1

kn
i−2, ju

n
j −h(c+λn

i )un
i −hgn

i un
1

−hdn
i un

[θi]+1 −h2
i−1

∑
l=1

f n
il u

n
l + kn

i−1,1

(
εun

2 −
(
ε(1+hq)−h2 (gn

1 +λn
1 +dn

1 +bn
1q)
)

un
1

)

+
i−1

∑
j=2

kn
i−1, j

(
εun

j+1 −
(
2ε−hbn

j

)
un

j +
(
ε−hbn

j

)
un

j−1 +h2gn
ju

n
1 +h2λn

ju
n
j +h2dn

j u
n
[θ j]+1

)

+h3
i−1

∑
j=2

j−1

∑
l=1

kn
i−1, j f n

jlu
n
l , (3.4)

In the next step we are going to use the identities

i−1

∑
j=2

j−1

∑
k=1

kn
i−1, j f n

jkun
k =

i−2

∑
j=1

i−1

∑
l= j+1

kn
i−1,l f n

l ju
n
j

=
i−2

∑
j=1

i−1

∑
l= j

kn
i−1,l f n

l ju
n
j , (3.5)

where that latter equality holds after setting fl j = 0, j ≥ l. Comparing coefficients of uj’s in (3.4)
results in recursive relationships

kn
i1 =

1
ε

[
(
ε−hbn

i − εhq+h2 (c+λn
1 +bn

1q)
)

kn
i−1,1 +(ε−hbn

2)kn
i−1,2 − (ε−hbn

i )kn
i−2,1

+h2
i−1

∑
l=1

kn
i−1,l

(
gn

l +dn
l δ[θl],0 +h f n

l1

)
−hgn

i −hdn
i δ[θi],0 −h(c+λn

1)δi1 −h2 f n
i1

]
(3.6)

and

kn
i j =

1
ε

[
(
h
(
bn

j −bn
i

)
+h2 (c+λn

j

))
kn

i−1, j + εkn
i−1, j−1 +

(
ε−hbn

j+1

)
kn

i−1, j+1 − (ε−hbn
i )kn

i−2, j

+h2
i−1

∑
l= j

kn
i−1,l

(
dn

l δ[θl]+1, j +h f n
l j

)
−h2 f n

i j −h
(
c+λn

j

)
δi j −hdn

i δ[θi]+1, j

]
(3.7)
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for j = 2, . . . , i. Our next goal is to show that the solution kn
i j to these recursive relations remain

uniformly bounded as j = 1,2, . . . , i, i = 1,2, . . .n and n → ∞.

4 Difference Equation Governing the Kernel

Equations (3.6) and (3.7) can be written in the form of a system of second order difference equa-
tions,

kn
i+1 = Γ̃ik

n
i −

(
1−

hbn
i+1

ε

)
kn

i−1 + f n
i , i = 1, . . . ,n−1 (4.1)

where
kn

i = [kn
i1,k

n
i2, . . . ,k

n
in]

T , (4.2)

( f n
i )1 = −

h
ε
(
gn

i+1 +(c+λn
1)δi+1,1 +dn

i+1δ[θ(i+1)],0 +h f n
i+1,1

)
, (4.3)

( f n
i ) j = −

h
ε
((

c+λn
j

)
δi+1, j +dn

i+1δ[θ(i+1)]+1, j +h f n
i+1, j

)
for j > 1 (4.4)

and Γ̃i =
[
(γn

i )l j

]
n×n

with

(γn
i )l j =





0 if j < l−1,
1 if j = l−1,

1+ h
ε
(
−bn

i+1 − εq+h
(
c+λn

1 +bn
1q+gn

1 +dn
1

))
if j = l = 1,

h
ε
(
bn

l −bn
i+1 +h

(
c+λn

l

)
+hdn

l δ[θl]+1,l
)

if j = l 6= 1,

1+ h
ε
(
−bn

2 +h
(
gn

2 +dn
2δ[2θ],0 +h f n

21

))
if l = 1, j = 2,

1+ h
ε

(
−bn

j +h
(

dn
j δ[θ j]+1, j−1 +h f n

jl

))
if j = l +1 > 1,

h2

ε

(
gn

j +dn
j δ[θ j],0 +h f n

j1

)
if l = 1, j > 2,

h2

ε

(
dn

j δ[θ j]+1,l +h f n
jl

)
if j > l +1, l 6= 1.

(4.5)

As it is seen from (4.5), Γ̃i has the form

Γ̃i = Γ+∆ΓiO (h) (4.6)

where

Γ =




1 1

1 0
. . . 0

. . . . . . . . .

0 . . . . . . 1
1 0




(4.7)
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and

∆Γi =




1 1
. . . . . . O (h)

. . . . . .

0 . . . 1
1




(4.8)

Here and below O (h) denotes an expressions for which there exists a uniform constant M > 0 such
that O (h) ≤ Mh. Definitions (4.3) and (4.4) imply that

( f n
i ) j =

{
O (h) if j = 1, i+1, [θ(i+1)]+1 ,

O (h)2 otherwise
(4.9)

for i = 1, . . .n, and hence

sup
l≥1

‖ f n
l ‖1 ≤ 2

h
ε

(
c+ sup

l≥1
|λn

l |+ sup
l≥1

|dn
l |+ sup

l, j≥1

∣∣∣ f n
l j

∣∣∣+ sup
l≥1

|gn
l |

)

= O (h) . (4.10)

Equation (4.1) now produces its own initial conditions through convention (2.10), namely

kn
0 = 0 (4.11)

and

kn
1 =

[
−

h
ε

(gn
1 +dn

1 + c+λn
1) ,0, . . . ,0

]T

. (4.12)

Using notation

Θn
i =

[
kn

i−1
kn

i

]
(4.13)

we obtain from (4.1)

Θn
i+1 = Ãn

i Θn
i +

[
0
f n

i

]
, (4.14)

where

Ãn
i =

[
0 In×n

−
(

1−
bn

i+1h
ε

)
In×n Γ̃i

]
(4.15)

and

Fi =

[
0
f n

i

]
. (4.16)

The matrix Ãn
i can be written as

Ãn
i = A+∆Ai (4.17)
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where

A =

[
0 In×n

−In×n Γ

]
(4.18)

and

∆Ai =

[
0 0

In×n ∆Γi

]
O (h) . (4.19)

Notice that ‖∆Ai‖1 = O (h) . The initial condition of system (4.14) is

Θn
1 =

[
kn

0
kn

1

]
(4.20)

which, according to (4.11) and (4.12), has 1–norm that is O (h) as well. Equation (4.14) can also
be written in the following form:

Θi+1 = AΘi +∆AiΘi +Fi

= AiΘ1 +
i

∑
j=1

Ai− j (∆A jΘ j +Fj
)

= AiΘ1 +
i

∑
j=1

Ai− jFj +
i

∑
j=1

Ai− j∆A jΘ j . (4.21)

5 Proof of the Main Result

With the help of the matrix difference equation (4.21) we are going to prove our main theorem on
the stability of equations (4.1)–(4.5). For this purpose we need to use two lemmas. The first lemma
is on the boundedness and structure of powers of matrix A.

Lemma 5.1. Assume that a matrix A is of the form

A =

[
0 In×n

−In×n Γ

]
(5.22)

where

Γ =




1 1

1 0
. . . 0

. . . . . . . . .

0 . . . . . . 1
1 0




. (5.23)

Then powers of matrix A have the form

Ai =

[
−Pi−1 Pi

−Pi Pi+1

]
for i = 1,2, . . . ,n (5.24)
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where

(Pi)kl =





1 if k + l ≤ i+1 , or
if k− l = i−1, i−3, . . .,−i+3,−i+1 and k + l ≤ 2n− i+1 ,

0 otherwise .
(5.25)

Proof. From (4.18) and (4.7) we obtain the structure (5.24) of matrices Ai where the matrices Pi

have to satisfy the difference equation

Pi+1 = ΓPi −Pi−1, i = 1,2, . . . (5.26)

with initial conditions
P0 = 0, and P1 = I . (5.27)

In order to better understand the structure of Pi defined in (5.25) we provide here P6 for n = 10 as
an example.

P6 =




1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 0 1 0 1 0 0
1 1 1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0




(5.28)

Substituting (Pi+1)kl , (Pi)kl and (Pi−1)kl for k, l = 1,2, . . . ,n from (5.25) into (5.26) and using the
definition (4.7) of Γ we see the unique solution of (5.26) is given by (5.25). With this we obtain
the statement of the lemma.

Remark 1. Although it does not help in establishing the stability properties of our unperturbed
system, it is interesting to note the special eigenvalue structure of matrix A. All the eigenvalues
of A are distributed evenly along the unit circle , i.e., the eigenvalues of A are λ = eIlπ/(2n+1),
l = 1,2, . . . ,2n, where I denotes the imaginary unit.

Proof. We first transform the characteristic equation of A to a characteristic equation that corre-
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sponds to a real symmetric matrix.

det(A−λI) = det

([
−λ In×n

−In×n Γ−λ

])

= det

([
0 −In×n

In×n 0

][
0 In×n

−In×n 0

][
−λ In×n

−In×n Γ−λ

])

= det

([
0 −In×n

In×n 0

])
det

([
−In×n Γ−λ

λ −In×n

])

= det

([
−In×n Γ−λ

λ −In×n

])

= det
(
−In×n − (Γ−λ)(−In×n)

−1 λ
)

det(−In×n)

= (−1)n det
(
−λ2 − In×n +λΓ

)
(5.29)

In the fifth step above we used the identity

det

(
A B
D C

)
= det

(
A−BC−1D

)
det(C) . (5.30)

Note that λ = 0 is not a root of (5.29), hence we can factor out λ and obtain that the roots of (5.29)
are identical to the roots of

det(Γ−χIn×n) = 0 , (5.31)

where

χ =
λ2 +1

λ
. (5.32)

We now determine the eigenvalues χ of matrix Γ. Along the line of [12, Appendix II] we obtain
recursive relations

∆l (χ) = χ∆l−1 (χ)−∆l−2 (χ) l = 1, . . .n. (5.33)

Introducing a new variable ω through the relation

χ = ω+
1
ω

(5.34)

we obtain by induction the general expression

∆n (ω) =
n

∑
i=−n

ωi (5.35)

that, in turn, can be written as

∆n (ω) = ω−n ω2n+1 −1
ω−1

. (5.36)

The roots of (5.36) can be easily found to be

ωl = eIl2π/(2n+1) l = 1,2, . . . ,2n . (5.37)
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Using (5.37) with 5.34 we obtain that the eigenvalues of Γ are

χl = −2cos
l2π

2n+1
l = 1,2, . . . ,n. (5.38)

Equation (5.32) results in the quadratic equations

λ2 −χlλ+1 = 0 l = 1,2, . . . ,n (5.39)

Using (5.38) it is easy to see that equation (5.39) has solutions λ = eIlπ/(2n+1), l = 1,2, . . . ,2n.
With this we obtain the statement of the remark

In the proof of our main theorem we will also use the discrete time Gronwall lemma. Its proof
for a more general case can be found, for example, in [5, Appendix E].

Lemma 5.2. Assume that

mk ≤ c+
k−1

∑
l=0

mlgl (5.40)

where m and g are positive sequences. Then

mk ≤ cexp

{
k−1

∑
l=0

gl

}
. (5.41)

We now state and prove our main theorem.

Theorem 5.1. Solutions of the system of second order difference equations (4.1)–(4.5) with initial
conditions (4.11)-(4.12) are bounded uniformly in n. More precisely, there exists a constant C > 0,
whose size depends on the size of constants and supremum norm of functions in assumption (1.5),
such that

sup
n≥1

max
i=1,...,n

‖kn
i ‖∞ ≤C . (5.42)

Proof. As a result of Lemma 5.1 the powers of matrix A up to power n have entries that are equal
to −1, 0 or 1. We are going to use the non–submultiplicative matrix norm

‖A‖1,∞ = sup
x6=0

‖Ax‖∞
‖x‖1

= max
i, j

∣∣∣(A)i j

∣∣∣

which in the case of our A matrix gives
∥∥Aix

∥∥
∞ ≤

∥∥Ai
∥∥

1,∞ ‖x‖1

= ‖x‖1 , for i = 1,2, . . .n (5.43)
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Since ‖Θ1‖1 =
∥∥Fj
∥∥

1 =
∥∥∆A j

∥∥
1 = O (h) for all j = 1,2, . . . ,n, hence multiplication by powers of

A results in O (h) infinity norms. We then obtain from (4.21) for i = 1,2, . . . ,n−1 that

‖Θi+1‖∞ =

∥∥∥∥∥AiΘ1 +
i

∑
j=1

Ai− jFj +
i

∑
j=1

Ai− j∆A jΘ j

∥∥∥∥∥
∞

≤
∥∥AiΘ1

∥∥
∞ +

i

∑
j=1

∥∥Ai− jFj
∥∥

∞ +
i

∑
j=1

∥∥Ai− j∆A j
∥∥

∞

∥∥Θ j
∥∥

∞

≤ ‖Θ1‖1 +
i

∑
j=1

∥∥Fj
∥∥

1 +
i

∑
j=1

∥∥∆A j
∥∥

1

∥∥Θ j
∥∥

∞ (5.44)

Using the discrete Gronwall lemma we obtain

‖Θn‖∞ ≤

(
‖Θ1‖1 +

n−1

∑
j=1

∥∥Fj
∥∥

1

)
e∑n

j=1‖∆A j‖1. (5.45)

Since ‖Θ1‖1,
∥∥Fj
∥∥

1 and
∥∥∆A j

∥∥
1 are all of order O (h), for j = 1,2, . . . ,n,

‖Θn‖∞ ≤ O (1)exp{O (1)}

= O (1) . (5.46)

This proves the theorem.

Remark 2. For the very simple case of our previous paper where b = q = d = b = f = 0, estimate

(5.45) gives us the bound
c+λ

ε
for the approximating kernel gain.

With this we can prove (as it was done in [1, 3]) Theorem 1.1, the existence of an infinite
dimensional coordinate transformation (2.1) and stabilizing boundary control (1.4).

6 Existence and Uniqueness of Closed–Loop Solutions

For completeness we establish the local in time existence and uniqueness of classical solutions
to system (1.1)–(1.4) for the case of b ∈ C1 (0,1) and continuous initial data u0 ∈ C (0,1) using
a contraction mapping argument [11]. For less smooth initial data, namely for u0 ∈ L∞ (0,1), the
existence of classical solution for t > 0 follows from the well known smoothing properties of the
heat equation (see, e.g., [4]). Once the local in time existence obtained, the global existence follows
from the stability properties.

We define

λ = sup
x∈[0,1]

∣∣λ(x)−b′ (x)
∣∣ , d = sup

x∈[0,1]

|d (x)| , g = sup
x∈[0,1]

|g(x)| , (6.1)

f = sup
(x,ξ)∈[0,1]×[0,1]

| f (x,ξ)| , k = sup
x∈[0,1]

|k1 (x)| , b = sup
x∈[0,1]

|b(x)| . (6.2)
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Let

G(x,ξ, t,τ) = 2
∞

∑
n=1

cos(λnx)cos(λnξ)e−ελ2
n(t−τ) (6.3)

denote Green’s function corresponding to the heat operator

Lu = ut − εuxx, x ∈ (0,1) , t > 0 (6.4)

with boundary conditions

ux (0, t) = 0, (6.5)

u(1, t) = 0, (6.6)

where
λn = (2n−1)

π
2
, n = 1,2, . . . . (6.7)

The solutions to our system (1.1)–(1.4) are the fixed points of the operator

Fu(x, t) =

� 1

0
G(x,ξ, t,τ)u0 (ξ)dξ−

� t

0

� 1

0
Gξ (x,ξ, t,τ)b(ξ)u(ξ,τ) dξdτ

+
� t

0

� 1

0
G(x,ξ, t,τ)

(
g(ξ)u(0,τ)+

(
λ(ξ)−b′ (ξ)

)
u(ξ,τ)

)
dξdτ

+
� t

0

� 1

0
G(x,ξ, t,τ)

(
d (ξ)u(θξ,τ)+

� ξ

0
f (ξ,y)u(y,τ) dy

)
dξdτ

+

� t

0
G(x,1, t,τ)(1+b(1))

� 1

0
k1 (ξ)u(ξ,τ) dξdτ

−

� t

0
G(x,0, t,τ)(b(0)+q)u(0,τ) dτ x ∈ [0,1] , t > 0. (6.8)

The local in time solvability result follows from contraction mapping argument applied to the
iteration um+1 = Fum with some starting function u1, where QT = [0,1]× [0,T ] and

max
(x,t)∈QT

|u1 (x, t)| ≤ M0 ≡ 2 sup
x∈[0,L]

|u0 (x)| . (6.9)

According to the properties of the heat equation kernel function G (see, e.g., [9]) we obtain that
the function

γ(T ) = max

{
max

(x,t)∈QT

� t

0

� 1

0

∣∣Gξ (x,ξ, t,τ)
∣∣ dξdτ, max

(x,t)∈QT

� t

0
|G(x,0, t,τ)| dτ,

max
(x,t)∈QT

� t

0
|G(x,1, t,τ)| dτ

}
(6.10)

converges to zero monotonically as T → 0. We now choose T > 0 sufficiently small such that

γ(T )
(

1+g+λ+d + f +
(
1+b

)
k +
(
b+q

))
<

1
2
. (6.11)
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We obtain by induction that

max
(x,t)∈QT

|um+1 (x, t)| ≤ sup
x∈[0,1]

|u0 (x)|+ max
(x,t)∈QT

� t

0

� L

0

∣∣Gξ (x,ξ, t,τ)
∣∣ dξdτ max

(x,t)∈QT

|um (x, t)|

+ max
(x,t)∈QT

� t

0

� L

0

∣∣Gξ (x,ξ, t,τ)
∣∣ dξdτ

[
max

(x,t)∈QT

(
g(x)um (0, t)+

(
λ(x)−b′ (x)

)
um (x, t)

+d (x)um (θx, t)+
� x

0
f (x,y)um (y, t) dy

)]

+
(
1+b

)
k max

(x,t)∈QT

� t

0
|G(x,L, t,τ)| dτ max

(x,t)∈QT

|um (x, t)|

+
(
b+q

)
max

(x,t)∈QT

� t

0
|G(x,0, t,τ)| dτ max

0≤t≤T
|um (0, t)|

≤
1
2

M0 + γ(T )M0

(
1+g+λ+d + f +

(
1+b

)
k +
(
b+q

))

≤ M0 (6.12)

for all m = 1,2, . . .. In a similar way we obtain

max
(x,t)∈QT

|um+1 (x, t)−um (x, t)| ≤
1
2

max
(x,t)∈QT

|um (x, t)−um−1 (x, t)| .

As a result, the sequence {um}m≥1 converges uniformly to a unique continuous function u on QT

for sufficiently small T > 0. Once the continuity of the solution is obtained, the general theory of
parabolic equations (see, e.g. [6]) implies that u is a classical solution.
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