UCLA

Posters

Title

Improving Personal and Environmental Health Decision Making with Mobile Personal Sensing

Permalink

https://escholarship.org/uc/item/4mw1p51r

Authors

Ramanathan, Nithya Burke, Jeff Cenizal, CJ <u>et al.</u>

Publication Date 2009-05-12

CENS Center for Embedded Networked Sensing

Improving Personal and Environmental Health Decision Making with Mobile Personal Sensing

Vids Samanta, Jason Ryder, Chandni Dhanjal, CJ Cenizal, Taimur Hassan, Nithya Ramanthan, Dallas Swendeman, Deborah Estrin, Mark Hansen, Mary Jane Rotheram, Ruth West, Jeff Burke

Introduction: Building a mobile personal sensing toolbox

Each application contributes something different to the mobile personal sensing toolbox

Focus on server-side analytics and the user experience

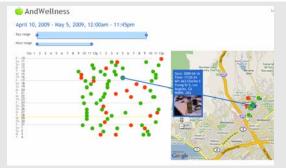
Solution: Contributions from each application

Configurable software on the phone periodically samples on-board sensors (e.g. GPS, image)

Activity classification and other analytics pre-process data.

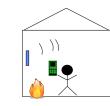
Visualization

PEIR: Outdoor exposure monitoring in Los Angeles

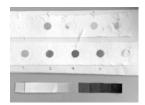

Existing models are used to calculate an individual's carbon impact and PM2.5 exposure. Data is displayed on a map, and in other formats with an emphasis on user legibility.

AndWellness: Real-time assessments and feedback on diet, stress, and exercise

<u>Engaging phone app with reminders</u> triggered by time, place, or (in the future) data or activity.



Server-side visualization and analytics highlight <u>correlations and trends across time and space</u>.


<u>Textless interface</u> on the mobile phone (future work).

AndAmbulation: a system for monitoring chronic disease status and response to medication

<u>Place location</u> using static Bluetooth sensors.

Project Surya: Indoor pollution exposure monitoring in rural India

<u>Image analytics automatically infer pollution</u> <u>levels</u> from an image of a pollution filter and calibrated color chart.

Visualization and analytics of mobility and location highlight significant variations in behavior in time or space.

UCLA – UCR – Caltech – USC – UC Merced