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May 12, 2006
This is a draft document. Please do not distribute or cite without permission.

Abstract

Interpersonal interaction over short time scales is frequently under-
stood in terms of actions, which can be thought of as discrete events
in which one individual emits a behavior directed at one or more other
entities in his or her environment (possibly including him or herself).
Here, we introduce a highly flexible framework for modeling actions
within social settings, which permits likelihood-based inference for be-
havioral mechanisms with complex dependence. The utility of the
framework is illustrated via an application to dynamic modeling of
responder radio communications during the early hours of the World
Trade Center disaster.

Keywords: social action, hazard modeling, dynamic networks, crisis
settings, World Trade Center

1 Introduction

Human activity over short time scales is frequently understood in terms of
actions, which can be thought of as discrete events in which one individual
emits a behavior directed at one or more other entities in his or her envi-
ronment (possibly including him or herself). Actions are often assumed to
have social meaning for the actor and/or outside observers (Goffman, 1963),
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and have been posited to result from processes ranging from learning (Macy,
1991) and imitation (Miller et al., 2001) to optimization (Coleman, 1990);
while many of these perspectives are in substantial disagreement about the
mechanisms which underlie action, they arguably have a mutual intersec-
tion around a common, “core” notion of action per se. This suggests, from
a modeling perspective, that a framework centered on a minimal conception
of social action – but with the capacity to incorporate various competing
theoretical “overlays” – is likely to prove especially fruitful. To be useful,
such a framework must also permit inference from behavioral data, so as to
allow for the estimation of the relative strengths of potential mechanisms as
well as for principled selection among competing models. Here, we introduce
such a framework, organized around the notion of relational events. This
framework allows for the modeling of complex dependence among actions,
differential treatment of action by type, and influences due to exogenous
covariates. The framework also supports likelihood-based inference, thereby
facilitating the empirical evaluation of competing explanations for social
action within particular settings.

One context in which such a framework is particularly relevant is that
of behavior during crisis settings. Actors operating within such settings
face severe environmental constraints, as well as cognitive limitations (e.g.,
narrowed attention) and an unstable social context (e.g., due to disrupted
role performance (Dynes, 1970, p.176)). Nevertheless, both trained and un-
trained actors will attempt to respond to hazardous conditions, taking action
to obtain safety for themselves and others (Quarantelli, 1960; Mileti et al.,
1975; Abe, 1976; Noji, 1997). While many factors affecting behavior in cri-
sis settings have been identified through past field studes (see e.g. Drabek,
1986, for a review), sorting through them has proven difficult: without a
systematic way to combine and compare mechanisms, it is rarely possible
to adjudicate among competing explanations (much less to make quanti-
tative statements of relative importance). Using the modeling framework
developed here, such comparisons can be performed using data (such as
radio transcripts or event logs) which can often be obtained in field set-
tings. Here, we illustrate this potential via the application of the relational
event framework to radio communication data from the World Trade Center
(WTC) disaster.
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2 Relational Event Model

As we have emphasized, a more complete understanding of behavior in set-
tings such as crisis situations requires the integration of cognitive, behav-
ioral, and social/contextual processes. To that end, we provide here a frame-
work for the dynamic modeling of social action, incorporating all three fac-
tors. Unlike traditional agent based modeling schemes, our approach draws
upon event history analysis (e.g., Blossfeld and Rohwer, 1995) to formulate
models which can be fit directly to data. On the other hand, our approach
is also unlike that employed in most familiar statistical contexts, in that
we allow for complex structures of historical dependence among observed
events.1 By building models which are both theoretically informed and in-
ferentially tractable, we hope to obtain important new insights into crisis
behavior.

The central element of our modeling approach is the relational event,
or action, which is defined as a discrete event generated by a social actor
(the “sender”) and directed towards one or more targets (the “receivers,”
who may or may not be actors themselves); here we restrict ourselves to the
single-receiver case. We represent actions by tuples of the form a = (i, j, k, t),
where i ∈ S represents the sender of the action, j ∈ R represents the receiver

of the action, k ∈ C represents the action type, and t ∈ R represents the time

at which the action is taken. For purposes of the present development, we
will assume that each action is associated with a single time point. For
convenience, we also define functions s, r, c, and τ , which return (for any
given action) the sender, receiver, action type, and time (respectively).

Given an ordered set of actions a1, a2, . . ., let the set At =
{

ai : τ(ai) ≤
t
}

consist of all actions taken on or before time t. For convenience, we also
define a null action, a0, such that τ(a0) = 0, and (without loss of generality)
take τ(ai) ≥ 0 ∀ ai ∈ At. By assumption, a0 6∈ At. For our current family of
models, we assume that actions occur via an inhomogeneous Poisson process
such that acts arise independently conditional on the realized history of
previous actions (along, possibly, with covariates). If h is the hazard function
of this process, and S the associated survival function, then we may write

1Though see Snijders (2005) for a closely related family of models.
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the likelihood of At as
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(1)

Intuitively, Equation 1 traces the history of At, incorporating both the
likelihoods of events which did occur (the elements of At) and the likeli-
hoods of the associated “non-events” (actions which could have been taken
in each instant, but were not). Given this general form, we may then spec-
ify particular sub-families by appropriate selection of h and S. One obvious
choice in this regard is to assume that each potential action has a constant
hazard of occurrence given a particular prior event history (i.e., a piecewise
constant latent hazard model). This amounts to the assumption that the
waiting time from one event to the next is conditionally exponentially dis-
tributed, and hence we can posit some rate function λ such that h(t) = λ
and S(t) = e−λt. λ, in turn, may be a function of sender, receiver, action
type, and past action history, as well as exogenous covariates. While many
choices of λ are possible, certain properties do suggest themselves as starting
points; these are considered in Section 2.2 below.

For brevity of notation, let us define si = s(ai), ri = r(ai), ci = c(ai),
τi = τ(ai), and λijkl = λ(i, j, k, Al, X, θ) (where i is a sender, j is a receiver,
k is an action type, 0 ≤ l ≤ t is an event time, X is a collection of covariates,
and θ is a vector of parameters). Under the piecewise constant hazard model,
we may now substitute the implied definitions of h and S into Equation 1,
thereby obtaining the likelihood

p(At) =





|At|
∏

i=1

λsiriciτi−1

|S|
∏

j=1

|R|
∏

k=1

|C|
∏

l=1

exp
(

−λjklτi−1
(τi − τi−1)

)





×





|S|
∏

i=1

|R|
∏

j=1

|C|
∏

k=1

exp
(

−λjklτ|At|

(

t − τ|At|

)

)



 .

(2)

Where λ incorporates unknown parameters, Equation 2 may be used to es-
timate them (see Section 2.3 below). This is, however, contingent upon fully
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observed timing information. For data of the sort employed here, however,
this assumption is problematic; before turning to the question of how λ may
be parameterized, then, we must first determine how the action model may
be adapted to data for which timing information is more limited.

2.1 Ordinal Data Likelihood

Where At is fully known, the likelihood of Equation 2 provides an ade-
quate basis for subsequent inference. In general, however, this is not the
case – while we may know the order in which events occur, we do not al-
ways have access to exact inter-event times. This is especially true when
working with transcript data (like that employed here), for which the ex-
act timing associated with speech events may not have been recorded. If
we assume that τ is known only up to an order-preserving transformation,
what can be said regarding the likelihood of At? Plainly, Equation 2 can-
not be used directly, as the inter-event time intervals (τi − τi−1) are not
invariant under the appropriate class of transformations. Indeed, if events
in At can only be ordered, it follows that the associated likelihood can only
be based on which of the various possible events appears next in the τ -
induced sequence. For the piecewise constant hazard model, it happens
that just such a result can be obtained. We begin by noting that, under
the model of Equation 2, the waiting time for any given event ai following
some event ai−1, conditional on the non-occurrence of all other events, is
exponentially distributed with parameter λsiriciτi−1

. The probability that
ai is the first of the possible events to occur is equivalent to the probability
that the waiting time for ai is the minimum waiting time for all potential
events;2 thus, under the piecewise constant hazard model, the probabil-
ity that ai occurs first is equal to the probability that a random variable
W (si, ri, ci, τi−1) is equal to min{W (1, 1, 1, τi−1), . . . , W (|S|, |R|, |C|, τi−1)}
where W (i, j, k, l) ∼ exp(λijkl). This probability, in turn, is obtained via
the following theorem:

Theorem 1. Let X1, . . . , Xn be independent, exponentially distributed ran-

dom variables with rate parameters η1, . . . , ηn. Then, Pr
(

xi = min{x1, . . . , xn}
)

=
ηi/

∑n
j=1 ηj.

Proof. Without loss of generality, let Y = {Xj : j 6= i} refer to the X
variables other than Xi; for clarity of notation, we will relabel the elements
of this set as Y1, . . . , Yn−1 with associated rate parameters η′1, . . . , η

′
n−1. By

2Since we are assuming a continous waiting time distribution, we may ignore the
probability-zero case in which two events occur at precisely the same instant.
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definition, then, Pr
(

xi = min{x1, . . . , xn}
)

= Pr
(

Xi < min{Y1, . . . , Yn−1}
)

.
From the definition of the exponential density, this gives us

Pr
(

Xi < min{Y1, . . . , Ym}
)

=

∫ ∞

0

∫ ∞

xi

. . .

∫ ∞

xi

ηie
−ηixi





n−1
∏

j=1

ηie
−η′

jyjdyj



 dxi.

Note that since the Y variables depend only on the value of Xi, we may
safely integrate them out, giving us

=

∫ ∞

0
ηie

−ηixie−
Pn−1

j=1
η′

jxidxi.

Integrating over the range of Xi, we have

=
−ηi

ηi +
∑n−1

j=1 η′j
e−(ηi+

Pn−1

j=1
η′

j)xi

∣

∣

∣

∣

∣

∞

0

,

which reduces simply to

=
ηi

ηi +
∑n−1

j=1 η′j
.

Since, by construction,
∑n−1

j=1 η′j =
∑n

j=1 ηj −ηi, we may rewrite this expres-
sion as

=
ηi

∑n
j=1 ηj

,

which completes the proof.

Theorem 1 provides us with an surprisingly simple result: the probability
that a particular event ai will be the next in an event sequence (under
the piecewise constant hazard model) is equal to the occurence rate for ai,
divided by the sum of the rates for all possible events which might occur
(including ai itself). Since successive events are conditionally independent,
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it follows that the likelihood of At under temporally ordinal data is merely
a product of multinomial likelihoods. Specifically,

p(At) =

|At|
∏

i=1

[

λsiriciτi−1

∑|S|
j=1

∑|R|
j=1

∑|C|
j=1 λjklτi−1

]

. (3)

Ironically, this expression is even simpler than that of Equation 2. This
simplicity is not without cost, however: in addition to the fact that infor-
mation is lost in the conversion from ratio to ordinal scaling, the particular
form of Equation 3 allows λ to be identified only up to a constant factor. In
practice, this is not a terribly onerous restriction, since we are generally in-
terested in relative rates rather than absolute pace of interaction. However,
it should be noted that this does affect extrapolative simulation, in that
the average communication rate cannot be determined without additional
information. It should thus be emphasized that exact timing information
should be used where available, although the relational event model can be
usefully applied to data for which only order is known.

2.2 Construction of the Rate Function

While Equations 2 and 3 provide expressions for the the stochastic com-
ponent of the relational event model, the dynamic evolution of the event
system itself is driven primarily by the rate function, λ. As indicated above,
we presume that λ may in general depend upon sender, reciever, action type,
past event history, and/or exogenous covariates, in addition to unknown pa-
rameters. Substantively, such dependence allows us to accomplish a number
of modeling goals. First, it is desirable to be able to incorporate sender and
receiver effects, i.e. differential tendencies for certain persons or objects (or
persons/objects with certain properties) to send or receive action. Second,
it is important to be able to include dyadic covariates (e.g., homohpily or
physical proximity) which may impact the chance of interaction between
any two individuals. Third, the history of past action should impact future
behavior, in accordance with known cognitive and behavioral principles. To
capture such phenomena within a flexible, interpretable framework, we pa-
rameterize the rate function as

λ(i, j, k, Al, X, θ) =

{

exp
(

λ0 + θT u (i, j, k, Al, X)
)

if i 6= j

0 if i = j
, (4)

where i ∈ 1, . . . , |S| is a sender index, j ∈ 1, . . . , |R| is a receiver index,
k ∈ 1, . . . , |C| is an action type index, l is a time point, X is a set of exogenous
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covariates, θ ∈ R
p is a parameter vector, u : (i, j, k, Al, X) 7→ R

p is a vector
of sufficient statistics, and λ0 is a “pacing constant.” Under the ordinal
data model, λ0 is arbitrary (and hence may be taken to be equal to zero
without loss of generality); we separate it from the θ effects for this reason.
Intuitively, u indexes the various influences which increase or decrease the
relative rates of incidence across events. These effects are weighted by θ,
such that each unit change in ui for an event multiplies its relative log-rate
by exp(θi).

Under the parameterization of Equation 4, construction of the rate func-
tion amounts to the choice of sufficient statistics (u) which are to be included.
While a wide range of statistics may be contemplated, we here present five
basic categories of effects which are motivated by the specific properties of
the WTC communication data.

2.2.1 Fixed Effects

Within an emergency setting, it is unlikely that all actors will manifest the
same base tendency to participate in communication with others. Such dif-
ferential participation may reflect unobserved heterogeneity in situational
awareness, training, or institutional role, as well as differences in local con-
text. For instance, responders whose location places them in imminent
danger are unlikely to spend long periods of time engaged in radio com-
munication, relative to those whose locations afford them a greater degree
of safety. To capture the impact of such factors when they cannot be mea-
sured directly, we propose to include fixed effects for participation in the
relational event system. To parameterize such effects, we add N = |S| = |R|
statistics of the form um(i, j, k, Al, X) = I(m ∈ {i, j}), where I is the stan-
dard indicator function. The corresponding θ parameters then represent
logged rate multipliers for all events having the corresponding individuals
as senders or recievers. (Such parameters fulfill the same role as the expan-
siveness/popularity parameters of the well-known p1 model (Holland and
Leinhardt, 1981).)

It should be noted that, for the ordinal model (or the exact timing model
with λ0 included), the likelihood will not identify all N fixed effect param-
eters. This may be easily resolved by fixing one parameter to 0, in which
case the others should be interpreted as providing log rate multipliers rela-
tive to the reference actor. Other linear constraints (e.g., requiring that the
statistics sum to 0) may also be applied, if desired. We employ the former
solution for the analyses employed here, treating the first individual in each
network as the reference actor.
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2.2.2 Persistence

Another basic mechanism which is easily captured through the relational
event model is persistence, or the tendency of past contacts to become fu-
ture contacts. In particular, let d(i, j, Ak) represent the accumulated vol-
ume of communication from actor i to actor j by time k, and let d(i, Ak) =
∑|R|

j=1 d(i, j, Ak). The persistence statistic is then defined by u(i, j, k, Al, X) =
d(i, j, Al)/d(i, Al), i.e., the fraction of i’s outgoing communication volume
which has been devoted to j. Where the associated θ parameter is positive,
this effect produces a tendency for actors to preferentially direct action to
those who have comprised the bulk of their past communication history.
Such a phenomenon could emerge empirically from unobserved relational
heterogeneity, as well as from cognitive processes such as the enhanced avail-
ability to memory of frequent communication partners. More broadly, a
positive persistence parameter captures a tendency towards social “inertia,”
in a manner loosely analogous to the role played by a positive AR(1) term
in an autoregressive time series process.

While it is most natural to think of persistence as a positive-sign effect,
it is also possible to obtain negative persistence parameters. In this case,
the model reflects a process of “partner switching,” in which actors become
less likely (ceteris paribus) to contact those who comprise a larger fraction
of their past communication history. This could be induced by differential
availability of actors over time, as well as by search processes (such as in-
formation seeking behavior) which encourage the accumulation of a diverse
array of contacts.

2.2.3 Preferential Attachment

In the midst of a turbulent environment, judgments regarding potential com-
munication targets may be highly uncertain. When one cannot be sure who
is still able to respond, it is natural to utilize past communicative activity
as a predictor of current availability: those who have been involved in past
communication are more likely to be present and able to respond than those
with no prior communicative activity. The phenomenon in which actors with
a greater level of past activity are more likely to be chosen as communication
targets is an example of preferential attachment, and is easily captured via

a statistic of the form u(i, j, k, Al, X) = d(j, Al) +
∑|S|

h=1 d(h, j, Al). Where
the associated parameter is positive, actors with more past communication
tend to become more attractive targets, creating a positive feedback loop
which tends to lead to the creation of high degree actors. By contrast, a
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negative attachment parameter reflects a tendency to seek out actors who
have not had prior involvement with the communication network, e.g., due
to a novelty seeking process. In this case, the attachment process will tend
to suppress the formation of high-degree actors, leading (ceteris paribus) to
a “flatter” indegree distribution.

2.2.4 Recency

A substantial influence on communication generally (and radio communi-
cation in particular) is the practice of turn-taking. Because conversations
generally involve multiple turns, a strong tendency exists for actors to direct
communications towards those who have recently contacted them (thereby
generating a sequence of call/response pairs). Such a process can be mod-
eled within the present framework by a statistic such as u(i, j, k, Al, X) =
ρ(i, j, Al)

−1, where ρ(i, j, Al) is j’s recency rank among i’s in-neighborhood.
Thus, if j is the last person to have called i, then ρ(i, j, Al)

−1 = 1. This falls
to 1/2 if j is the second most recent person to call i, 1/3 if j is the third
most recent person, etc. (To ensure that the behavior of ρ is well-defined,
actors who do not belong to i’s in-neighborhood are considered to have rank
∞.)

Where the parameter associated with the recency statistic is positive,
actors exhibit a tendency to preferentially call those who have most recently
contacted them. By turns, a negative parameter value would indicate a
tendency to avoid calling those with more recent incoming communications.
Such an effect seems unlikely to emerge within a context such as radio com-
munications, but might be observed for other types of relational events (e.g.,
dominance contests (Chase et al., 1998)).

2.2.5 Triadic Effects

The last category of effects considered here are those arising from triadic
forms. In contrast with those properties already considered (which are, at
best, dyadic), triadic effects engender dependencies which are far less local
in nature (Frank and Strauss, 1986; Strauss, 1986). The most famous of
these effects is that related to transitivity, which may be understood here
as the tendency for the existence of one or more i, j two-paths to enhance
or inhibit direct communication from i to j. The impact of the same two-
paths on the corresponding j, i communications is naturally understood as
a cyclicity effect, and may be motivated by the notion that the target of
a brokered communication may be likely to bypass the broker when reply-
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ing (thus forming a direct connection, and creating a cycle). Each of these
effects may be parameterized via statistics of the form u(i, j, k, Al, X) =
∑|R|

h=1 min{d(i, h, Al), d(h, j, Al} and u(i, j, k, Al, X) =
∑|R|

h=1 min{d(j, h, Al), d(h, i, Al}
(respectively). The associated parameters then simply indicate the strength
of the tendency to form cycles/transitive closure, or to inhibit the same,
depending on the sign of the parameter value.

In addition to the “classic” two-path effects, it is also useful to consider
the potential impact of shared partners on direct interaction (Snijders et al.,
2004). For instance, two actors who both have contacted the same third
parties may be more or less likely to contact one another directly; this is
referred to an outbound shared partner effect. Similarly, one can imagine an
effect due to having been contacted by the same third party, which would
constitute an inbound shared partner effect. These effects are, respectively,

indexed by the statistics u(i, j, k, Al, X) =
∑|R|

h=1 min{d(i, h, Al), d(j, h, Al}

and u(i, j, k, Al, X) =
∑|R|

h=1 min{d(h, i, Al), d(h, j, Al}. As with the two-
path effects, the sign and magnitude of the parameters associated with these
statistics indicate the extent to which such configurations are encouraged or
inhibited via the dynamic process.

2.3 Parameter Estimation

Given a choice of sufficient statistics, either Equation 2 (in the exact case)
or Equation 3 (in the ordinal case) defines the likelihood of At under the
relational event model. Since both expressions are readily computable, there
is in principle no difficulty in carrying out likelihood-based inference for
θ given At. (Indeed, the relative ease of likelihood computation for this
model family dramatically reduces the difficulties frequently encountered
with dynamic tie-based models such as those of Snijders (2005), or static
ERGs (see, e.g. Handcock, 2003, for a description of some of these issues).)
The most obvious tactic to employ in this regard is maximum likelihood
estimation, i.e. identifying θ̂ such that

θ̂ = arg max
θ

p(At|θ) (5)

using a variant of Newton-Rapheson, simulated annealing, or other heuris-
tic optimization method (see Acton, 1990, for a number of approaches).
Once θ̂ has been calculated, the inverse information matrix at the MLE can
be employed to obtain approximate standard errors in the usual fashion.
Alternately, fully Bayesian estimation of θ can be performed by positing
a prior distribution on θ and maximizing and/or simulating draws from
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p(θ|At) ∝ p(At|θ)p(θ). Though we do not treat the issue in detail here, sim-
ulation of posterior draws for the relational event model is fairly straightfor-
ward using a Metropolis algorithm; see Gelman et al. (1995) for an overview
of this appeoach.

One computational challenge which does emerge is the need to calculate
the product of survival functions (or sum of rates, in the ordinal case) across
all |S| × |R| × |C| possible events at each iteration. Where the dimensions
of this product become large, the number of elements involved can quickly
get out of hand; even given a single action type, the complexity of this
calculation will generally grow with the square of the number of network
members. In this case, it may be feasible to replace the relevant quantity
with a Monte Carlo estimate, based on explicit calculation of a limited
number of events. For instance, let s′1, . . . , s

′
m, r′1, . . . , r

′
m, and c′1, . . . , c

′
m

be drawn uniformly from 1, . . . , |S|, 1, . . . , |R|, and 1, . . . , |C| (respectively).
Then we may approximate the normalizing factor of Equation 3 by the
Monte Carlo quadrature

|S|
∑

j=1

|R|
∑

j=1

|C|
∑

j=1

λjklτi−1
≈

|S||R||C|

m

m
∑

j=1

λs′jr′jc′jτi−1
(6)

(see, e.g. Kalos and Whitlock, 1986). Depending on the sufficient statis-
tics on which λ depends, stratification of sender, receiver, and/or action
type may be required to ensure convergence of the estimated likelihood. In
particular, one should beware of any scheme which results in a failure to
cover each sender, receiver, and action type (particularly where fixed effects
are employed). Stratification can also reduce the variance of the estimator,
which can be estimated by the appropriately scaled variance of the sam-
pled rates. As a rule of thumb, the standard deviation of the estimated
normalizing factor should be small compared to both λsiriciτi−1

and to the
estimated normalizing factor itself. Where this condition is met for all i, the
estimated likelihood will closely approximate the exact likelihood, and the
resulting estimators should be well-behaved. Otherwise, it may be necessary
to increase m and/or employ additional stratification so as to increase the
precision of the estimated normalizing factor.

3 The WTC Data

To illustrate the use of the relational event framework, we here apply the
ordinal data model to several documents from a larger collection released by
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the Port Authority of New York and New Jersey. Specifically, we analyze
transcripts of radio communications among six groups of responders to the
WTC disaster. Each transcript documents the voice communication asso-
ciated with a single channel; each channel was used exclusively by a single
group of responders.3 The six transcripts employed here encode (in increas-
ing order of length) the Port Authority Trans-Hudson channel 27 (PATH
Radio), Newark airport maintenance (Newark Maint), Newark airport po-
lice (Newark Police), New Jersey State Police Emergency Network channel 2
(NJSPEN 2), Newark airport command post/dispatch (Newark CPD), and
World Trade Center police (WTC Police) channels. Lengths range from 70
to 481 eligible transmissions (see below), with the number of named commu-
nicants ranging from 24 to 46. The time period covered by each transcript
begins with the impact of the first plane into the North Tower at 8:46 AM,
and ends at three hours and thirty-three minutes or (where relevant) un-
til the collapse of the structures containing the communicants (roughly one
hour and fifteen minutes).

3.1 Coding

Each radio transcript contains a list of transmissions exchanged among re-
sponders, presented in chronological order. Some sender information is pro-
vided by the transcriber; depending on the specific transcript, this includes
some or all of name, rank, gender, and organization. This information, to-
gether with transcript content (including communicants’ use of names and
callsigns, sequence information, and conversatonal cues), was used to assign
a unique identifier to the sender and named target(s) of each transmission.
Where one-to-many communications were encountered, each was coded as
a series of dyadic transmissions from the sender to each of the named recip-
ients (in the order named). Transmissions with no clear target(s), and/or
targets which were identified only as a group (e.g., “anyone,” “all units”) are
outside the scope of person-to-person communications considered here, and
were removed from the data set. The resulting lists of ordered transmissions
(one per transcript) comprised the event sets (At) employed in subsequent
analyses. The sets of potential senders and receivers for each transcript
(S,R) were taken to be the union of named communicants from the tran-
script in question, with τ corresponding to the order of appearance for each

3Examination of transcript content, as well as other supporting materials (including
the 9/11 Commission report (National Commission on Terrorist Attacks Upon the United
States, 2004)) strongly suggests that the groups studied here lacked access to other radio
channels. Thus, we treat the two as effectively equivalent for purposes of this study.
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transmission event. Finally, because we analyze only radio communications,
we consider all relational events to be of the same type (i.e., |C| = 1).

In addition to the relational event data itself, we consider the formal
status of individual responders as an illustrative covariate. Specifically, we
attempted to identify individuals within each organization whose formal
roles entailed coordinative responsibilities. As this was not directly available,
such status was inferred from the content of the available transcripts. We
coded communicants as occupying institutionalized coordinator roles if their
transcriber-assigned labels or within-transcript terms of address contained
one of the following words: “command,” “desk,” “operator,” “dispatch(er),”
“manager,” “control,” and “base.” Within the Newark Airport transcripts,
the content of the communications suggested that actors were referring to a
centralized Newark Airport command desk as simply “Newark Airport,” so
this individual was also assigned to institutionalized status.

3.2 Model Selection

We begin our investigation of the WTC data by fitting a range of models us-
ing the effects enumerated in Section 2.2. In each case, parameter estimates
were obtained using maximum likelihood under the ordinal time model; the
latter was employed due to the fact that exact temporal information was not
available for this data set. Size descriptives for the six transcripts treated
here are shown in the first two lines of Table 1 . N refers here to the num-
ber of actors within the network, and M refers to the number of distinct
communications recorded. (M is thus the most natural quantity measure
for this data.)

Proceeding from the first two rows, all subsequent entries within Ta-
ble 1 consist of BIC scores (Wasserman, 2000) arising from the indicated
model/data combination. Models are listed by effects, with codes corre-
sponding to fixed effects (FE), persistence (P), preferential attachment (PA),
recency (R), and triads (T). The null model (listed in the eponymous row)
treats all events as equiprobable, and thus serves as a reference for the other
models. The next block of models (represented by single terms) include only
one effect in each case, and can thus be intrepreted as providing evidence
of marginal effects. Finally, the third block seeks to combine effects in a
manner which facilitates the analysis of hub formation. For this purpose,
recency and the triadic effects are taken as “controls,” with the two major
alternatives being the cumulative effects (P and PA) and the fixed effects
(FE). By investigating BIC scores across models, we can thus evaluate the
extent to which one mechanism versus another appears to be providing a
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Network PATH Radio Newark Maint Newark Police NJSPEN 2 Newark CPD WTC Police

N 28 25 24 26 46 35
M 70 77 83 149 271 481

Null 927.93 985.13 1048.05 1930.14 4138.34 6812.60

R 659.36 521.08 650.49 1431.95 2946.52 4081.38
T 941.95 999.79 1060.45 1780.55 4034.06 5853.89
P 755.99 702.57 786.26 1684.74 3796.24 5754.44
PA 902.86 901.04 1021.68 1711.58 3766.50 5703.66
FE 920.27 902.53 1041.14 1381.78 3337.86 4308.54

R+T 675.55 538.20 667.29 1329.46 2872.93 3685.39
R+T+P+PA 682.48 538.50 672.34 1326.76 2833.93 3639.47
R+T+FE 733.33 585.92 656.94 1197.55 2733.42 3486.46
P+R+T+PA+FE 740.61 581.60 654.44 1203.44 2710.91 3384.17

Table 1: Data Size and BIC Statistics for the Fitted Relational Event Models
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more parsimonous account of the data.
Looking across the BIC values of Table 1, a number of patterns clearly

emerge. The first, and most striking, is the strong impact of recency on
structural dynamics: no preferred model omits the R term, and in some
networks this effect alone generates the best fitting model. The opposite
pattern is exhibited by the triad statistics, which had very little success in
explaining most of the data sets. The cumulative (P and PA) terms clearly
do have some impact on network dynamics, but that impact is fairly weak
compared to recency effect; in neither case was either able to unseat the
marginal R model as the more favored option. Interestingly, the fixed effect
terms prove generally more powerful than the cumulative terms, particularly
as the amount of data increases. This implies that unobserved heterogene-
ity is a more powerful influence within the data than cumulation of ties,
suggesting the possibility that unmeasured aspects of the context of inter-
action may be strong determinants of relational dynamics. This is all the
more striking because of the well-known conservatism of the BIC as model
selection index, which tends to favor smaller models (Wasserman, 2000). Al-
though the FE terms add a very large number of parameters to the model,
they are still sufficiently successful at increasing the maximized likelihood to
be considered viable under the BIC. Together with the cross-network con-
sistency of fixed effect performance, this speaks strongly to the importance
of latent heterogeneity in modeling networks like those used here.

3.3 Parameter Estimates

To get a better idea of the dynamics of communication at the WTC, we
now turn to the estimated parameters for the relational event model. Fig-
ure 1 shows MLEs (and associated asymptotic 95% confidence intervals)
for the marginal triadic (T-ISP, T-OSP, T-ITP, T-OTP), recency (R), per-
sistence (P), and preferential attachment (PA) effects; although included in
the same figure for comparison, each effect category was fit independently to
each transcript.4 Consistent with Table 1, we observe reasonably strong and
systematic marginal effects for recency, persistence, and preferential attach-
ment. All are positive, suggesting marginal tendencies towards reciprocity,
persistence in selection of communication targets, and preferential target-
ting of actors with higher levels of prior communication activity. Triadic
effects, however, are more varied: significant effects are observed for only

495% confidence intervals are based on an asymptotic z approximation, with standard
errors derived from the inverse Fisher information matrix at the MLE. Some confidence
intervals have been truncated for clarity of display.
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three out of the six transcripts, and little consistency is observed in strength
or direction of effect. That said, the three shorter transcripts provide little
information regarding triadic structure (as reflected in the large standard
errors), leaving open the possibility of subtle effects beneath the detection
threshold of the model. While we thus cannot rule out the possibility of con-
sistent triadic biases in the WTC communication networks, the data does
not provide evidence in support of this assertion.

While the marginal effects shown in Figure 1 appear intuitive, they may
also be misleading: real social systems involve multiple, interacting mech-
anisms, whose joint effects can be nonobvious. As Table 1 indicates, the
BIC-preferred models for all but the shortest transcripts incorporate mul-
tiple effects, which must be considered jointly in order to obtain realistic
estimates. With this in mind, Figure 2 once again shows parameter esti-
mates for triadic, recency, persistence, and preferential attachment effects,
this time from a joint model in which all effects are included (fixed effects en-
tered, but not shown). These estimates indeed paint a very different picture:
once heterogeneity in activity level is controlled for, the “cumulative” mech-
anisms of persistence and preferential attachment either lose significance or
(with one exception) reverse direction. This strongly suggests that the pri-
mary impact (if any) of cumulative mechanisms in the WTC communication
system is to induce partner switching, rather than concentration on a small
number of hub nodes. It follows, then, that hub formation must in general
be a consequence of latent heterogeneity at the actor level. Although this
result illustrates the subtleties which can be rendered visible by the joint
consideration of multiple mechanisms, it should also be noted that some
parameters do not change substantially in comparison with their marginal
estimates. A strong, positive recency effect continues to be observed for all
networks, underscoring the robust importance of dynamic reciprocity within
the WTC communication structure. By turns, triadic biases continue to be
minimal, with most already weak effects becoming insignificant once other
mechanims are controlled for. The New Jersey State Police Emergency Net-
work does show some remaining tendency to discourage communications
between responders with shared references and/or which create cycles, but
these effects are fairly small in practice. While some triadic biases do exist,
then, they do not seem to be a major driving force within the communication
system.

Clearly, the above analyses suggest that responder-level heterogeneity
in activity levels (as captured by the fixed effect parameters) plays an im-
portant role in determining communication network structure. While this
heterogeneity could stem from many sources – including differences in con-
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Figure 1: Parameter Estimates and Approximate 95% Confidence Intervals, Marginal Models
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MLEs for Event Model Parameters, w/Asymptotic 95% CIs
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Figure 2: Parameter Estimates and Approximate 95% Confidence Intervals, Joint Models
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text, training, or cognitive/emotional state – we will here consider only the
possible influence of institutionalized coordinative roles. Intuitively, one may
expect responders with such roles to act as hubs within the communication
network, thus displaying higher levels of activity (net of other processes)
than actors without such roles. On the other hand, demands for emergent
coordination (Dynes, 2003) may render such roles largely irrelevant during
the immediate aftermath of a high-consequence event. To assess this possi-
bility, we compare fixed effect estimates under the joint model for responders
holding institutionalized coordinative roles with those for other responders.
Figure 3 shows boxplots for activity level effects by institutional status, for
all six WTC networks. As the figure suggests, the impact of institutionalized
coordinative roles is weak at best: medians for the institutionalized coordi-
nators are higher in only four out of the six networks, and the pooled mean
difference is not significant once parameter uncertainty is taken into account
(z = −1.42, p = 0.16). Our analysis thus reinforces the findings of Petrescu-
Prahova and Butts (2005), whose static analysis of WTC communications
found evidence that centrality within responder radio communication net-
works was largely due to factors other than institutional status.

4 Summary and Conclusion

In this paper, we have introduced a stochastic model for intertemporal ac-
tivity data, based on a relational event formalism. Using the samplifying
assumption of piecewise constant hazards, we are able to construct a fairly
broad modeling framework which can be applied to data with either exact or
ordinal timing information. A wide range of mechanisms can be evaluated
within this framework, of which several are illustrated here; once specified,
parameters associated with the direction and strength of these effects can
be readily estimated using maximum likelihood.

To summarize our substantive findings, our analysis of six transcripts
from the World Trade Center disaster suggests that heterogeneity in base
activity level – not persistence or preferential attachment – is the key driver
in the formation of hubs within WTC radio communication networks. As ex-
pected, strong reciprocity effects were observed for all six transcripts; triadic
effects, on the other hand, did not appear to play a large role in driving com-
munication dynamics. Although we cannot currently identify the source of
the responder heterogeneity observed here, our analysis indicates that insti-
tutionalized coordinative roles have little explanatory power in this regard.
This is consistent with the hypothesis that emergency phase responder ac-
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tivity at the WTC was largely driven by idiosyncratic, situational factors
which overwhelmed prior organization. This is broadly consistent with the
findings of the 9/11 Commission (National Commission on Terrorist Attacks
Upon the United States, 2004), though it should be cautioned that alterna-
tive explanations may also exist. Additional analyses with a larger body of
data should shed further light on this issue.
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