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Buoyant convection from a discrete source in closed and leaky porous media

M. R. Flynn†, Mark A. Roes†, Chunendra K. Sahu† and Diogo Bolster♣

† Dept. of Mechanical Engineering, Univ. of Alberta (mrflynn@ualberta.ca)
♣ Dept. of Civil & Environmental Engineering & Earth Sciences, Univ. of Notre Dame

Abstract
By adapting the well-established “filling box” methodology, which describes turbulent
convection from a discrete hot or cold spot within a closed or ventilated geometry, we
present a new, experimentally-validated model corresponding to laminar plumes rising or
falling in a control volume filled with porous media. Model predictions are corroborated
by focusing attention on the terminal height of the interface that separates discharged
plume fluid from uncontaminated ambient fluid in a ventilated geometry characterized by
discrete fissures along the bottom boundary. Two complementary analyses are presented:
one that considers a solute dispersion coefficient that is uniform, the other in which this
dispersion varies in space. Key similarities and differences with classical filling box models
are briefly discussed as are geophysical examples to which this work may be applied.

Keywords: Filling box model; plume; porous media flow; buoyant convection

1 Introduction

Filling box models describe the evolution of a turbulent plume and its outflow within
a closed or ventilated control volume. These models trace their origins to the seminal
paper by Baines and Turner (1969), who coupled the classical plume theory of Morton
et al. (1956) with an equation describing, for a negatively-buoyant plume, the upwards
advection of plume fluid that is discharged along the bottom boundary. Some fraction
of this discharge is subsequently entrained back into the plume, as a result of which
the ambient stratification evolves in a nontrivial fashion. Among many other examples,
filling box models have been successfully applied in describing the natural ventilation
of the built environment (Linden et al. (1990); Nabi and Flynn (2013)) and flows in
chemical storage tanks (Germeles (1975)), but the adaption of this methodology to porous
media flow has received little attention. Although the geometries associated with flow in
geological strata may be irregular, here too one finds numerous instances of (laminar)
thermal or compositional plumes in control volumes that are either closed or ventilated.
Examples include the injection of supercritical CO2 into saline aquifers for purposes of
geological sequestration (Bickle (2009)), the dissolution of non-aqueous phase liquids into
groundwater (National-Research-Council (2012)) and contaminant leakage from surface
waste piles (Kuo and Ritchie (1999)).

The present contribution provides a theoretical and experimental investigation of porous
media filling box flows. With reference to recently published work, we shall demonstrate
that such models are both straightforward to derive and informative in that they provide
experimentally-validated estimates of key parameters of physical interest e.g. for ventilated
filling boxes having a dense plume, the terminal height of the interface that separates
discharged plume fluid below from uncontaminated ambient fluid above.

Our exposition is organized as follows: in section 2, we outline our theoretical model.
Complementary laboratory experiments are described in section 3 and a comparison be-
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Figure 1: Schematic representation of the rectilinear porous media filling box flow under investigation.
The control volume indicated by the thick solid lines extends a distance Λ into the page.

tween theory and measurement in presented in 4. Finally section 5 presents a series of
conclusions for the work as a whole.

2 Theory

For simplicity, we consider miscible, Boussinesq fluids and an idealized rectilinear geom-
etry as shown in figure 1 that includes a negatively-buoyant plume source in the middle
of the (open) upper boundary. As the plume falls, it entrains external ambient fluid and
thereby simultaneously grows in size and decreases in density. Upon reaching the bottom
boundary, plume fluid is discharged in the form of oppositely-directed horizontal gravity
currents. After these gravity currents reach the lateral sidewalls of the tank, there forms
a layer of contaminated fluid that progressively deepens with time, t. The case of an
impermeable bottom boundary has been carefully examined by Sahu and Flynn (2015,
2016); most of our present focus concerns a ventilated box containing along this bottom
boundary one or more fissures of total cross-sectional area A and permeability kf . After
a long time, the depth, h, of the contaminated layer is constant as is the layer density,
ρc, which is also spatially uniform. The volumetric rate of outflow through the fissures,
Qout, is given as

Qout =
Akfg

′

ν

(
h+ b

b

)
, where g′ = g

(
ρc − ρ0
ρ0

)
. (1)

Here ν is the kinematic viscosity and H and b are defined in figure 1 (Neufeld et al. (2009)).
Moreover, g is gravitational acceleration and ρ0 is the density of the uncontaminated layer.
In the t → ∞ limit, the density of the contaminated layer equals the plume density at
the level of the interface, x = H − h. Similarly, Qout must match the plume volume flux
at the interface, Q|H−h. If dispersion, the process of pore-scale solute transport, can be
approximated as spatially-uniform,1 Q|H−h can be recovered by from the classical analysis
of Wooding (1963) whereby

Q|H−h =

[
36DφF0k(H − h+ x0)Λ

2

ν

]1/3
, (2)

1The case of nonuniform dispersion is considered in the Appendix.
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in which D is the dispersion coefficient, F0 is the plume source buoyancy flux, φ and k
are, respectively, the porosity and permeability of the medium, Λ is the depth of the line
source/control volume and the virtual origin correction, x0, is defined as

x0 =
Q3

0ν

36DφF0kΛ2
, (3)

in which Q0 is the source volume flux. Meanwhile, the plume density, averaged over
the plume cross-sectional area, can be determined from the following expression for the
area-averaged reduced gravity:

ḡ′|H−h =

[
F 2
0 ν

36Dφk(H − h+ x0)Λ2

]1/3
. (4)

By combining the equations of the last paragraph, it can be shown that ξ ≡ h/H, the
non-dimensional interface height measured from the bottom boundary, satisfies a cubic
polynomial of the form

0 =

(
A

Λb

)3(
kf
k

)3

ξ3 +

[
3b

H

(
A

Λb

)3(
kf
k

)3

− 1

Ra

]
ξ2

+

[
3

(
b

H

)2(
A

Λb

)3(
kf
k

)3

+
2

Ra

(
1 +

x0
H

)]
ξ

+

(
b

H

)3(
A

Λb

)3(
kf
k

)3

− 1

Ra

(
1 +

x0
H

)2
. (5)

where the Rayleigh number, Ra (� 1), is given by

Ra =
F0kH

(36Dφ)2Λν
(6)

For later reference, the dispersion coefficient, D, that appears in (6) is supposed to solve

D2/3 =
d

H

(
9φF0k

2Λν

)1/3
[(

H +
Q3

0ν

36DφF0kΛ2

)1/3

−
(

Q3
0ν

36DφF0kΛ2

)1/3
]
. (7)

Implicit in (7) is the assumption that D is determined by the product of the porous
medium bead diameter and a characteristic speed, here selected as the depth-averaged,
far field value for the horizontal entrainment velocity (Freeze and Cherry (1979); Roes
et al. (2014)).

Representative solutions of (5) are presented in figure 2, which shows ξ vs. A/(Λb) and Ra
for various kf/k, b/H and x0/H. As expected ξ increases with increasing source volume
flux and with decreasing fissure area, A, or permeability, kf . Figure 2 gives the impression
that ξ likewise increases with decreasing F0; however, as we shall see below, the effect of
the source buoyancy flux on ξ is actually weak because of the factors of F0 that appear
in (7).
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Figure 2: Non-dimensional interface height ξ = h/H as determined from (5). (left) kf/k = 1, b/H = 0.1
and x0/H = 0.25. (right) kf/k = 0.5, b/H = 0.1 and x0/H = 2.0.

3 Experiments

So as to validate the predictions of the above model, similitude laboratory experiments
were run at ambient pressure. Only a brief description of these experiments will be
provided here; much more detailed information is available in Roes et al. (2014).

Experiments were run in an acrylic tank measuring 7.6 cm× 32.5 cm× 40.6 cm that was
filled to a depth of ∼33.5 cm with 3 mm glass beads. The acrylic tank was, in turn,
submerged in 2200 L reservoir that was filled to capacity with tap water. Outflows and
inflows from/to the acrylic tank occurred, respectively, through a series of openings located
along the bottom boundary and at the top of the front/back sides of the tank. Consistent
with the previous discussion, the area available for outflow was much smaller than that
available for inflow.

A line source nozzle that spanned the interior tank width was located ∼1.5 cm inside
the layer of water-wet beads. It was fed by an overhead tank of large cross section that
contained salt water mixed, for purposes of flow visualization, with dye. The plume source
volume flux was typically 0.1 mL/s and the source density measured ρs = 1.0114 g/cm3,
1.0402 g/cm3 or 1.0700 g/cm3. Experiments began by opening the flow control valve
upstream of the nozzle after which time images were collected at regular intervals using a
digital SLR camera. These images were later post-processed to determine, among other
parameters, the interface height, which reached its terminal elevation within about 45 min.

For calibration purposes, the “ventilated filling box” experiments described above were
supplemented by a series of “emptying box” experiments, which consisted of filling the
tank to a predetermined depth with dyed salty fluid of uniform density. The fissures
along the bottom boundary were then opened and the time rate of decrease of the lower
layer depth was measured. From these experiments, we found that, as with the discharge
coefficient that describes flow through an orifice, kf depends on the density of the draining
fluid (see figure 7 of Roes et al. (2014) and Holford and Hunt (2001)).

4 Results

A comparison between theory and experiment is presented in figure 3, which shows, for
the three different plume source densities of section 3, experimental measurements of ξ su-
perposed with analogue theoretical predictions. The qualitative agreement is mixed: the
data sets indicated by the solid, open and starred symbols all confirm that the interface

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 4



0 0.002 0.004 0.006 0.008 0.01
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 ξ
=

h/
H

 A/(Λ b)

 

 

1.0114 (thy)
1.0114 (expt)
1.0402 (thy)
1.0402 (expt)
1.0700 (thy)
1.0700 (expt)

Figure 3: Measured vs. predicted non-dimensional interface height. Caption entries indicate the plume
source density in g/cm3. A representative error for the measured data points is given in the lower
right-hand corner.

drops as the area of the fissure(s) increases. On the other hand, our model, in particular
(7), leads to the erroneous prediction that, for sufficiently large A/(Λb), the interface
increases rather than decreases with increasing ρs. The trend of the experimental data
is obviously different, however, it is formally surprising that ρs does not exert a larger
influence, i.e. increasing the source reduced gravity, ḡ′|0, by a factor of >5 yields a de-
crease of ξ of only ∼10%. Although the flow physics are different in numerous important
respects, this observation nicely complements those of Linden et al. (1990), who made
measurements of interface heights in ventilated filling boxes devoid of porous media and
containing turbulent plumes. Linden et al. (1990) likewise determined that the interface
height is little altered by the plume source density.

Consistent with the above remarks, the quantitative agreement exhibited in figure 3 is
encouragingly robust given that no adjustable constants are involved in the derivation
of the model equations. More precisely, theory often matches laboratory measurements
within experimental error, particularly for small ρs.

5 Conclusions

This contribution considers the extension of the filling box flow methodology to porous
media buoyant convection of the type exhibited schematically in figure 1. Of particular
interest is the terminal elevation of the interface that separates the discharged plume fluid
from the uncontaminated ambient. Predictions for this interface height are obtained by
matching inflows and outflows to/from the contaminated layer. The salient equation is
(5), predictions of which are shown graphically in figures 2 and 3. In the latter case,
measured data obtained from similitude laboratory experiments are also included and
these show generally favorable agreement with theory.

Equation (5) is derived assuming a spatially uniform solute dispersion coefficient. When
this assumption cannot be justified and the the plume centerline velocity is large such
that Pe � O(1) where Pe is the Péclet number, the alternative formulation of appendix
A must be applied. As with the classical solution of Wooding (1963), a self-similar plume
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solution is again possible. Here, however, it is necessary to divide the solution into inner
and outer regions and to introduce a transverse dispersivity that is analogous to the
entrainment coefficient used when studying turbulent free plumes.
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A Nonuniform dispersion

When velocity variations are large so that an average velocity cannot be used in calculating
D, one must instead pursue a more detailed theoretical formulation. According to this
approach, the governing equations read

∂u

∂x
+
∂v

∂y
= 0 [mass continuity] , (8)

1

ρ0

∂P

∂x
+
ν

k
u =

gρ

ρ0
[momentum cont. in x] , (9)

1

ρ0

∂P

∂y
+
ν

k
v = 0 [momentum cont. in y] , (10)

1

φ

(
u
∂C

∂x
+ v

∂C

∂y

)
' ∂

∂y

(
DT

∂C

∂y

)
[solute transport] , (11)

ρ = ρ0(1 + βC) [linear equation of state] . (12)

Here u and v are, respectively, the vertical and horizontal components of velocity, P is the
fluid pressure, C is the solute concentration, β is the solute contraction coefficient and ρ
is the fluid density. Moreover, DT is the (transverse) dispersion coefficient. (Dispersion
in the lateral direction is neglected by the boundary layer approximation.)

We consider a flow regime where Pe � O(1) in which Pe is the Péclet number so that
DT ' αu where α is a transverse dispersivity that plays the role of an entrainment
coefficient (Houseworth (1984)). Introducing a streamfunction such that u = ∂ψ/∂y and
v = −∂ψ/∂x, it can then be shown that

∂2ψ

∂y2
=
gβk

ν

∂C

∂y
, (13)

∂ψ

∂y

∂C

∂x
− ∂ψ

∂x

∂C

∂y
= αφ

(
∂2ψ

∂y2
∂C

∂y
+
∂ψ

∂y

∂2C

∂y2

)
. (14)

Sahu and Flynn (2015) demonstrate that (13) and (14) admit self-similar solutions of the
form

ψ = A1x
1/4F(η), C = A2x

−1/4G(η) (15)

where η = A3y/x
1/2 and the constants A1, A2 and A3 remain to be determined. After

some algebra, it can be shown that G(η) = F ′(η) provided A2 = A1A3
ν

gβk
. By extension,

and following some further algebraic manipulations, we find that

F ′′′F ′ + F ′′F ′′ + 1

4
F ′′F +

1

4
F ′F ′ = (F ′′F ′)′ + 1

4
(F ′F)′ = 0. (16)
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Of particular interest here is an “inner” (or small η) solution to (16), valid when Pe �
O(1). The “outer” solution corresponds to the region external to the plume; here it
is reasonable to ignore spatial variations in the velocity and solute concentration. The
division implied by the inner and outer regions is highly reminiscent of “top hat” models of
turbulent plumes (Morton et al. (1956)). Upon applying appropriate boundary/symmetry
conditions, the following C0 solutions for F and G may obtain:

F =


−c, η < −π
c sin

η

2
, −π < η < π

c, η > π

⇒ G = F ′ =

{ c

2
cos

η

2
, −π < η < π

0, |η| > π
(17)

in which c is a constant of integration. After some final simplifications, it can be shown
that the plume volume flux is given by

Q = Λ

∫ ∞
−∞

u dy =

[(
16F0kΛ

πν

)2

φαx

]1/4
, (18)

whereas the expression for the plume momentum flux remains the same as in Wooding’s
case with Pe . O(1), i.e. M = F0k/ν.

Two final comments are in order regarding (18). When the plume source is non-ideal
(Q0 > 0), we can introduce a virtual origin correction as above so that

Q =

[(
16F0kΛ

πν

)2

φα(x+ x0)

]1/4
where x0 =

1

φα

(
πν

16F0kΛ

)2

Q0
4 . (19)

Note moreover that (18) predicts that Q ∼ x1/4, which is a slower rate of plume growth
than the Q ∼ x1/3 behavior anticipated by (2).

It is straightforward to incorporate (19) into filling box models of either the closed or
ventilated type. In the former case, the interested reader is referred to the detailed
investigations of Sahu and Flynn (2015, 2016).
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