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Subjective Complexity Under Uncertainty

Quitzé Valenzuela-Stookey∗

October 3, 2023

Abstract

Complexity of the problem of choosing among uncertain acts is a salient
feature of many of the environments in which departures from expected utility
theory are observed. I study a class of Generalized Simple Bounds preferences
in which acts that are complex from the perspective of the decision maker are
bracketed by “simple” acts to which they are related by statewise dominance.
I then study a refinement of the model in which the size of the partition
with respect to which an act is measurable arises endogenously as a measure
of subjective complexity. Finally, I consider choice behavior characterized
by a “cautious completion” of Simple Bounds preferences, and discuss the
relationship between this model and models of ambiguity aversion. I develop
general comparative statics results, and explore applications to portfolio choice
and insurance choice.

Keywords— Complexity, uncertainty, bounded rationality, ambiguity

Acts with uncertain outcomes are complicated, potentially infinite-dimensional, objects.

The complexity of choosing between uncertain acts has been evoked as an explanation for

many empirical observations at odds with the predictions of the subjective expected utility

model, from ambiguity aversion (e.g. Gilboa and Schmeidler (1989)) to the so-called “equity

premium puzzle” of Mehra and Prescott (1985). As early as Von Neumann and Morgenstern

(1944) and Aumann (1962), it has been recognized that completeness of preferences over

such acts may be a lot to ask.

This paper studies a choice-based notion of complexity in choice under uncertainty. I

want to take seriously the idea that cognitive limitations may make certain pairs of acts

∗Department of Economics, UC Berkeley; 530 Evans Hall, Berkeley, CA 94720, email:

quitze@berkeley.edu. Many thanks to Eddie Dekel, Alessandro Pavan, and especially Marciano

Siniscalchi for feedback on this project from its inception. I am also grateful to Edi Karni, Wojciech

Olszewski, Francisco Poggi, Ludvig Sinander, Bruno Strulovici, Marie-Louise Vierø, participants at

the Transatlantic Theory Workshop 2019, RUD 2020, and seminar participants at Northwestern

University.

1



difficult to compare, which means I must allow the preference relation to be incomplete.

This is in contrast to a notion of complexity in which the decision maker simply undervalues

acts that are perceived as complex.

I take as primitive a reflexive and transitive, but not necessarily complete, binary

preference relation. Preferences are assumed to be complete over the set of constant acts.

Therefore, if preferences are incomplete, it must be that not all acts can be assigned a precise

utility value, which really means a certainty equivalent among the constant acts. We can

thus partition the set of acts into those for which the DM can and cannot identify a certainty

equivalent. I refer to the former as “well-understood” acts, and denote the set of such acts

by FCE .
1

Certain comparisons may also be easier to understand than others. At the very least,

the decision maker should be able to conclude that act f is better than g if f gives a better

consequence state-by-state (i.e. preferences should satisfy Monotonicity). When facing a

choice between acts that are not well understood, the decision maker can gain traction by

exploiting simple comparisons to acts that they understand well. In particular, consider the

comparison between two acts f and g which are not well understood, and are not related

by statewise dominance. Suppose there exists a well understood act h that is dominated

statewise by f , and another well-understood act k which statewise dominates g. The DM

can easily see that f is better than h, and that k is better than g. However since h and k

are both well understood, meaning they can be ranked against all constant acts, they are

necessarily comparable. If h is better than k then the DM can conclude by transitivity that

f is better than g.

If on the other hand k is better than h in the above example, then the comparison

is not immediately useful for assessing f versus g, without further assumptions. I would

like to maintain minimal assumptions regarding the decision maker’s ability to extrapolate

from their preferences over well-understood acts. I therefore assume only that the decision

maker can make comparisons involving an act that is not well understood if the pair of

acts in question are related by statewise dominance. Of course, transitivity implies that

1The idea behind the label “well-understood” is that if a decision maker understands an act well,
they should be able to calibrate its value precisely in relation to constant acts. Conversely, a certainty
equivalent can be used as a simple proxy for an act f when comparing f to other acts, rendering
such comparisons relatively easy.
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further comparisons may be possible, via the type of reasoning described in the previous

paragraph (formally, this means that ≿ is the transitive and monotone closure of preferences

over well-understood acts). This implies a representation of the following form: f ≿ g iff

either i) f statewise dominates g (write f ≥ g), or ii)

sup{U(h) : h ∈ FCE , f ≥ h} ≥ inf{U(h) : h ∈ FCE , h ≥ g},

where U is a utility representation of the preference over FCE (assumed to be expected

utility). I refer to these as Generalized Simple Bounds preferences.

Relative to the standard EU representation, the only new parameter is the set FCE of

well-understood acts. This is the parameter that defines the relevant notion of act complexity.

One can consider a number of specifications for FCE , characterized by different behavioral

assumptions.

In Section 2 and Section 3 I characterize notions of complexity which depend on the

richness of the coarsest partition with respect to which an act is measurable, which I refer

to as f ’s partition. Endow the space of partitions with the usual refinement partial order. I

focus on partition-based notions of act complexity, meaning preferences which satisfy the

following axiom.

PARTITIONAL COMPLEXITY. If f is well understood and g has a (weakly) coarser

partition than f , then g is also well understood.

In other words, Partitional Complexity says that the property of being well understood

depends only on an act’s partition, and that coarser partitions are easier to understand.

Partitional Complexity is a natural axiom for characterizing complexity (see for example

Saponara (2020)). In Appendix A I also show that under a set of standard Basic Conditions,

this property is equivalent to a set of more primitive axioms (Proposition 11). Thus the

results of Appendix A provide a more fundamental basis for the commonly used partition-

based notion of complexity. I further motivate these conditions with a model of observational

learning in Appendix B.

Characterizations based only on Partitional Complexity are intuitive, but intractable

without further assumptions. I therefore study a representation under an additional set

of axioms, which imply that an act’s complexity is determined by the cardinality of its
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partition. I refer to these as Simple Bounds preferences. As discussed below, partition size

is a common measure of complexity in both the theoretical and empirical literature. This

notion captures the idea that the DM has trouble i) forming beliefs about many events

and ii) combining a large number of potential outcomes to understand an act’s value. The

additional axioms imply the existence of an integer N , identified from choice behavior, such

that an act is well understood if and only if it is N -simple, i.e. the cardinality of its partition

is less than N (Theorem 2).

I then consider two models of complete preferences derived from Simple Bounds. These

models complement the analysis of incomplete preferences by exploring how the DM handles

their lack of understanding. Preferences are Cautious if the DM evaluates an act f according

to its simple lower bound, i.e. the best act that has a certainty equivalent and is dominated

statewise by f . Similarly preferences are Reckless if acts are evaluated according to their

simple upper bound, defined analogously. I axiomatize these two preferences, relate them to

the DM’s attitude towards ambiguity, and compare them to existing models of ambiguity

aversion.

I provide some general comparative statics results which are useful in applications,

building on Tian (2015), Tian (2016), and Valenzuela-Stookey (2022). The fact that rich

comparative statics can be obtained is an important strength of the model, and the derivation

of these results is a key contribution.

Finally, I investigate two applications of the model. First, I study consumption savings

problems and equilibrium asset prices. Cautious decision makers will save more, and allocate

a greater portion of their savings to a safe rather than a risky asset, compared to fully

rational individuals. In equilibrium these biases lead to higher prices for safe relative to

risky assets, as observed in the “equity premium puzzle” of Mehra and Prescott (1985).

Second, I study the choice of insurance plans. I show that the cautious model rationalizes

many “behavioral” phenomena identified in the empirical literature, such as over-sensitivity

to deductibles and coverage rates. It also helps explain the correlation, documented by

Bhargava et al. (2017), between specific forms of dominated plan choice and both the degree

of health risk and level of education. This application provides a good illustration of some

of the general comparative statics results presented in Appendix D. In the working paper

version, I also examine principal-agent contracting with a complexity constrained agent,
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identifying general features of optimal contracts.

Related Literature

Most closely related to the current paper are Gul and Pesendorfer (2014) and Echenique

et al. (2020). Gul and Pesendorfer (2014) study a model in which there is a σ-algebra

of “ideal” events E , which can be thought of as well understood, and acts are bracketed

by their upper and lower bounds among those measurable with respect to E . In contrast,

axiom C0 below implies that in the Simple Bounds model, all events are well-understood.

Complexity here is about aggregation of payoffs across different events, rather than the

events themselves. There is no σ-algebra E for which the set of N -simple acts is the set

of E-measurable acts (aside from the trivial case of N = ∞). Moreover, the way in which

the bracketing acts are used is very different from the current paper: Gul and Pesendorfer

(2014) consider an aggregation of the bracketing acts which generates complete preferences,

whereas incompleteness is a key feature of the current paper.

The bracketing in the current paper is more in the spirit of Echenique et al. (2022),

who study twofold multiprior preferences represented by f ≿ g iff minµ∈C Eµ[u ◦ f ] ≥

maxµ∈D Eµ[u ◦ g]. As in the Generalized Simple Bounds model, the decision maker is

“twofold conservative”, treating f pessimistically and g optimistically. However in Echenique

et al. (2022), minimization/maximization occurs over fixed sets of beliefs, rather than

bounding acts. In fact, it can be show that if the sets C and D in the twofold multiprior

preference representation are allowed to depend on f and g respectively then the resulting

class of preferences nests the Simple Bounds. In this sense, the Simple Bounds model extends

Echenique et al. (2022).2

Other papers have built on the idea that acts with many outcomes may be difficult for a

decision maker to evaluate. Neilson (1992) proposes a model of choice under risk in which

the decision maker uses a different utility function when computing expectations for lotteries

with different support sizes.

Puri (2020) axiomatizes a “Simplicity Representation” of choice under risk, in which a

lottery p is evaluated according to Ep[u(x)]− C(|support(p)|), for some increasing function

2The original draft of the current paper circulated prior to Echenique et al. (2020), which is the
earlier of two papers subsumed by Echenique et al. (2022).
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C.3 While this model also relates support size to complexity, its empirical content is quite

different; the Simplicity Representation and Simple Bounds are very far from being “dual” in

the sense one might expect at first glance. Most importantly, the Simplicity Representation

makes a sharp separation between the values on which a lottery is supported and its

complexity, as measured by support size. As a consequence, the Simplicity Representation

predicts potentially extreme preference reversals resulting from small changes; arbitrarily

small perturbations of a lottery that increase the size of its support can dramatically change

its complexity cost. This is not the case in the Simple Bounds model. Unsurprisingly,

the Simplicity Representation also predicts violations of first order stochastic dominance,

analogous to violations of Monotonicity, which cannot occur in the current setting.

Saponara (2020) axiomatizes a Revealed Reasoning model which is close in spirit to the

Cautious model. In this model a decision maker is characterized by a set of partitions P,

and evaluates an act f according to the best act that is uniformly below f and measurable

with respect to some partition P ∈ P. As in Generalize Simple Bounds, P need not be

characterized by a fixed number of elements. Instead the axioms impose that P satisfy

a richness condition, which in some cases is in fact incompatible with P being equal to

the set of N -element partitions, for some N . Despite these differences, at a high level, the

relationship between the Generalized Simple Bounds and Revealed Reasoning models is

similar to that between Bewley preferences and MEU (see Section 3.3), with the Cautious

model providing more choice-based structure on the DM’s behavior, relative to Revealed

Reasoning. The current paper also complements Saponara (2020) by decomposing the

Partitional Complexity axiom, which is implicit in that paper.

Ahn and Ergin (2010) also study preferences in which partitions play a central role. In

their partition-dependent expected utility (PDEU) representation the decision maker uses a

different belief to evaluate acts depending on the partition used to describe the state space.

This can lead to preference reversals between acts f and g when different partitions (with

respect to which f and g are measurable) are used to describe the state space.

There are formal similarities between this paper and Gilboa, Maccheroni, Marinacci, and

Schmeidler (2010) and Lehrer and Teper (2014). As in Lehrer and Teper (2014), I begin by

3Related ideas appear in the menu choice literature. Ortoleva (2013) axiomatizes a model of
preferences over lotteries of menus in which, similar to the model of Puri (2020), the decision maker
attaches a cost to lotteries with more menus in their support.
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characterizing preferences on a small set of acts and extend these to a larger subset, although

not necessarily to all acts. As in GMMS, given a characterization of incomplete preferences,

I show that under additional assumptions a complete preferences relation consistent with

it exists, and takes a specific form. In GMMS the incomplete and complete preference

relations admit representations à la Bewley (2002) and à la Gilboa and Schmeidler (1989)

respectively. The incomplete preferences arising from the partition size notion of complexity

do not admit a Bewley representation. Similarly the Cautious completion is not an MEU

preference, although it still captures a notion of ambiguity aversion.

One objective of the current paper is to explore how Ellsberg-type phenomenon (Ellsberg

(1961)) relate to complexity constraints. As in Segal (1987) and Klibanoff et al. (2005), bets

on ambiguous urns are viewed here as a two stage act, where the first stage is subject to

uncertainty. That ambiguity may arise from complexity in such an environment is not a new

idea. Gilboa and Schmeidler (1989) states “One conceivable explanation of this phenomenon

[Ellsberg-type preferences] which we adopt here is as follows: . . . the subject has too little

information to form a prior. Hence (s)he considers a set of priors as possible.” One novelty of

the current paper is that it derives ambiguity averse preferences by explicitly characterizing

subjective complexity. Bewley (2002) and Gilboa and Schmeidler (1989) relax completeness

and independence respectively. I do both, but in a way that is driven by explicit assumptions

about perceived complexity.

The paper is organized as follows. Section 1 introduces the setting. Section 2 presents

the Generalized Simple Bounds preferences derived from a weak characterization of the

well-understood set. Section 3 presents the stronger Simple Bounds characterization. Section

4 discusses complete preferences derived from Simple Bounds. Section 5 presents the

applications. The key axiom of Partitional Complexity is further decomposed in Appendix A,

and Appendix B explores the procedural learning model which motivates this decomposition.

Omitted proofs are in Appendix C, and general comparative statics results in Appendix D.

1 The model

The framework is that of Anscombe and Aumann (1963). The decision maker is characterized

by a binary relation ≿ over acts (the preference relation). The preference relation is assumed

to be a preorder (i.e. reflexive and transitive), but need not be complete. The strict
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preference relation and indifference relation are defined as usual.4 Further notation is as

follows:

• Z: the set of outcomes.

• L: the set of vN-M lotteries (finite support distributions) over Z.

• Ω: the state space, endowed with an algebra Σ of events.

• Fc: the set of constant acts.

• F : the set of finite valued acts; Σ-measurable f : Ω → L such that |f(Ω)| < ∞.

The preference relation is assumed to satisfy the following basic conditions (see e.g.

Gilboa et al. (2010)).

Basic Conditions:

PREORDER: ≿ is reflexive and transitive.

MONOTONICITY: For every f, g ∈ F , f(ω) ≿ g(ω) ∀ ω ∈ Ω implies f ≿ g.

ARCHIMEDEAN CONTINUITY: For all f, g, h ∈ F , the sets {λ ∈ [0, 1] : λf+(1−λ)g ≿ h},

{λ ∈ [0, 1] : h ≿ λf + (1− λ)g} are closed in [0, 1].

NONTRIVIALITY: There exist f, g ∈ F such that f ≻ g.

C-COMPLETENESS: ≿ is complete on Fc

DOUBLE C-INDEPENDENCE: Let c1, c2 be constant acts. Then for any act f and

α ∈ (0, 1), f ≿ (≾)c1 if and only if αf + (1− α)c2 ≿ (≾)αc1 + (1− α)c2.

The key difference between the Basic Conditions and the corresponding subset of the

standard SEU axioms is of course the lack of completeness. Transitivity is preserved as a

basic tenet of rational preferences. For a detailed discussion of the relationship between

transitive but incomplete preferences and intransitive choice see Mandler (2005). Double

C-Independence is a weakening of the common C-Independence assumption, as it imposes

that two of the acts involved be constant.

The Basic Conditions imply that there is a (complete) expected utility representation of

preferences on constant acts, which are identified with the corresponding lottery. This is

4I take as primitive the reflexive and transitive relation, interpreted as weak preferences. An
alternative approach, as in Galaabaatar and Karni (2013), would be to take as primitive a transitive
and irreflexive strict partial order. I find my approach more convenient because I make use directly
of the existence of certainty equivalents and the transitivity of the weak preference relation.
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in keeping with the literature on ambiguity, stemming from Gilboa and Schmeidler (1989),

which distinguishes between risky lotteries, which the agent has no difficulty evaluating, and

uncertain acts, over which choice may be non-EU.5

Let v be a representation of preferences over L. I refer to the coarsest partition of Ω

with respect to which v ◦ f is measurable as f ’s partition. Intuitively, the fact that what

matters is the range of v ◦ f , rather than that of f , reflects the idea that the DM does not

find it difficult to evaluate individual consequences, but rather to understand the mapping

from states to consequences. Moreover, distinguishing between acts with the same utility

image is incompatible with Monotonicity; if v ◦ f = v ◦ g then Monotonicity implies f ∼ g.

Monotonicity, i.e. respecting statewise dominance, I take as a basic tenet of rationality.

2 Generalized Simple Bounds

I first present a general representation, following the above discussion. The characterization

here is straightforward. It becomes more challenging to further refine the representation, as

I do in Section 3.

The set of well-understood acts is characterized by Partitional Complexity, plus a richness

condition (recall the definitions of “well-understood” and “Partitional Complexity” from

pages 2 and 3).

C0. All binary acts are well understood.

Intuitively, C0 says that there are no events which the DM does not understand. This

allows us to identify a subjective probability measure on the state space that characterizes the

DM’s preferences over binary acts. This is in contrast to models such as Epstein and Zhang

(2001) and Gul and Pesendorfer (2014), in which there are events that are inherently difficult

to understand. In Epstein and Zhang (2001) it is possible for probabilistic sophistication, as

defined in Machina and Schmeidler (1992), to be violated whenever an act is not measurable

5There is of course empirical evidence that choice over risky lotteries may also be influenced by
complexity constraints (see for example Neilson (1992)). More recently, models have been developed
which incorporate both ambiguity aversion and non-EU preferences over risky lotteries (see for
example Dean and Ortoleva (2017)). The techniques developed in the current paper for studying
choice under uncertainty can be applied to risky choice as well. Studying choice behavior when both
constraints are present, along the lines of Dean and Ortoleva (2017), is an intriguing direction for
future work.
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with respect to a set of subjectively unambiguous events. In contrast, C0 embodies the idea

that complexity is a property of comparisons between acts, rather than an inherent difficulty

with understanding certain events.

Say that an event E ⊂ Ω is non-null if there exist c1, c2, c3 ∈ Fc such that c2Ec
1 ≻ c3Ec

1.6

The set E is null otherwise (the empty set is null, by reflexivity of ≿).7 I write f ≥E g if

f(ω) ≿ g(ω) for all ω ∈ E. If there exists a null set E such that f ≥Ω\E g, write f ≥0 g.

For simplicity, I write ≥ rather than ≥Ω to represent statewise dominance.

Endow the space of partitions of Ω with the refinement partial order: write τ ′′Rτ ′ if τ ′′

is a refinement of τ ′. A set T of partitions of Ω is downward closed if τ ′′ ∈ T and τ ′′Rτ ′

implies τ ′ ∈ T . By Partitional Complexity, the set of well-understood acts is defined by a

downward closed set of partitions.

Let FT be the set of acts measurable with respect to some partition in T . For any f ∈ F ,

let gsiminfT ,f := {h ∈ FT : f ≥0 h,∄g ∈ FT s.t. g ≻ h and f ≥0 g} and gsimsupT ,f :=

{h ∈ FT : h ≥0 f,∄g ∈ FT s.t. h ≻ g and g ≥0 f}. In other words, gsiminfT ,f be the set of

most preferred acts among those statewise dominated (up to null sets) by f and measurable

with respect to a partition in T . For a lottery l, I write Elu = El[u(z)], i.e. the expected

utility given distribution l over outcomes. Although gsiminfN,f may not be single valued, I

abuse notation and write
∫
ΩEgsiminfT ,f (ω)

udP (ω).

Definition. Preference ≿ has a Generalized Simple Bounds representation if there

exists a downward directed set T , finitely additive probability P on Σ, and a non-constant

function u : Z → R; such that gsiminfT ,f and gsimsupT ,f are non-empty for every f ∈ F ;

and such that for every f, g ∈ F , f ≿ g if and only if at least one of the following holds:

i. f ≥ g.

ii.
∫
ΩEgsiminfT ,f (ω)

u dP (ω) ≥
∫
ΩEgsimsupT ,g(ω)

u dP (ω)

Remark. Before characterizing such preferences, it is worth clarifying the condition that

gsiminfT ,f and gsimsupT ,f are non-empty for every f ∈ F . For arbitrary T , P , and u, we

cannot guarantee that this holds, and verifying this condition may not be easy. Fortunately,

in the primary case of interest – the Simple Bounds representation in which T is the set

6Here c2Ec
1 is the binary act which takes value c1 ∈ L on E and c2 ∈ L on Ω \ E.

7As shown below, we are be able to identify a probability P which the DM uses to evaluate
well-understood acts, and null events will be zero measure events under P .
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of partitions defined by an upper bound N ∈ Z on the partitions’ cardinality – I show

that gsiminfT ,f and gsimsupT ,f (which for Simple Bounds preferences we write as siminfN,f

and simsupN,f ) exist for any P, u. Thus non-emptiness of these sets imposes not additional

restrictions on parameters. Moreover, non-emptiness of gsiminfT ,f and gsimsupT ,f does

not appear to impose substantive restrictions on preferences, in the sense that the two

additional axioms needed to characterize the representation, S-Independence and Uniform

Comparability, have clear behavioral interpretations and are not directly related to the

non-emptiness question.

To characterize Generalized Simple Bounds preferences, some modifications to the

standard SEU axioms must be made in order to maintain the spirit of the characterization

of complexity via the well-understood set of acts. In particular, the usual independence

assumption must be modified. This is because the mixture of two acts with partitions in

T need not itself have a partition in T . Thus the standard independence axiom would

artificially expand the set of well-understood acts. This is to be avoided, as part of our goal

is to identify the well understood set based on axioms which are explicitly about complexity.

The modified axiom below, S-Independence, eliminates this concern. Moreover, it

addresses some of the usual critiques of the independence assumption. For one, it applies

only when all acts involved are well-understood. Moreover, it only applies to mixtures that

do not result in a more complex act.

S-INDEPENDENCE: Let f, g, h be well-understood acts. For any α ∈ (0, 1), if αf +(1−α)h

and αg + (1 − α)h are both well understood, then f ≿ g if and only if αf + (1 − α)h ≿

αg + (1− α)h.

Finally I make an assumption limiting how comparisons involving complex acts can be

made.

UNIFORM COMPARABILITY: For any f, g ∈ F such that ¬(f ≥ g), if f ≿ g then there

exist well-understood acts h, k such that f ≥ h ≿ k ≥ g.

Uniform Comparability says that statewise dominance combined with transitivity is

the only way to compare complex acts. Thus Uniform Comparability implies the minimal

extension of preferences beyond well-understood acts.8

8That is, minimal in the set inclusion sense in the space of monotone preorders.
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It is straightforward to show that a Generalized Simple Bounds representation obtains

under the above assumptions.

Theorem 1. The following statements are equivalent:

i. ≿ satisfies the Basic Conditions, Partitional Complexity, C0, S-Independence and

Uniform Comparability.

ii. ≿ has a Generalized Simple Bounds representation, with parameters P, u, T . Moreover

T is unique, P is unique, u is unique up to positive affine transformations.

Further discussion of the representation is deferred to Section 3, as it is convenient to

discuss the general properties of the “bracketing” procedure in the context of the simpler

cardinality-based refinement.

3 Simple Bounds

While the Generalized Simple Bounds representation is intuitively appealing, it tells us

relatively little about the nature of complexity. We would like to know how additional

assumptions on preferences refine the set of well-understood acts. Moreover, for tractability

in applications it us useful to have more structure on this set. In this section I explore one

such refinement.

3.1 Characterizing complexity

I first provide a tighter characterization of the set of well-understood acts, under two

additional assumptions.

Cardinally Conditions. Let τ be f ’s partition, with typical elements T, T ′.

C1. If f is well-understood then for any non-null T ≠ T ′ in τ , and any 2-element partition

τ ′ of T ∪ T ′, acts with partition τ ′ ∪ (τ \ {T, T ′}) are well understood.

C2. If f is well-understood and E is null then gEf ∼ f for all g ∈ F .

As demonstrated above, the previous imply that there is an expected utility representation

of preferences over well-understood acts. In light of this, C2 simply says that the decision

maker is not artificially confused by changes to a well-understood act that occur with zero

probability. This is primarily a technical condition.
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The key axiom is C1. This assumption says that if a partition is well-understood then

so are partitions that are close to it, in the sense that they differ only on two cells, and have

the same number of elements. Thus it can be viewed as saying that the well-understood

property of partitions is robust to local perturbations.

Together, the axioms discussed thus far imply that there is an integer N ≥ 2, determined

endogenously by preferences, such that all and only N -simple acts are well-understood.

Theorem 2. Assume ≿ satisfies the Basic Conditions, Partitional Complexity, C0, C1, and

C2. Then there exists an N ∈ (N\{1}) ∪ {∞} such that an act is well-understood iff its

partition has at most N non-null elements.

While the restriction that the well-understood property depends only on the number of

elements is strong, it is supported by a large body of experimental and observational evidence

relating partition size to perceived complexity. Moffatt et al. (2015) and Sonsino et al. (2002)

find experimental evidence that subjects undervalue lotteries with larger supports. Bernheim

and Sprenger (2019) argue that aversion to large supports helps explain experimental data

that is otherwise inconsistent with both expected utility and cumulative prospect theories.

Additional experimental evidence, relating support size to ambiguity aversion, is discussed

in Section 4.2

While C1 explicitly ties together the “well-understood” property across partitions of the

same size, it is not immediate to conclude that only partition cardinality matters. The key

step in the proof is a result about moving through the space of partitions of Ω via binary

modifications of the form defined in C1. The difficulty comes from the fact that no structure

is imposed on the state space. This result may be of independent interest.

Lemma 1. For any two N -element partitions τ = {Tj}Nj=1, τ
′ = {T ′

j}Nj=1 of Ω, there is a

finite sequence of N -element partitions {τ i}Ki=1, starting with τ and ending with τ ′, such

that between τ i and τ i+1, N − 2 of the partition cells remain unchanged.

3.2 Simple Bounds representation

Given Theorem 2, it is straightforward to refine Theorem 1 to incorporate the cardinality-

based notion of complexity.

13



Definition. For any f ∈ F and N ∈ N, denote by simsupN,f the set of acts h satisfying:

1) h ∈ FN , 2) h ≥0 f , and 3) there is no k satisfying 1 and 2 such that h ≻ k.9

Define siminfN,f analogously. Note that for any N such that all acts in FN are well-

understood, the DM is indifferent between all acts in simsupN,f (similarly for siminfN,f ).

When there is no risk of confusion, I will therefore abuse notation and write as if siminf

and simsup are single valued (for example, f ≿ siminfN,f even when siminfN,f may contain

multiple acts). It is not obvious that such bounds exist, i.e. that siminfN,f and simsupN,g

are non-empty. In fact, the axioms stated will imply that both are non-empty. Conversely,

Proposition 2 shows that existence of these bounds places no additional restrictions on the

model parameters.

Definition. Preference ≿ has a Simple Bounds representation if there exists an integer

N , finitely additive probability P on Σ, and a non-constant function u : Z → R; such that

siminfN,f and simsupN,f are non-empty for every f ∈ F ; and such that for every f, g ∈ F ,

f ≿ g if and only if at least one of the following holds:

i. f ≥ g.

ii.
∫
ΩEsiminfN,f (ω)

u dP (ω) ≥
∫
ΩEsimsupN,g(ω)

u dP (ω)

I refer to such preferences as Simple Bounds preferences.

Theorem 3. The following statements are equivalent:

i. ≿ satisfies the Basic Conditions, Partitional Complexity, C0, C1, C2, S-Independence

and Uniform Comparability.

ii. ≿ has a Simple Bounds representation, with parameters P, u,N . Moreover, N is

unique, P is unique, u is unique up to positive affine transformations.

The behavioral implications of Theorem 3 are discussed in Section 3.3, but it is useful to

first clarify some technical points.

Condition i. in the definition of a Simple Bounds representation requires f ≥ g, rather

than f ≥0 g. This is natural if we think that it is harder to identify null events when

9Requiring only h ≥0 f , rather than h ≥ f , in condition 2 is a technicality. For most applications,
we can replace this condition with h ≥ f , as Proposition 1 shows.
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comparing complex acts. Alternatively, we could assume that preferences obey ≥0 dominance,

and make the obvious modification to Uniform Comparability, to replace i. with f ≥0 g.

For applications, it is generally without loss to assume that simsupN,f ≥ f ≥ siminfN,f .

Roughly speaking, violations of statewise dominance only occur if f has isolated outliers in

the support of P . No continuity is required. Given f ∈ F and u : Z → R, define fu : Ω → R

by fu := Ef(ω)[u].

Proposition 1. f ≥ siminfN,f iff f−1
u (A) is non-null for every open neighborhood, A,

of inf{fu(ω) : ω ∈ Ω}. Similarly, simsupN,f ≥ f iff f−1
u (A) is non-null for every open

neighborhood of sup{fu(ω) : ω ∈ Ω}.

The conditions of Proposition 1 are met, for example, if P has full support on Ω ⊆ R

and Efu is continuous, or if its partition has no null elements, or it is a convex combination

of any acts with these properties. Even if the conditions for statewise dominance fail, it is

easy to see where violations will occur. The “Lebesgue approach”, discussed below, helps

clarify this point.

Theorem 3 includes the conclusion that siminfN,f and simsupN,f are non-empty for all f .

A natural concern from a modeling perspective is that this may impose constraints on the

other parameters of the representation, namely u, P,N . This would be the case if existence

failed for some specification of u, P or N . The following result states that this is not the

case. Let B(Ω) be the set of bounded measurable functions on Ω, and BN (Ω) be the set of

N -simple measurable functions on Ω. Abusing notation, define

siminfN,w,P := argmax
{b∈BN (Ω):b≤0w}

∫
Ω
b(ω)dP (ω)

Proposition 2. For any w ∈ B(Ω), siminfN,w,P and simsupN,w,P are non-empty for all

N,P .

A full discussion of Proposition 2 can be found in Appendix C.4. The proof is instructive,

as it makes use of a dual approach to the problem of finding simple upper and lower bounds;

rather than look for functions defined by partitions on Ω, I define a dual problem in terms

of partitions of w(Ω). Using this dual “Lebesgue approach” finding the siminfN,w,p and

simsupN,w,P for an arbitrary act f can be reduced to the problem of finding a the siminf and

simsup for the identity function on the unit interval, with a suitably defined distribution P̂ .
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This dual approach is useful for comparative statics (Appendix D). Moreover, it is easy

to use this approach to show that finding simsupN,w,P and siminfN,w,P functions can be

reduced to the computationally easy problem of finding the maximum-weight path in a

suitably defined directed acyclic graph. It also implies a convenient structure of the sets

siminfN,w,P and simsupN,w,p.

Lemma 2. siminfN,w,P and simsupN,w,P are lattices.

The partial order with respect to which Lemma 2 holds is discussed in Appendix D. For

Ω = [0, 1], the result follows from Proposition 17. The extension to more general spaces

follows from the dual approach of Appendix C.4.1.

3.3 Theorem 3 discussion

Simple Bounds preferences characterize a decision maker who 1) understands some set of

acts well, and 2) uses the acts they understand well to bracket those they do not, allowing

them to make some comparisons involving poorly understood acts. The characterization

provided by Theorem 2 of which acts are well understood is sharp: the well-understood

property is defined by a cut-off in the number of elements of an act’s partition. This does

not mean, however, that perturbing an act slightly to increase the size of its partition will

cause a discontinuous change in choice behavior. If act f ′ takes values very close to those of

f (uniformly over Ω), where the latter is well understood while the former is not, the simple

lower and upper bounds of f ′ will be almost identical to f . Thus the sharp characterization

of what is well understood has smoother implications for choice. This is in contrast to models

in which complexity enters the representation as an additive cost, such as Puri (2020).

A natural question is how the incomplete preferences characterized above relate to those

of Bewley (2002).10 So called “Bewley preferences” have the following representation: there

exists a non-empty, closed, and convex set C∗ of probabilities on Σ and a non-constant

function u : Z → R such that f ≿ g if and only if

∫
Ω
Ef(ω)udp(ω) ≥

∫
Ω
Eg(ω)udp(ω) ∀ p ∈ C∗.

10Bewley (2002) in fact gives a representation of the strict preference. The exact unanimity
representation discussed here is due to Gilboa et al. (2010).

16



There is no simple relationship between the two representations. The Bewley preferences

satisfy the usual independence axiom. However it is easy to see that the representation in

Theorem 3 does not satisfy independence. If incompleteness à la Bewley is interpreted as

reflecting complexity then it must be that mixtures do not increase the complexity of a

comparison. For example, let the state space be [0, 1] and for any act k identify u(k(ω)) with

k(ω). Let f and g be binary acts, with f = 0, g = 1 on [0, 1/2) and f = 1, g = 0 on (1/2, 1].

In the Bewley model, if f and g are comparable then so are 1/2f + 1/2h and 1/2g + 1/2h

for h(ω) = 10ω2. Decision makers may find the later comparison, which involves acts with

a greater range of values and larger partitions, more difficult. Relaxing Independence and

explicitly modeling complexity allows for a model in which mixtures can increase complexity

and lead to incomparability.

4 Extension: Completing preferences

In many settings the decision maker is forced to make a choice. In such cases we would like

to be able to make predictions about behavior even when the environment contains pairs of

alternatives that are not ranked according to the incomplete preferences above. Following

Gilboa, Maccheroni, Marinacci, and Schmeidler (2010), henceforth GMMS, I assume that the

decision maker is characterized by a pair of binary relations (≿,≿′), interpreted as objective

rationality and subjective rationality relations respectively.11 I consider decision makers

with objectively rational preferences that can be represented as in Theorem 3, and consider

various assumptions on the subjective relation that lead to distinct complete preference

relations and representations. This approach allows me to separate the decision makers

ability to compare acts from their attitude towards choices between acts that they do not

know how to compare. The first point is addressed by Theorem 3. Attitudes towards the

unknown can be captured by intuitive axioms. Following GMMS, I first make the natural

assumption that the subjective relation never reverses the objective.

CONSISTENCY: f ≿ g implies f ≿′ g.

This notion of consistency allows for indifference according to the subjective relation

11According to GMMS, a choice is objectively rational if the DM can convince others that they,
the DM, is right in making it. It is subjectively rational if the DM cannot be convinced that they
are wrong in making it.
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between acts that are strictly ranked according to the objective relation. A stronger notion

of consistency rules out such differences when the acts in question are well-understood.

Below I discuss the reason for imposing Strong Consistency only on well-understood acts

(Section 4.4).

STRONG CONSISTENCY FOR SIMPLE ACTS: For any two well-understood acts f, g,

f ≿ g ⇔ f ≿′ g.

Finally, I assume a cautious approach to incomparable alternatives.

CAUTION: For all f ∈ F and h ∈ Fc, if f ̸≿ h then h ≿′ f .

Caution is exactly the axiom used by GMMS to derive max-min expected utility (MEU)

as the subjective relation given Bewley objective preferences. When the objective relation is

Simple Bounds, Caution yields a representation in which acts are evaluated according to

their simple lower bounds.

Definition. Preference ≿′ has a Cautious representation if there exists an integer N ,

probability P on Σ, and a non-constant function u : Z → R such that, for every f, g ∈ F we

have f ≿′ g iff
∫
ΩEsiminfN,f (ω)

u dP (ω) ≥
∫
ΩEsiminfN,g(ω)

u dP (ω).

Call preferences that admit a Cautious representation Cautious preferences.

Theorem 4. The following statements are equivalent:

i. ≿ satisfies the Basic Conditions, Partitional Complexity, C0-C2, S-Independence and

Uniform Comparability; ≿′ satisfies Archimedean Continuity; and ≿ and ≿′ jointly

satisfy Consistency, Strong Consistency for Simple Acts and Caution.

ii. ≿ has a Simple bounds representation and ≿′ has a Cautious representation, with

common parameters P, u,N . Moreover, P is unique, u is unique up to positive affine

transformations, and for all f ∈ F , siminfN,f and simsupN,f are non-empty.

Cautious preferences capture a particular attitude towards the unknown. Faced with

a difficult choice, the decision maker takes a worst case view of the set of payoffs that

they consider reasonable. The properties of Cautious preferences, and their relationship to

models of ambiguity aversion, are discussed in detail in Section 4.1. In brief, the Cautious

completion is the most ambiguity averse completion of Simple Bounds preferences, in the
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sense of Ghirardato and Marinacci (2002). Importantly, Cautious preferences do not satisfy

the Uncertainty Aversion axiom of Gilboa and Schmeidler (1989), but do satisfy a modified

version, N -Ambiguity Aversion, discussed in Hartmann and Kauffeldt (2019). Under some

conditions, Cautious preferences are a special case of the Revealed Reasoning model of

Saponara (2020). This connection is discussed in detail in the introduction.

4.1 Properties of Caution

Cautious preferences can also be understood through the violations of Independence that

they exhibit. A decision maker with Cautious preferences may violate independence when

the mixture of two acts leads to an act that is harder to approximate from below by simple

acts. In particular, the mixture of two N -simple acts between which the decision maker

is indifferent will in general not be N -simple, and may thus be considered inferior to the

original acts. Cautious preferences are ambiguity averse in the sense of Ghirardato and

Marinacci (2002).12 In particular, for fixed u and P , decision makers with a higher capacity

are less ambiguity averse than those with lower capacity.

Given the discussion of Bewley (2002) above and the formal parallel between this paper

and GMMS, it is natural to consider the relationship between Cautious preferences and

Gilboa and Schmeidler (1989) MEU preferences. Preferences have an MEU representation if

there exists a convex set C of probabilities on Σ and a non-constant function u : Z → R

such that f is preferred to g if and only if

min
p∈C

∫
Ω
Ef(ω)dp(ω) ≥ min

p∈C

∫
Ω
Eg(ω)dp(ω).

As GMMS show, such preferences are derived from Bewley preferences through the Consis-

tency and Caution axioms, just as Cautious preferences are derived from Simple Bounds.

These representations do not coincide however. This can be seen most easily by considering

the Uncertainty Aversion axiom of Gilboa and Schmeidler (1989).

UNCERTAINTY AVERSION: For every f, g ∈ F , if f ∼ g then (1/2)f + (1/2)g ≿ g.

Uncertainty Aversion captures the notion that mixing acts smooths payoffs, and thus

reduces exposure to uncertainty. It is easy to see that this axiom is violated by Cautious

12Simple Bounds preferences are also ambiguity averse, if we extend the notion to incomplete
preferences.
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preferences. As noted above, mixing any two N -simple acts between which the decision

maker is indifferent leads to an act which is no better than either of the original acts. This

is because the mixed act may not be N -simple, and will thus be approximated from below,

whereas the original acts were perfectly understood. More generally, whenever the two

acts considered are comonotonic, Cautious preferences will satisfy the reverse Uncertainty

Aversion: if f ∼ g then g ≿ (1/2)f + (1/2)g. Two acts f, g are said to be comonotonic if

there is no ω, ω′ ∈ Ω such that f(ω) ≻ f(ω′) and g(ω′) ≻ g(ω). 13 The preference against

the mixture will be strict unless there are elements of siminfN,f and siminfN,g which share

the same partition. The intuition for this reversal is that mixing between comonotonic acts

does not smooth payoffs across states in the same way that mixing between non-comonotonic

acts can. On the other hand, since the two acts may have had a lot of variations on different

regions of the state space, the mixed act will be more difficult to approximate from below

than any of the two acts individually. This contrast illustrates that MEU and Cautious

preferences capture very different notions of aversion to uncertainty.

Uncertainty Aversion is satisfied by Cautious preferences whenever the mixture of f

and g is N -simple, and indeed the inequality may be strict. A modification of Uncertainty

Aversion along these lines is studied by Hartmann and Kauffeldt (2019), who state the

following axiom

N-AMBIGUITY AVERSION: f1, . . . , fn ∈ F , α1, . . . , αn ≥ 0,
∑n

i=1 αi = 1,
∑n

i=1 αifi =

f ∈ FN such that f1 ∼ f2 · · · ∼ fn implies f ≿ f1.

The preferences studied by Hartmann and Kauffeldt (2019) differ from Cautious prefer-

ences, primarily in that they satisfy the Comonotonic Independence axiom of Schmeidler

(1989).

COMONOTONIC INDEPENDENCE: For all pairwise comonotonic acts f, g, h, and all

α ∈ (0, 1), f ≻ g implies αf + (1− α)h ≻ αg + (1− α)h.

13This can be seen as follows. For a set I ⊆ Ω and act f define f(I) = inf{u ◦ f(ω) : ω ∈ I}. Then
the value of siminfN,f is given by

max
{Ii}N

i=1∈TN (Ω)

N∑
i=1

P (Ii)f(I).

When f and g are comonotonic fαg(I) = αf(I) + (1− α)g(I) for all I, where fαg = αf + (1− α)g.
The claim follows.
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Schmeidler’s motivation for Comonotonic Independence, as opposed to the usual Inde-

pendence axiom, is similar to my motivation of S-Independence. Schmeidler (1989) notes

that arbitrary mixtures may lead to acts which define a much finer (larger) algebra than the

original acts, and thus violations of Independence may occur. However, if “f , g and h are

pairwise comonotonic, then the comparison of f to g is not very different from the comparison

of [αf +(1−α)h to αg+(1−α)h]”. In some circumstances however, comonotonicity may be

too weak a notion to guarantee that mixtures do not alter the the acts under consideration

in ways that lead to violations of independence. Consider the following simple example. Let

the state space be the interval [0, 1] and identify u(f(ω)) with f(ω). Let f = 2 on [0, 1/2)

and f = 4 on (1/2, 1]. Let g = 1 on [0, 2/3) and g = 6 on (2/3, 1]. Suppose f ≻ g. The

mixture 1/2f +1/2g has both a greater spread between its highest and lowest outcomes and

a larger partition than f . Both these changes may lead the DM to favor g. The Simplicity

Conditions, along with S-Independence, can be seen as making precise the notion of “not

very different”. Cautious preferences capture aversion to uncertainty in the sense that the

decision maker, faced with an act that she does not fully understand, assigns to the act

the minimum value consistent with monotonicity and her preferences over the acts that she

understands well. Uncertainty here stems directly from the complexity of the acts under

consideration. However, cautious preferences satisfy the following condition, capturing a

notion of aversion to comonotonic mixtures.14

COMONOTONIC MIXTURE AVERSION: For all comonotonic acts f, g with f ∼ g and

α ∈ (0, 1), f ≿ αf + (1− α)g.

4.2 Empirical evidence

Cautious preferences display features of ambiguity aversion. One of the useful features of this

model is that it explicitly separates the decision makers understanding of the environment

from her attitude towards the unknown. This novel model of ambiguity aversion can explain

some experimental findings at odds with existing models.

14In ongoing work, I characterize a broad class of preferences satisfying Comonotonic Mixture
Aversion. I show that within this class, cautious preferences are simultaneously i) maximally
ambiguity averse, in the sense of Ghirardato and Marinacci (2002), ii) maximally N-Ambiguity
averse, and iii) maximally averse to mixtures of N -simple acts. Details available upon request.
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Chew et al. (2017) find that subjects are averse to increases in the number of possible

compositions (the size of the state space in my framework) of a deck of cards on which bets

are made. For example, consider an individual betting on red in a deck of red and black

cards, where the number of red cards is known to be between n and 100− n. The authors

find that subjects aversion to the ambiguous deck, measured by the difference between their

certainty equivalents for an ambiguous act and the corresponding compounded lottery, is

decreasing in n. The data contradict the predictions of the maxmin expected utility (Gilboa

and Schmeidler, 1989) and recursive expected utility (Klibanoff et al., 2005; Seo, 2009),

which predict an aversion to increasing the number of possible compositions only in certain

cases. Similarly, Viscusi and Magat (1992) document increasing ambiguity aversion as the

range of uncertain outcomes increases.

4.3 Alternative approaches

There may be situations in which decision makers take the opposite approach to what they

recognize as their limited understanding of the objects of choices.

ABANDON: For all f ∈ F and h ∈ Fc, if h ̸≿ f then f ≿′ h.

Replacing Caution with Abandon yields the obvious converse representation, which I

call Reckless preferences, whereby acts are evaluated according to their simsup rather than

siminf. Such preferences seem to contradict common assumptions about risk and ambiguity

aversion. They have a flavor of, but are distinct from, optimism or overconfidence. The

decision maker does not behave exactly as if she thought high payoff states are more likely

to occur, but rather as if the underlying act is as good as possible without violating her

limited understanding of the situation. Such a model may be useful for understanding the

behavior of decision makers who seem to favor nebulous prospects with high potential over

those that are well-understood. I will sometimes use the notation U(f) or U(f, P ) to denote

perceived utility. If the agent is cautious U(f, P ) = EP [EsiminfN,f (ω)u], and if the agent is

reckless U(f, P ) = EP [EsimsupN,f (ω)
u].

An alternative approach to incompleteness would be to proceed as in Bewley (2002) and

assume that there is a default option and the DM satisfies an inertia condition, whereby

an alternative act is chosen over the default if and only if it is preferred, according to the

underlying incomplete preference. While a full coverage of inertia is beyond the scope of this
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paper, the results presented here are helpful for understanding such a model. What matters

for choice under inertia is the simsup of the default act and the siminf of the alternative. The

behavior of these objects is studied in the comparative statics and applications sections.15

4.4 A note on Consistency

Given the interpretation of the subjective preference as an extension of the incomplete

objective preference, it would seem natural to impose Strong Consistency everywhere: for

all f, g ∈ F , f ≿ g implies f ≿′ g, and f ≻ g implies f ≻′ g. Consistency allows the

decision maker to be indifferent under ≿′ between some acts that are strictly ranked under

≿.16 It turns out that Strong Consistency everywhere is incompatible with Archimendean

Continuity of ≿′. This conflict between Caution, Strong Consistency, and Continuity is

not unique to this setting. GMMS face the same trade-off obtaining MEU preferences as

the Cautious completion of Bewley preference (see Section 4.1), and the incompatibility

holds for a broad class of incomplete preference models.17 Rather than relaxing consistency

to retain continuity, as in Theorem 4, one can drop the continuity requirement for ≿′ and

impose Strong Continuity everywhere. This yields “lexicographic” preferences: acts are first

ranked by statewise dominance, and then according to their siminf if they are not ranked

according to statewise dominance. The difference between the lexicographic model and

that of Theorem 4 is one of continuity; the two models have nearly identical properties and

predictions.

5 Applications

The subsequent applications focus on Cautious and Reckless preferences. However the results

are relevant for Simple Bounds preferences more generally, as these are also characterized by

the siminf and simsup. For example in the insurance choice application of Section 5.2 under

inertia, an individual chooses some plan f over the default act f if and only if siminfN,f is

preferred to simsupN,g. Thus the results on insurance valuation for a Cautious individual

in Section 5.2 also answer the question of how an individual with inertia will value new

15The earlier working paper version of this paper includes further discussion of inertia.
16In fact, under Strong Consistency for Simple Acts, this occurs for acts f, g only if a) either f ≥ g

or g ≥ f , and b) siminfN,f ∩ siminfN,g ̸= ∅.
17As a technical note, Strong Consistency for Simple Acts renders imposition of further basic

conditions on ≿′ redundant, as these are inherited from ≿ on the set of well-understood acts.
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offerings relative to their default plan.

The applications of this section build heavily on comparative statics results from

Valenzuela-Stookey (2022). Further discussion of how to solve for siminfN,f and simsupN,f in

applications, both analytically and computationally, can also be found in Valenzuela-Stookey

(2022).

5.1 Consumption-Savings

In this section I study consumption-savings decisions in a two period model. The following

observation is useful for understanding the role of complexity in this setting. Let f be an

increasing and real-valued act on Ω = R (recall that using the Lebesgue approach discussed

in Section 3.2 and Appendix C.4.1, it is essentially without loss of generality to consider such

acts). Let P be the cdf of the agent’s belief and u the DM’s utility function. Fix a selection

s from siminfN,f , and recall that since f is monotone, s is defined by a vector of cut-offs

(ti)
N
i=0. Define the lower-perceived distribution P s

N to be the distribution which places mass

at the cut-off points so as to satisfy EP s
N
[f ] = EP [siminfN,f ]. Similarly for s ∈ simsupN,f

defined by cut-offs (ti)
N
i=0, the upper-perceived distribution P̃ s

N is defined as the distribution

which places mass at the cut-off points so as to satisfy EP̃ s
N
[f ] = EP [simsupN,f ].

18

Observation 1. Let f ◦ u be increasing. Then P̃ s′
N ≿FOSD P ≿FOSD PN for any

s ∈ siminfN,f and s′ ∈ simsupN,f . If, moreover, u ◦ f is integrable then EP [u ◦ f ] =

limM→∞EPM
[u ◦ f ] = EP̃M

[u ◦ f ].

Observation 1 can be extended to more general environments using the Lebesgue

approach of section C.4.1. This observation facilitates comparisons between constrained and

unconstrained agents.

5.1.1 Portfolio choice with a safe and risky asset

Suppose the DM is cautious and faces the problem of allocating wealth between consumption,

purchase of a risk-free asset and purchase of a risky asset. I compare choices under a capacity

constraint to those of a fully rational agent (N = ∞). Let Rb be the certain return on the

18So if P has no mass points, P s
N places mass of P (ti+1)− P (ti) on ti, for i = 0, . . . , N − 1 and is

zero elsewhere, and P̃ s
N places mass of P (t′i)−P (t′i−1) on i = 1, . . . , N . In other words, Observation 1

is simply the observation that for an increasing act, the siminf (simsup) is a step function, where the
steps touch u ◦ f at their leftmost (rightmost) endpoints.
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risk free asset, and Rs the uncertain return on the risky asset with cdf P and pdf p on the

interval [Rs, R̄s]. The DM with capacity N solves maxb,s u(w − b− s) + βV N (Rbb+Rss),

where

V N (Rbb+Rss) = max
{{ti}Ni=0∈I}

N∑
i=1

[P (ti)− P (ti−1)]u(Rbb+ ti−1s), (1)

and I is the set of interval partitions of [Rs, R̄s]. Note that limN→∞ V N (Rbb + Rss) =∫
u(Rbb + rs)dP (r). As Observation 1 makes clear, for any fixed portfolio choice the

unconstrained DM perceives a FOSD shift of the returns perceived by the constrained DM.

Of course, as the constrained DM changes their portfolio allocation the perceived distribution

of Rs induced by siminf will also change, so this is not the same problem as comparing

portfolio choice under two different fixed yield distributions.

Proposition 3. Let u be CRRA with a coefficient of relative risk aversion greater than or

equal to 1.19 Then

i. For a given level of aggregate savings x > 0, a Cautious DM allocates a greater portion

of savings to the safe asset than an unconstrained DM.

ii. A Cautious DM saves more overall than an unconstrained DM.

Part i of Proposition 3 is perhaps unsurprising; the Cautious DM takes a pessimistic

view of uncertainty, and so invests less in the risky asset. Part ii is more striking; despite

perceiving savings as less profitable, the Cautious DM saves more. Loosely, the reason is

that what matters for the savings decision is not the level of returns, but the marginal return

on an additional dollar saved, and the assumptions on u imply that the Cautious DM, who

anticipates being poorer in the future than the unconstrained DM, wants to save more. The

proof is slightly more nuanced, as one must also account for the fact that the perceived

distribution (or equivalently, the siminf) depends on the level of savings.

5.1.2 Equilibrium Asset Prices

In the previous section, we studied the savings problem of a single agent. Consider now an

economy with a representative agent who chooses between a safe and risky asset. In order

19Part (i) holds under the weaker condition that u′′′(z)u′(z)/u′′(z)2 ≥ 2 for all z. I state it for
CRRA for simplicity. The assumption that the risk aversion coefficient is greater than 1 is standard.
Part (ii) also holds under weaker conditions, CRRA just makes it easy to show that (9) in the proof
holds. As the proof illustrates, neither of these conditions is necessary for the result
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for the market to clear the price of the risky asset and the return on the safe asset must

adjust so that the representative agent demands zero of both assets. Returns are as in the

previous section. Normalize the price of the safe asset to 1 and let the price of the risky

asset be given by ρ. I assume that the agent has an endowment of w in each period. Let

P b,s be the perceived distribution given investment b in the safe asset and s in the risky

asset. The constrained DM solves

max
b,s

u(w − b− ρs) + β

∫
u(w + bRb + sr)dP b,s(r).

For the unconstrained DM the problem is identical, except that P b,s is replaced with P . It

is intuitive that a cautious (reckless) constrained DM should be biased towards the safe

(risky) asset, relative to the unconstrained DM. The constraint simply coarsens the DM’s

understanding of the stochastic payoff of the risky asset, which leads the cautious agent to

undervalue it and reckless agent to overvalue. In fact, using the condition that the assets that

must be in zero net supply in equilibrium, we can extend this intuition to make comparisons

between intermediate capacity levels.

Proposition 4. The equilibrium risky asset price with a Cautious (Reckless) representative

agent is increasing (decreasing) in the agent’s capacity.

When the agent is cautious, Proposition 4 gives an explanation for the so called “equity

premium puzzle”.

5.2 Insurance valuation

I now compare the salience of various features of insurance plans for a complexity-constrained

versus a fully rational (N = ∞) individual. I focus on a Cautious individual, but the analysis

is equally relevant for an individual who faces inertia with respect to some fixed default

plan, as discussed above.

I take as given a class of basic insurance contracts that are characterized by a premium

p, i.e. price for the plan; a deductible d, below which the individual bears all losses; a

coverage rate c specifying the fraction of losses above the deductible covered by the plan;

an out-of-pocket expenditure cap m, which is the maximum amount that an individual

will have to pay, excluding the premium. I do not provide a foundation for the use of
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these piece-wise linear contracts, but they are by far the most common form of insurance

contract. These contracts have the feature that the individual’s ex-post wealth is decreasing

in the realized loss in [0, ω̄]. Recall that in this case siminf and simsup will be measurable

with respect to N -element interval partitions, which I will describe by the cut-off states

t0 = 0, t1 . . . , tN = ω̄.

5.2.1 The setting

Consider an individual facing a bounded loss distribution on Ω = [0, ω̄] with absolutely

continuous CDF P . The loss distribution will be fixed throughout. Let w be the individual’s

endowment wealth. In autarky the ex-post wealth is w − ω, where ω is the realized loss.

I do not consider here the choice of the contract by the insurer, only the valuation by

the individual. Say that a capacity-constrained individual over-reacts (under-reacts) to a

change from one plan to another if the magnitude of the difference between their values for

the two plans is greater (less) than that of a fully rational individual.

Ωd

(a) No cap

Ωd

(b) Cap

Figure 1: siminf with and without out-of-pocket maximum

5.2.2 Salient plan features

I will consider changes in the deductible and in the coverage rate, meaning the percentage

c of losses above the deductible covered by the contract (c = 1 in the full insurance case).

Proposition 5 states that a cautious agent over-reacts to changes in both parameters when

there is no out-of-pocket expenditure cap. On the other hand, when there is a binding cap

the agent’s valuation is unaffected by changes in the coverage rate, provided the coverage

rate is sufficiently high.
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Proposition 5. Consider marginal changes to a contract with no out-of-pocket expenditure

cap. A cautious agent:

1. over-reacts to changes in the deductible.

2. over-reacts to changes in the coverage rate.

Proposition 5 is silent on which of the distortions is relatively larger. If we focus on

marginal changes to a baseline plan with full insurance above the deductible, then the

over-reaction to the coverage rate will be relatively larger than that to the deductible if the

decision maker believes that high losses are sufficiently likely. In this case the highest cut-off

defining the siminf will be close to d (but always strictly below d, by Lemma 4), and so the

response to a deductible change will be close to that of a fully rational DM. However caution

will still cause the DM to drastically over-react to reductions in coverage rate. Similarly,

when N is sufficiently high the highest cut-off defining the siminf will be close to d, so again

the over-reaction to the coverage rate will be the larger of the two when N is high enough.

Restricting attention to contracts with near full insurance above the deductible, it is

easy to show a stronger comparative statics result.

Proposition 6. Consider a contract with deductible d and c = 1. For both the deductible

and the coverage rate the magnitude of the response of a cautious agent to marginal changes

is decreasing in N .

Many of the settings in which biases towards low deductibles are observed involve full

coverage above the deductible. In this case cautious individuals are always biased towards

low deductible plans, and this bias is decreasing in their capacity.

Proposition 7. With c = 1, the amount a cautious individual is willing to pay to lower the

deductible by a given amount is decreasing in their capacity.

Finally, I consider how a capacity constraint affects the individual’s willingness to pay

to decrease the out of pocket maximum.

Proposition 8. The amount a cautious agent would be willing to pay to decrease the

out-of-pocket maximum is decreasing in their capacity.
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The finding that lower capacity individuals place a greater value on the out of pocket

maximum may help explain the widely documented bias towards full insurance, for example

by Shapira and Venezia (2008). Full insurance plans are easy to understand, since the loss

is independent of the state. In general, constrained individuals will overvalue full insurance

plans relative to those for which the realized losses are a more complicated function of the

state.

5.2.3 Dominated choices

Bhargava et al. (2017) find that many individuals choose dominated plans, and that the

propensity to do so is positively correlated with both high expected losses and earnings

levels.20 The cautious model can provide an explanation for these observations.21 The result

depends on the nature of plan dominance. These results also demonstrate the usefulness

of the comparative statics properties discussed in the appendix. Bhargava et al. (2017)

observe individuals choosing low deductible plans even when the increase in the premium

relative to a high deductible plan (holding other plan features constant) is greater than the

maximum possible savings from the lower deductible. Figure 2 illustrates a situation in

which the maximum possible savings from the low deductible, high premium plan is equal

to the increase in the premium. Call this as a weakly dominated low-deductible plan.

Ωd d′

Figure 2: Indifference with a weakly dominated low-deductible plan

In Figure 2 the solid black line is the high deductible, low premium plan, and the black

20Interestingly, the authors find that the number of parameters needed to describe a plan, an
alternative measure of complexity encountered in the literature, does not predict dominated choices.
This suggest that the partitional notion of complexity may be more relevant in this setting.

21My model does not predict strictly dominated choices, but allows for indifference between pairs
of plans ordered by weak dominance, even for full support beliefs. If dominated choices are related to
act complexity then the empirical evidence is informative about what types of acts are perceived to
be complex. Additional factors, such as difficulty understanding how plans map states to payments,
may combine with complexity considerations to produce strictly dominated choices.
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dashed line is a low premium, high deductible plan. Both plans have the same coverage rate.

The red dotted line is the siminf, which in this case is the same for both plans. This occurs

whenever the lowest cut-off for the high deductible plan is above its deductible. Let l(ω|d, c)

be the amount paid by the consumer when the loss is ω given a contract with deductible

d and coverage rate c (this is stated formally in Lemma 5 in the Online Appendix). More

interesting than the fact that dominated plans can be chosen is are the conditions which

are conducive to such mistakes. Bhargava et al. (2017) observe that dominated choices are

correlated with both expected losses and earnings levels. Proposition 9 predicts the former.

To the extent that earnings are correlated with the capacity to evaluate acts, Proposition 10

predicts that low earners will be more prone to mistaken indifference. The following corollary

establishes a single-crossing property of dominated choice which implies that individuals

who are more pessimistic about their losses are more prone to make dominated choices (in

both cases, all other model parameters are held constant).

Proposition 9. If an individual with belief P chooses a weakly dominated low-deductible

plan then so does one with belief P ′ if P ′ ⪰MLR P .

Proposition 10. If an individual with capacity N ′ chooses a weakly dominated low-

deductible plan then so is one with capacity N if N ′ ≥ N .

5.2.4 Discussion

This section relates to the large empirical literature documenting behavioral phenomena

in choices of complicated contracts. The model is able to explain many observed choice

patterns which differ from the predictions of standard EU theory. Abaluck and Gruber (2011)

find that consumers underweight out-of-pocket spending relative to premiums. Moreover,

cautious agents will respond more than the fully rational to changes in the coverage rate

when there is an out-of-pocket expenditure cap and the coverage rate is high (see Proposition

5). Cutler and Zeckhauser (2004) document a bias towards low deductible plans. This is

consistent with a cautious decision maker (see Proposition 5). The results of this section

highlight the dependence of the qualitative nature of comparisons to the rational model on

details of the insurance plans under consideration. Such variation forms an interesting basis

for further empirical work, and provides a more nuanced perspective on “behavioral biases”.
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5.2.5 MEU in insurance

The insurance plans considered here all induce payoffs that are monotone in the the state.

If the set C of beliefs over which the DM with MEU preferences minimizes contains a

first-order stochastically dominant belief then this will be the minimizing belief regardless of

plan characteristics. In this sense the individual will behave exactly like an expected utility

maximizer.

In some cases MEU and cautious preferences predict similar behavior. For example, in

the MEU framework we can consider individuals who minimize over smaller sets of beliefs,

which is analogous to the idea of increasing capacity. Consider comparing the relative

value of two plans which induce ex-post wealth functions f1, f2 for two individuals, one of

whom has a larger set of beliefs. If the larger set of beliefs contains an upper bound in the

first-order stochastic dominance (FOSD) order, and the payoff difference f1−f2 is increasing

(decreasing) in the state then the individual with the larger belief set will value f1 more

(less) relative to f2 than the individual with the smaller set. For example, the individual

with a larger set of beliefs will value reductions in the out-of-pocket maximum more than an

individual with a smaller set of beliefs.
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Appendix

A Axiomatizing Partitional Complexity

In this section I discuss an axiomatization of Partitional Complexity. A number of the

axioms state that “there exists” an act with certain properties. While axioms with existential

qualifiers are not testable, they are intended here to illustrate more precisely the behavioral

content of Partitional Complexity. Moreover, these axioms relate directly to the procedural

learning model of Appendix B, which further motivates the axioms.

A bet on an event E is a binary act that has a strictly better consequence on E than on

the complement of E. Given any acts f, g, let fEg be the binary act which is equal to f on E

and g elsewhere. The following axioms characterize the set of acts that are well-understood

by the decision maker.

Simplicity Conditions. Let τ be f ’s partition, with typical elements T, T ′.

A0. For any event E ∈ Σ there exists a bet on E that is well-understood.

A1. If f is well-understood then for any partition τ ′ coarser than τ , there exists a well-

understood act with partition τ ′.

A2. Let f be a well-understood act. Let g measurable with respect to f ’s partition, and

for which there exists a constant act a ∈ f(Ω) such that for all ω ∈ Ω either g(ω) = f(ω)

or g(ω) = a. Then if g is well-understood, αf + (1 − α)g also is well-understood for all

α ∈ (0, 1).

The Simplicity Conditions (and A3 below) are further motivated by a procedural model

of learning, presented in Appendix B.

Roughly, A1 says that acts with coarser partitions are easier to understand. For example,

if we merge two cells in the partition of f and replace the outcome on the merged cell with

the conditional expectation of f over the two cells, we might expect that the act has become

easier to evaluate. (In the procedural model of choice of Appendix B I show that it is

precisely this type of conditional-mean modification which makes an act easier to compare.)

A2 is similar to the Certainty Independence assumption of Gilboa and Schmeidler (1989).

Certainty Independence would imply that if f is well-understood and c is a constant act, then

αf +(1−α)c would also be well-understood. A2 generalizes this conclusion to mixtures with
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non-constant acts g that are well-understood, provided g has the same partition and range

as f , and is constant on the set of states on which it differs from f . Standard arguments in

favor of Certainty Independence, that mixing with a constant act does not help to hedge

against uncertainty, therefore apply.

Under the Basic Conditions, the Simplicity Conditions characterize the set of well-

understood acts. This characterization can be separated into two parts. First, A0-A2 imply

that i) if any act with a given partition is well-understood then so are all such acts, and

ii) with the refinement order on the space of partitions, the set of partitions for which

measurable acts are well-understood is a lower-set.22

Proposition 11. Under the Basic Conditions, the following are equivalent.

1. Preferences satisfy A0-A2.

2. Preferences satisfy Partitional Complexity.

Given Proposition 11, we can also relax the Cardinality Conditions, again with an eye

towards the procedural model of Appendix B.

A3. If f is well-understood then for any non-null T ̸= T ′ in τ , and any 2-element partition

τ ′ of T ∪ T ′, there exists a well-understood act with partition τ ′ ∪ (τ \ {T, T ′}).

By Proposition 11, replacing C1 with A3 does not affect the characterization of the

well-understood set.

B Learning motivation for the simplicity conditions

I present here a simple procedural model of a decision maker using data to inform their

choice between uncertain acts. The purpose of this section is twofold. First, it demonstrates

that the Simplicity Conditions are satisfied under natural assumptions on the learning model.

Second, it formalizes the intuition that acts with coarser partitions are easier to understand.

The setting is that of a standard frequentist inference problem. A decision maker is

endowed with a dataset χ of K i.i.d. draws from an unknown distribution P .23 They must

22Recall the distinction between an act “with partition τ” and a τ -measurable act. The former
means τ is the coarsest partition w.r.t which the act is measurable.

23This sampling procedure can be interpreted literally as sampling from an unknown distribution.
Alternatively, we can think of it as a reduced form model of contemplation in which the DM accesses
a latent belief P , similar in spirit to drift-diffusion models of cognition.
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compare an arbitrary simple real valued act f and constant act c. These can be thought of

as the utility images of acts with outcomes in an arbitrary space. The DM uses their data

to estimate the expected value of f , as well as the risk arising from sampling uncertainty.

Let the empirical distribution of the sample be P̂χ. The empirical expectation of f is

Êχ[f ] =
N∑
i=1

f(Ti)
1

K

∑
x∈χ

1{x ∈ Ti}. (2)

The error due to sampling uncertainty is εf (χ) := Êχ[f ]−E[f ]. Denote the true distribution

of εf (χ) across different samples by Gf . Gf is unknown to the DM, as it depends on the

unknown distribution P . Instead, the DM uses an estimate Ĝf of Gf when making decisions.

I assume that the DM uses the bootstrap to estimate Ĝf .
24 To complete the description

of the environment, assume that the DM uses a decision rule that maps Êχ(f) and Ĝ to a

ranking between f and c. I also allow the DM to declare that f and c are un-rankable. This

is a standard problem of statistical inference. I will show that any protocol that is consistent,

in a weak sense, with second order stochastic dominance rankings of the error distributions

will satisfy A1. I will show further that reasonable decision rules in this environment satisfy

all of the Simplicity Conditions.

First, I will discuss how A1 is related to second order stochastic dominance rankings of

the error distributions. Let τ = {Ti}Ni=1 be a act f ’s partition, and let τ ′ = {T ′, T3, . . . , TN}

where T ′ = T1 ∪ T2. It seems intuitive that learning about acts measurable with respect

to τ ′ will be easier than learning about those measurable with respect to τ , since the set

of events to which the DM must assign probabilities is strictly smaller (in the inclusion

order). Proposition 12 formalizes the sense in which this is true. Of course, the difficulty

of a comparison depends not only on the partitions of the acts involved, but also on their

values. Let f̃ be an act such that f̃(x) = E[f |T ′] for x ∈ T ′, and f̃(x) = f(x) otherwise.

24The bootstrap procedure for estimating Gf is as follows. Draw a sample χ̄ of size K from the

empirical distribution (i.e. sample the data with replacement) and calculate ε̄f (χ̄) := Êχ̄[f ]− Êχ[f ].
Do this repeatedly and use the resulting empirical distribution of ε̄f (χ̄) as the estimate of Gf . The

idea is to treat the empirical distribution P̂χ as if it were the true distribution, for the purposes
of estimating Gf . Since n−1/2εf is an asymptotically pivotal statistic, the bootstrap estimator
provides an asymptotic refinement of the normal approximation, and therefore performs better in
finite samples (see Horowitz (2001)). Thus it is reasonable for the DM to use the bootstrap to
calculate Ĝf .

34



For any act h, let εh(χ) = Êχ[h]− E[h], and let Gh be the distribution of εh. Say that

distribution F strictly second-order stochastically dominates distribution H (F >SOSD H) if∫
u(x)dF (x) ≥

∫
u(x)dH(x) for all concave u, with strict inequality if u is strictly concave.

Proposition 12. Gf̃ strictly second-order stochastically dominates Gf .

The intuition for this result is straightforward. Consider the errors made in the estimation

of E[f ] versus E[f̃ ]. Notice that for all datasets χ, Êχ[f̃ |T ′] = E[f̃ |T ′]. The randomness of

Êχ[f |T ′] simply adds noise to the distribution of errors from the estimation of E[f ], relative

to those of E[f̃ ]. A similar conclusion holds for f̄ , where f̄ = Êχ[f |T ′] on T ′, and f̄ = f

elsewhere.

Corollary 1. Ĝf̄ >SOSD Ĝf

This follows immediately from Proposition 12, since the bootstrap estimator treats the

empirical distribution as if it were the true distribution. We return now to the DM’s problem

of choosing between the act f and a constant act c. A natural assumption about decisions

in this framework is that greater uncertainty about E[f ] makes it harder for the DM to

compare f to constant acts (comparable in this setting meaning that the DM is willing to

state a preference for one of the two acts).

CONFOUNDING SAMPLING UNCERTAINTY: For any acts f, f ′ with Êχ[f ] = Êχ[f
′]

and Ĝf ′ >SOSD Ĝf and any constant act c, if f is comparable to c then so is f ′.

Proposition 13. Any decision rule satisfying Confounding Sampling Uncertainty will satisfy

A1

Proposition 13 is an immediate implication of Corollary 1. As a concrete example of

a protocol satisfying Confounding Sampling Uncertainty, consider the following. Given

data set χ the DM concludes that f ≿ c if and only if EĜf

[
ϕ
(
Ê[f ]

)]
≥ ϕ(c)− k for some

increasing, strictly concave function ϕ and constant k > 0. Moreover c ≿ f if c ≥ Êχ[f ]. I

will refer to this as the smooth sampling uncertainty model. It is similar in spirit to the

smooth ambiguity model of Klibanoff et al. (2005), where here the higher order uncertainty

derives from sampling uncertainty, rather than subjective ambiguity. Additionally, the

smooth sampling uncertainty model allows the DM to express incomplete preferences.
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Clearly, f will have a certainty equivalent only if Ĝf is not too dispersed. In particular, f

will have a certainty equivalent c if and only if i) Êχ[f ] = c, and ii) EĜf

[
ϕ
(
Ê[f ]

)]
≥ ϕ(c)−k.

Corollary 1 implies that the smooth sampling uncertainty model satisfies Confounding

Sampling Uncertainty since ϕ is concave. In fact, the model satisfies all of the Simplicity

Conditions, plus A3 and C4.

Proposition 14. Smooth sampling uncertainty satisfies the Simplicity Conditions, A3, and

C4.

Smooth sampling uncertainty is by no means the only model for which the Simplicity

Conditions will be satisfied. As the proof of Proposition 14 shows, A1 and A3 are very close

from a learning perspective. Given Proposition 13, A3 is satisfied so long as the decision

rule is suitably continuous in the estimated error distribution Ĝ.

C Appendix: Omitted Proofs

C.1 Proof of Theorem 3 and Theorem 1

I prove Theorem 1, Theorem 3 is an immediate corollary.

By Partitional Complexity, we know that FT ⊆ FCE for some downward direct set of

partitions T (FT be the set of acts measurable with respect to some partition in T ). By C0,

we can choose such T which contains all binary partitions. The first part of the proof shows

that preferences on FT have an expected utility representation under the Basic Conditions

and S-Independence. Then Uniform Comparability implies the desired representation.

Part 1. The restriction of ≿ on L satisfies the von Neumann-Morgernstern axioms, and

so is represented by v(l) = El[u]. Without loss of generality assume that v(L) ⊃ [−1, 1].

Fix a partition τ = {Ti}Ni=1 ∈ T . The restriction of ≿ to acts measurable with respect

to τ satisfies the standard SEU axioms (see for example Gilboa and Schmeidler (1989)).

Therefore there exists a probability measure P τ on τ such that for all τ -measurable acts

f, g, f ≿ g iff EP τ [v ◦ f ] ≥ EP τ [v ◦ g].

It remains to show that there exists a probability P on Σ such that P τ (A) = P (A) for

all τ ∈ T and A ∈ Σ. For any A ∈ Σ and any τ ′, τ ′′ ∈ FT such that A ∈ τ ′, A ∈ τ ′′, it must

be that P τ ′ = P τ ′′ , since the certainty equivalent for the act 1A must be the same regardless
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of which of P τ ′ , P τ ′′ is used to represent preferences. Thus P (A) = {P τ (A) : τ ∈ T } is a

well defined function. P is non-negative since each P τ is.

To show additivity of P , it suffices to consider acts in F2. I show now how additivity

of P is implied by S-Independence. To see this, it is sufficient to consider 2-element

partitions and Ω = {ω1, ω2, ω3}. Let τ1 = {{ω1}, {ω2, ω3}}, τ2 = {{ω1, ω3}, {ω2}}, and τ3 =

{{ω1, ω2}, {ω3}}. Let 1A be an act such that v ◦ f(ω) = 1 for ω ∈ A, and 0 otherwise. Then

P τ i(ωi) = E
P τi [1{ωi}] for i ∈ {1, 2, 3}. We wish to show that P defined as P (ωi) = P τ i(ωi)

for i ∈ {1, 2, 3} is a well-defined probability on Ω that is consistent with P τ1 , P τ2 , and P τ3 .

To see this, let f1, f3 ∈ F2 be acts such that v ◦ f1({ω2, ω3}) = 1 and v ◦ f1(ω1) = −1; and

v◦f3({ω1, ω2}) = 1 and v◦f3(ω3) = −1. Then 1
2f1+

1
2f3 = 1ω2 , so EP τ2 [

1
2f1+

1
2f3] = P τ2(ω2).

But by S-Independence we also know that 1
2f1 +

1
2f3 ∼ 1

2U(f1) +
1
2U(f3), where U(fi) is

a constant act such that v(U(fi)) = E
P τi [fi]. Then, we also have, with the usual abuse of

notation, that 1
2f1 +

1
2f3 ∼ 1

2(P
τ1({ω2, ω3}) − P τ1(ω1) + P τ3({ω1, ω2}) − P τ3(ω3)). Thus

1
2(P

τ1({ω2, ω3}) − P τ1(ω1) + P τ3({ω1, ω2}) − P τ3(ω3)) = P τ2(ω2). Using this equality it

is easy to see that P is well defined and consistent; for example P (ω2) = P τ2(ω2) =

1− P τ1(ω1)− P τ3(ω3) = 1− P ({ω1, ω3}).

By exactly the same argument, we can show that P as defined above is consistent with

P τ ′ and P τ ′′ for any 2-element partitions τ ′′, τ ′. This gives the desired representation of ≿

for N -simple acts.

Part 2. That Uniform Comparability implies the representation in Theorem 1 is immediate;

when gsiminfT ,f and gsimsupT ,g both exist with gsiminfT ,f ≿ gsimsupT ,g, they play the

role of h and k in the axiom respectively.

I now show that gsiminfT ,f must be non-empty for all f . The proof for gsimsupT ,f

is analogous. Suppose gsiminfT ,f is empty. Since f is bounded, there exist constant acts

f̄ , f ∈ Fc such that f̄ ≿ f ≿ f . Let

s = sup
h∈{h∈FT : f≥0h}

∫
Ω
Ehu dP (ω)

By Uniform Comparability, there exists an h ∈ {h ∈ FT : f ≥0 h} such that h ≿ f . Choose

λ∗ such that λ∗ ∫
ΩEf̄udP (ω) + (1− λ∗)

∫
ΩEfudP (ω) = s. Since, by hypothesis, there are

no h ∈ FT with f ≥0 h that have expected utility equal to s, Uniform Comparability implies
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¬(f ≿ λ∗f̄ + (1− λ∗)f). But this violates Archimedian Continuity.

C.2 Theorem 2

Theorem 2 is immediate from Lemma 1, which I prove here.

Proof. of Lemma 1 Let τ i = {T i
j}Nj=1 be the last partition in the sequence constructed thus

far (we begin with τ1 = τ). I first show how to construct τ i+1. Assume τ i ̸= τ ′, otherwise

we are done.

Step 1.

Check if there exists T i
1 ∈ τ i and a collection {T ′

j}Jj=1 ⊂ τ ′ such that ∪J
j=1T

′
j = T i

1, for

J ≥ 2. If not, proceed to Step 2. Otherwise, find T i
2 ∈ τ i such that T i

2 ̸∈ τ ′. Such a T i
2 must

exists, since both τ i and τ ′ have N elements. Define τ i+1 := {T ′
1, (T

i
1 ∪ T i

2) \ T ′
1, T

i
3, . . . , T

i
N}.

Step 2.

In this case, there exists T ′ ∈ τ ′ and T i
1, T

i
2 ∈ τ i such that a) T ′∩T i

1 and T ′∩T i
2 are both

non-empty, and b) T i
1 \ T ′ ̸= ∅. That a) holds simply follows from the fact that τ i ̸= τ ′. If

b) fails, then there must exist T i
1 ∈ τ i and a collection {T ′

j}Jj=1 ⊂ τ ′ satisfying the conditions

for Step 1, so we would not have arrived at Step 2.

To generate τ i+1, fix all elements of τ i other than T i
1, T

i
2. Let r1 = T i

1 ∩ T ′ and let

r2 = T i
2∩T ′. By condition a) above, r1 and r2 are non-empty. By condition b), r1∪r2 ̸= T1∪T2.

Then define τ i+1 := {r1 ∪ r2, (T
i
1 ∪ T i

2) \ (r1 ∪ r2), T
i
3, . . . , T

i
N}.

As long as τ i ̸= τ ′ the algorithm above delivers τ i+1 ̸= τ i. Moreover, τk is a coarsening of

τ ∨ τ ′ for all k. Since there are at most N2 elements of τ ∨ τ ′, the set of possible coarsenings

is finite. Thus the algorithm eventually delivers τ ′ as long as there are no cycles. To see

that cycles cannot occur, first notice that if T ∈ τ i and T ∈ τ ′ then T ∈ τ i+k for all k ≥ 1.

Therefore the algorithm can only execute Step 2 finitely many times along any sequence,

since each time it does so it delivers τ i+1 which has one more cells in common with τ ′ than

did τ i. Between the steps at which Step 1 is executed there can be no cycles; once r and r′

are merged into the same cell in a Step 2 execution, they are never separated into different

cells.
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C.3 Proof of Theorem 4

Take f ̸∈ FCE . I first show that f ∼′ siminfN,f . Suppose ∃ c ∈ Fc such that c ≻ f (otherwise

the claim is trivial). By consistency f ≿′ siminfN,f . Suppose siminfN,f ̸≿′ f . By continuity

there exist constant acts c1 ≻ c2 and λ∗ ∈ [0, 1) such that λ∗c1 + (1 − λ∗)c2 ∼ siminfN,f .

Then for all λ > λ∗ it follows from Theorem 3 that f ̸≿ λc1 + (1 − λ)c2. Caution then

implies that λc1 + (1− λ)c2 ≿′ f . By continuity of ≿′, λ∗c1 + (1− λ∗)c2 ≿′ f . The claim

follows. Strong consistency for simple acts implies that the restrictions of ≿ and ≿′ to FCE

have the same representation. The theorem follows.

C.4 Existence of simsup and siminf

Rather than look for functions defined by partitions on Ω, I define a dual problem in terms

of partitions of w(Ω). I show that simsupN,w,P and siminfN,w,P can be mapped to increasing

functions on w(Ω), and then exploit this monotonicity and fact that w(Ω) is a bounded

interval of R. Put another way, Ω inherits both an order and a topology from R and the

measurable function w, which greatly simplifies the problem of finding simple bounds.

C.4.1 “Lebesgue Approach”

Let τ(Ω) be the set of all partitions of Ω, and τN (Ω) the set of N -element partitions. When

Ω is a partially ordered set, say that τ = {Ti}Ni=1 is an interval partition if Ti is an interval

for all i.25

Fix w ∈ B(Ω). For any h ∈ BN (Ω) and let τh = {Ti}Ni=1 be h’s partition. Define

T ′
i := {r ∈ w(Ω) : w(ω) = r for some ω ∈ Ti}. Define τ ′h := {T ′

i}Ni=1 as the cover of w(Ω)

induced by h. Say that h induces an interval partition of w(Ω) if τ ′h is a partition of w(Ω)

and T ′
i is an interval for all i.

Let Q be the law of w, defined by Q(A) = P (w−1(A)) for any Borel set A. Let S be Q’s

support. Since w is measurable, Q is a Borel measure on R, and hence a Radon measure.

Thus Q(A) = 0 for any A ∈ Ω \ S (see Parthasarathy (2005), ch 2). The idea behind the

proof is to look at N -simple functions on S, rather than on Ω. To do this, I need to show

that it is possible to move between BN (Ω) and BN (S). I will focus on the existence of

25By an interval in a partially ordered space (J,≥) I mean a set I ⊆ J such that for all x, y ∈ I
and all z ∈ J such that x ≥ z ≥ y, z ∈ I. I do not define an interval to be closed, as is sometimes
done.
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siminfN,w,P , as the argument for simsup is exactly symmetric.

The following lemma shows that siminfN,w,P , if it exists, will live in the subset of

BN (Ω) that induce an interval partitions of S. The lemma has a symmetric counterpart for

simsupN,w,P .

Lemma 3. For any w ∈ B(Ω), let h ∈ BN (Ω) be such that w ≥0 h. If h does not induce an

interval partition of S then there exists an N -simple function ĥ that does, and such that

w ≥0 ĥ and EP [ĥ] ≥ EP [h].

Proof. Let A ⊆ Ω be the set of states ω such that h(ω) > w(ω). We can restrict attention to

functions h such that P (A) = 0, as this is a requirement for siminfN,w,P . To begin, assume

that A ∩ w−1(S) = ∅, so w ≥w−1(S) h (i.e. w(ω) ≥ h(ω) for all ω such that w(ω) ∈ S).

Suppose that τ ′h is not a partition of S. For any r ∈ S and any Ti, Tj ∈ τh such that

Ti ∩ w−1(r) ̸= ∅ and Tj ∩ w−1(r) ̸= ∅, define ĥ as ĥ(ω) = max{h(Ti), h(Tj)} ∀ ω ∈ w−1(r),

and ĥ = h elsewhere. Then EP [ĥ] ≥ EP [h], and τ ′
ĥ
will be a partition of w(Ω). For any such

r, w ≥w−1(S) h implies r ≥ max{h(Ti), h(Tj)}. Therefore w ≥w−1(S) ĥ, and since P (A) = 0,

w ≥0 ĥ

If there are elements of τ ′h that are not intervals then there exist states ω1, ω2 ∈ Ω with

w(ω1) < w(ω2) and h(ω1) > h(ω2). Then define ĥ such that ĥ(ω2) = ĥ(ω1) = h(ω1), and

h = ĥ elsewhere. Clearly EP [ĥ] ≥ EP [h] and w ≥0 ĥ.

Now, I want to show that it is without loss to assume A∩w−1(S) = ∅. For any ω ∈ A, if

there exists r ∈ h(Ω\A) such that w(ω) ≥ r then we can replace h(ω) with r without altering

the value of h, or the fact that it is N -simple. Assume therefore that w(ω) < minh(Ω \A)

for all ω ∈ A. Since w ≥Ω\A h, this implies that w(ω) < inf w(Ω \ A) for all ω ∈ A. But

then w(A) ∩ S = ∅, or equivalently A ∩ w−1(S) = ∅.

Corollary 2. When siminfN,w,P and simsupN,w,P are non-empty, they contain functions

that induce interval partitions of S.

For any function h̃ ∈ BN (w(Ω)) we can define a function h ∈ BN (Ω) by h(ω) = h̃(w(ω)).

Moreover, EQ[h̃] = EP [h] by the definition of Q. Lemma 3 and Corollary 2 are useful because

they allow us to do the converse: given a function h ∈ BN (Ω) that induces a partition of

w(Ω) we can define a function h̃ ∈ B(w(Ω)) by h̃(r) = h(w−1(r)). By h(w−1(r)) I mean the

value taken by h for all ω ∈ w−1(r). For h̃ to be well defined it is therefore necessary that h
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induce a partition of w(Ω). Interval partitions are easy to work with, as we will see, since

they can be described by a vector of N cut-offs.

C.4.2 Existence proof

Proposition 15. Suppose Ω is a closed interval in R, P has full support, and w ∈ B(Ω) is

continuous, and increasing. Then siminfN,w,P is non-empty.

Proof. Since P has full support and w is continuous, it is without loss to assume that

w ≥ siminfN,w,P . To find siminfN,w,P , it will be sufficient to restrict attention to increasing

functions with interval partitions. This follows since for any non-interval partition T there

exist states ω1, ω2 ∈ Ω satisfying w(ω1) ≤ w(ω2) and hT (ω1) > hT (ω2). Then adding ω2 to

the partition cell that contains ω1 leads to a new N -simple function h′ with h′ ≤ w and

EP [h
′] ≥ EP [hτ ]. When working with interval partitions label the cells so that Ti > Ti−1

(in the obvious order). Moreover, since w is increasing we can assume that each interval in τ

contains its left endpoint (since it is always optimal to assign a state to the higher interval).

Any such partition can by fully described by a vector zτ = (t1, . . . , tN−1) of N − 1 cutoffs.

Given a cutoff vector z, let hz be the function constructed as above using the partition

described by z. The set of such cutoff vectors is compact. Moreover z 7→ EP [hz] is upper

semi-continuous; this follows from right-continuity of the CDF and continuity of w.

Proof. (Proposition 2). By Corollary 2, it is without loss to look siminfN,w,P in the subset of

BN (Ω) that induce interval partitions of S. It is therefore without loss to look for functions

h̃ ∈ BN (S) that have interval partitions, i.e. we solve maxĥ∈BN (S):w≥S ĥ
EQ[ĥ]. This problem

has a solution by Proposition 15. Let h̃ be the solution, and define h = h̃ ◦ w on S. Let

h = c on Ω \ S, for some c ∈ h(S). Then h will be N -simple and satisfy w ≥0 h. Moreover,

Corollary 2 implies that h ∈ siminfN,w,P .

C.5 Proof of Proposition 1

Proof. I give the proof for siminf; simsup is symmetric. If f−1
u (A) is non-null for every open

neighborhood of inf Efu(Ω) then there must be some ω such that inf Efu(Ω) ≥ EsiminfN,f
u(ω).

If there was a violation of statewise dominance for some ω′ then it could be removed by

specifying EsiminfN,f
u(ω′) = EsiminfN,f

u(ω). If the condition doesn’t hold then ∃ ω such that

it is strictly sub-optimal to have Efu(ω) ≥ EsiminfN,f
u(ω).
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C.6 Proposition 11

Proof. Suppose an act f , with partition {Ti}Ni=1, has a certainty equivalent. I wish to show

that any other act g with the same partition also has a certainty equivalent. Throughout

the proof, label the partition so that g(Ti+1) ≻ g(Ti) for all i. For notational simplicity,

I will identify each act f with its utility image v ◦ f . Finally, assume that there exists a

constant act c̄, c such that c̄ ≻ g(ω) ≻ c for all ω (in the end we will establish existence of

a certainty equivalent when such a c̄, c do not exist). The proof will proceed by induction

on N . The induction hypothesis for each K < N is that all acts measurable with respect

to a K-element coarsening of {Ti}Ni=1 have certainty equivalents. Note that, by the Basic

Conditions, preferences on Fc have an expected utility representation.

Before proceeding to the induction proof, I show the following claim.

Claim 1 : if λg + (1 − λ)c1 ∼ c2 for c1, c2 ∈ Fc with c̄ ≿ c1 ≿ c and λ ∈ (0, 1), then g has

a certainty equivalent. The proof of Claim 1 is as follows. By Double C-Independence, it

suffices to show that there exists c3 ∈ Fc such that λc3 + (1 − λ)c1 ∼ c2. If c1 ∼ c2 then

we are done. Suppose c1 ≻ c2. By Monotonicity and c1 ≿ c, c2 ≻ c. Then there exists

α ∈ (0, 1) such that αc+ (1− α)c1 ∼ c2. Let c3 =
α
λ c+

λ−α
λ c1. Since g(ω) ≻ c, and given

the expected utility representation on Fc, Monotonicity implies that λ > α, so c3 is well

defined. If c2 ≻ c1 replace c with c̄.

Now for the induction proof. I first show that all binary acts have certainty equivalents.

For any event E, let f be a bet on E that has a certainty equivalent (which exists by A0),

and g be another arbitrary bet on E. Let Ec = Ω \ E. There are a few cases to consider.

Suppose f(E) ≻ g(E) ≻ g(Ec) ≻ f(Ec). Then, using the expected utility representation on

Fc, ∃ λ ∈ (0, 1) and ĉ ∈ Fc such that λf(Ec)+(1−λ)ĉ ∼ g(Ec) and λf(E)+(1−λ)ĉ ∼ g(E)

(λ = (u(g(E))−u(g(Ec)))/(u(f(E))−u(f(Ec)))). By Double C-Independence λf +(1−λ)ĉ

is well-understood, and since this act is payoff equivalent to g, g is as well. Suppose

instead that g(E) ≻ f(E) ≻ f(Ec) ≻ g(Ec). Then, as before, there exist λ, ĉ such that

λg(E) + (1− λ)ĉ ∼ f(E) and λg(Ec) + (1− λ)ĉ ∼ f(Ec), so λg + (1− λ)ĉ has a certainty

equivalent. Then g has a certainty equivalent as well, by Double C-Independence.

Suppose g(E) ≿ f(E) ≿ g(Ec) ≿ f(Ec). Then ∃ λ1, λ2 ∈ [0, 1) such that λ1c̄ +

(1 − λ1)f(E) ∼ g(E), and λ2c̄ + (1 − λ2)f(E
c) ∼ g(Ec). Let λ = min{λ1, λ2}, and
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suppose WLOG that this is equal to λ1. By Double C-Independence, f ′ := λc̄+ (1− λ)f

has a certainty equivalent. Note f ′(E) ∼ g(E). By continuity ∃ α ∈ [0, 1] such that

αf ′(E) + (1 − α)f ′(Ec) ∼ g(Ec). Then αf ′(E) + (1 − α)f ′ is payoff equivalent to g and

has a certainty equivalent by Double C-Independence, so g has a certainty equivalent. The

remaining cases are analogous. Since by A0 every event has a well understood bet, we

can conclude that any binary act has a certainty equivalent. This is the first step in the

induction.

Now suppose that f ’s partition has N > 2 elements, and f has a certainty equivalent.

Then by A1 and the induction hypothesis, all acts g′ measurable with respect to coarser

partitions than f , and satisfying c̄ ≻ g′(ω) ≻ c for all ω, have certainty equivalents. I now

show that it is without loss to assume that f is increasing with respect to the same order as

g, i.e. f(Ti+1) ≻ f(Ti) for all i. To see this, it suffices to show that if f(Ta) ≻ f(Tb) ≻ f(Tc)

then there is an act f ′ with the same partition that has a certainty equivalent and such

that f ′(Ta) ≻ f ′(Tc) ≻ f ′(Tb) (a symmetric argument shows that there is f ′′ such that

f ′′(Tb) ≻ f ′′(Tc) ≻ f ′′(Ta)). Define h by h(Ta) = h(Tc) = f(Ta) and h = f on Ω \ (Ta ∪ Tc).

Then h has a certainty equivalent by the induction hypothesis. Moreover, by continuity there

exists α ∈ (0, 1) such that αh(Tc)+(1−α)f(Tc) ≻ f(Tb). Moreover, by A2, f ′ = αh+(1−α)f

has a certainty equivalent, as desired. So from now on, assume WLOG that f and g are

comonotone.

By Claim 1, it is without loss to consider g such that f(TN ) ≻ g(TN ) and g(T1) ≻ f(T1).

Then there exists λ ∈ (0, 1) such that λf(TN ) + (1 − λ)f(T1) ∼ g(TN ). Define hN by

hN = f(T1) on TN and hN = f elsewhere. Then hN has a certainty equivalent by the

induction hypothesis. Let f ′
N = λf + (1− λ)hN . Then f ′

N has a certainty equivalent by A2.

Moreover, by Monotonicity, fN defined as fN = g(TN ) on TN and fN = f ′
N elsewhere also

has a certainty equivalent. Then there also exists cN−1 ∈ {fN (TN ), fN (T1)} and λ′ ∈ (0, 1)

such that λ′fN (TN−1)+(1−λ′)cN−1 ∼ g(TN−1). Define hN−1 by hN−1 = cN−1 on TN−1 and

hN−1 = fN elsewhere. Then by the induction hypothesis hN−1 has a certainty equivalent,

and by A2 f ′
N−1 = λ′fN + (1− λ′)hN−1 also has a certainty equivalent. As before, define

fN−1 by fN−1 = g(TN−1) on TN−1 and fN−1 = f ′
N−1 elsewhere. Then fN−1 also has a

certainty equivalent. Proceeding in this way, we arrive at an act f1 = g which has a certainty

equivalent, as desired.
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I now need to address the assumption that there exist constant acts c, c̄ such that

c̄ ≻ g(ω) ≻ c for all ω. Suppose that we have established existence of a certainty equivalent

for all acts f , measurable with respect to a given partition, that satisfy this interiority

assumption. Suppose g is such that g(TN ) ≿ c ≿ g(T1) ∀ c ∈ Fc (recall the ordering of Ti).

Let g′ = 1
2g + 1

2

(
1
2g(TN ) + 1

2g(T1)
)
. Then g′ satisfies the interiority assumption, and so

has a certainty equivalent by hypothesis, which can be written as λg(T1) + (1− λ)g(TN ),

where λ ∈
[
1
4 ,

3
4

]
by Monotonicity. The existence of a certainty equivalent for g will

follow from Double C-Independence if we can show that there exists a κ ∈ [0, 1] such

that 1
2(κg(TN ) + (1− κ)g(T1)) +

1
2

(
1
2g(TN ) + 1

2g(T1)
)
∼ λg(T1) + (1− λ)g(TN ). Equating

coefficients, this holds for κ = 2λ− 1
2 , which is well defined since λ ∈

[
1
4 ,

3
4

]
.

C.7 Proof of Proposition 12

Proof. For any act g with partition τ and any set A define the random variable Êχ[g|A] as

follows:

Êχ[g|A] =


1

P̂χ(A)

∑N
i=1 f(Ti)

1
K

∑
x∈χ 1{x ∈ Ti ∩A} if P̂χ(A) > 0

E[g|A] otherwise

This definition is necessary since we will be dealing with finite samples, so P̂χ(A) = 0 with

positive probability even when P (a) > 0. Let fb be the act equal to b on T ′ and f elsewhere.

In what follows T ′c = Ω− T ′. Notice that εf (χ) can be written as

εf (χ) = Êχ[f |T ′](1− P̂χ(T
′c)) + Êχ[f |T ′c]P̂χ(T

′c)− E[f ]

= Êχ[f |T ′]− E[f |T ′] +
(
Êχ[f |T ′c]− Êχ[f |T ′]

)
P̂χ(T

′c)

−
(
E[f |T ′c]− E[f |T ′]

)
P (T ′c)

Similarly εfb(χ) =
(
Êχ[f |T ′c]− b

)
P̂χ(T

′c)− (E[f |T ′c]− b)P (T ′c). Thus

εf (χ) = εfb(χ) + Êχ[f |T ′]− E[f |T ′] +
(
b− Êχ[f |T ′]

)
P̂χ(T

′c) +
(
E[f |T ′]− b

)
P (T ′c)︸ ︷︷ ︸

ξ(χ)
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The weak inequality in the definition of SOSD will follow by Jensen’s inequality if I can show

that E[ξ|{χ : εfb(χ) = m}] = 0 for all m in the range of εfb , where the expectation is taken

with respect to the measure on datasets induced by P and the i.i.d. sampling procedure.

The strict inequality will follow since the distribution of ξ is non-degenerate.

Notice that, because sampling is i.i.d., E
[
Êχ[f |T ′]

∣∣∣ Êχ[f |T ′c], P̂χ(T
′c)
]
= E[f |T ′], where

we use here the specification of Êχ[f |T ′] = E[f |T ′] when P̂χ(T
′c) = 1. Independence between

Êχ[f |T ′], Êχ[f |T ′c], and P̂χ(T
′c) does not hold for finite samples due to integer restrictions.

Fortunately all that we need is the stated conditional mean independence condition. Given

this condition

E [ξ|εfb ] = E
[
E
[
ξ|P̂χ(T

′c)
] ∣∣εfb]

= E
[
(b− E[f |T ′])(P̂χ(T

′c)− P (T ′c))
∣∣εfb]

where the first equality is just the law of iterated expectations and the second follows from

conditional mean independence. Clearly if b = E[f |T ′] the expectation is zero, so we are

done.

C.8 Proof of Proposition 14

Proof. A1 has already been shown. A2 follows immediately from Jensen’s inequality. A3

follows from the fact that ϕ is strictly concave and Ĝf̄ >SOSD Ĝf ; for any 2-element partition

τ ′′ of T1 ∪ T2 we can choose a binary act b on τ ′′ that is arbitrarily close to a constant and

such that Êχ[b|τ ′′] = Êχ[f |τ ′′]. So b can be chosen such that the act f ′′ that is equal to b on

τ ′′ and f elsewhere will satisfy EĜf ′′

[
ϕ
(
Ê[f ′′]

)]
> EĜf

[
ϕ
(
Ê[f ]

)]
. A0 is satisfied because

for any event A we can choose a bet on A that is arbitrarily close to constant. C2 holds

since null events are those for which there is not data, and when using the bootstrap the

value on such sets is irrelevant.

C.9 Proofs for the applications

C.10 Proof of Proposition 3

Proof. Proposition 3(i). In what follows N and x, the level of savings, will be fixed. Assume

without loss of generality that the siminf is unique for any α (the same proof applies for
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any selection). Let Pα be the perceived distribution (induced by the cutoffs in (1)) when

the proportion of savings allocated to the risky asset is α. For a fixed level of savings x the

allocation problem becomes.

max
α∈[0,1]

∫
u((1− α)xRb + αxr)dPα(r). (3)

Notice that for the unconstrained DM, for whom Pα is replaced with P , the objective is

concave in α. This means that the derivative of the objective crosses zero (at most once)

from above. The result will follow if I can show that at any α the derivative of the objective

in (3) with respect to α is greater for the unconstrained DM than for the constrained one.

Recall that siminfN,f (equivalently Pα) is defined by a maximization problem, which satisfies

the conditions of the envelope theorem (Milgrom and Segal, 2002). Then, by the envelope

theorem, the derivative with respect to α of the objective function in (3) is given by

∫
u′((1− α)xRb + αxr)(xr − xRb)dP

α(r).

Recall that P ≿FOSD Pα for all α. It is therefore sufficient to show that u′((1− α)xRb +

αxr)(xr − xRb) is increasing in r. To do this I show that for any b, s ≥ 0

d

dr
[u′(Rbb+ rs)Rb] ≤

d

dr
[u′(Rbb+ rs)r],

or equivalently

(r −Rb)s ≤ − u′(Rbb+ rs)

u′′(Rbb+ rs)
(4)

Notice that by assumption Rb ∈ (Rs, R̄s), so that the left hand side of (4) is negative for r

low enough, while the the right hand side is always strictly positive. So it is sufficient to

show that the derivative with respect to r of the LHS of (4) is less than that of the RHS for

all r, i.e.

d

dr
[(r −Rb)s] ≤

d

dr

[
− u′(Rbb+ rs)

u′′(Rbb+ rs)

]
⇐⇒ u′′′(Rbb+ rs)u′(Rbb+ rs)

u′′(Rbb+ rs)2
≥ 2

This holds for all r for CRRA utility u(x) = x1−γ/(1− γ) when γ ≥ 1.
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Proof. Proposition 3(ii) To prove the proposition define

V (x,N) = u(w − x) + βmax
α

∫
u((1− α)xRB + αxr)dPα,x(r).

where Pα,x is the lower-perceived distribution corresponding to the siminf for the act induced

by x, α. Define

V (x,∞) = u(w − x) + βmax
α

∫
u((1− α)xRB + αxr)dP (r).

I will show that V has decreasing differences, in the sense that for x′′ > x′

V (x′,∞)− V (x′′,∞) ≥ V (x′, N)− V (x′′, N),

A sufficient condition for the above inequality is that for all x ∈ [x′, x′′]

d

dx

[
max
α

∫
u((1− α)xRB + αxr)dPα,x(r)

]
≥ d

dx

[
max
α

∫
u((1− α)xRB + αxr)dP (r)

] (5)

Let α(x,N), α(x,∞) be the optimal allocation proportions. Let ξ(α, r) = (1−α)xRB +αxr.

I prove that the inequality in (5) holds in two parts. First

d

dx

[
max
α

∫
u(ξ(α, r))dPα,x(r)

]
(6)

=

∫
u′(ξ(α(x,N), r))((1− α(x,N))Rb + α(x,N)r)dPα,x(r) (7)

≥
∫

u′(ξ(α(x,N), r))((1− α(x,N))Rb + α(x,N)r)dP (r). (8)

where the equality in (7) follows from the envelope theorem (which implies that the marginal

effect on Pα,x is second order because Pα,x is the solution to the maximization problem

defining the siminf). The inequality in (8) will follow by P ≥FOSD Pα,x if the integrand in

(8) is decreasing in r. Taking the derivative and rearranging we can see that this is the case

if and only if the coefficient of relative risk aversion −u′′(z)z/u′(z) is greater than or equal

to 1.
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To complete the proof that (5) holds I show that

∫
u′(ξ(α(x,N), r))((1− α(x,N))Rb + α(x,N)r)dP (r)

≥ d

dx

[
max
α

∫
u((1− α)xRB + αxr)dP (r)

]
.

This will follow by the envelope theorem and Proposition 3(i), which says that α(x,∞) ≥

α(x,N). We need only show that for α ∈ [α(x,N), α(x,∞)] the expression on the LHS

of the above inequality is decreasing in α. To be precise, we need that
∫
u′((1− α)xRB +

αxr)((1− α)Rb + αr)dP (r) is decreasing in α. Taking the derivative, we need

∫
[u′′(ξ(α, r))((1− α)xRb + αxr) + u′(ξ(α, r))](r −Rb)dP (r) ≤ 0. (9)

Notice that the term in brackets in the integrand, u′′((1−α)xRB+αxr)((1−α)xRb+αxr)+

u′((1−α)xRB +αxr), is less than or equal to zero by the assumption of −u′′(z)z/u′(z) ≥ 1,

but (r −Rb) is negative for low values of r and positive for high values. Assuming CRRA

utility, (9) reduces to

∫
u′((1− α)xRB + αxr)(xr − xRb)dP (r) ≥ 0 (10)

Notice that the LHS of (10) is exactly the derivative with respect to α of expected utility.

Thus for all α ≤ α(x,∞), (10) holds by concavity of the objective function. Then (5) holds,

as desired.

C.11 Proof of Proposition 4

Proof. Let P b,s
N be the induced distribution for the agent with capacity N (either Cautious

or Reckless). The first order conditions for the constrained agent’s problem are given by

[b] u′(w − b− ρs) =
d

db

[
β

∫
u(w + bRb − sr)dP b,s

N (r)

]
[s] u′(w − b− ρs)p =

d

ds

[
β

∫
u(w + bRb − sr)dP b,s

N (r)

]
.

In equilibrium (with b = s = 0) the FONC for b implies that RB = 1/β, regardless of

capacity or attitude. Let ρN be the equilibrium risky asset price for the capacity N agent.
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Zero net supply requires that

u′(w)ρN =
d

ds

[
β

∫
u(w + sr)dP 0,s

N (r)

]
s=0

. (11)

Clearly when s = 0 we have β
∫
u(w+sr)dP 0,s

N ′′(r) = β
∫
u(w+sr)dP 0,s

N ′ (r) for all N ′, N ′′. For

any s ̸= 0 for a cautious (reckless) DM, β
∫
u(w + sr)dP 0,s

N ′ (r) < (>) β
∫
u(w + sr)dP 0,s

N ′′((r)

for N ′′ > N ′, since P 0,s
N is the solution to a maximization (minimization) problem. Therefore

the derivative on the RHS of (11) is increasing (decreasing) in N when the DM is cautious

(reckless). The result follows.

C.12 Proofs for Section 5.2

Let f ′
−(ω) and f ′

+(ω) be left and right derivatives of f at ω respectively. The proof of

Proposition 5 makes use of the following lemma.

Lemma 4. Let f be a decreasing and continuous function. Suppose f has a kink at d

(f ′
+(d) > f ′

−(d)). Then siminf(f) is constant in a neighborhood of d.

Proof. Suppose that there is a cut-off at d, so tn = d and siminf(f) is discontinuous at tn.

Fix tn−1, tn+1. The value generated by a cutoff in (tn−1, tn+1) is

V (t) = [P (t)− P (tn−1)]u(f(t)) + [P (tn+1)− P (t)]u(f(tn+1))

Then optimality of tn = d implies that the left derivative of V at d must be positive and the

right derivative must be negative:

V ′
−(d) = [P (d)− P (tn−1)]u

′(f(d))f ′
−(d) + p(d)[u(f(d))− u(f(tn+1))] ≥ 0 (12)

V ′
+(d) = [P (d)− P (tn−1)]u

′(f(d))f ′
+(d) + p(d)[u(f(d))− u(f(tn+1))] ≤ 0 (13)

Equations (12) and (13) imply

f ′
+(d) ≤

−p(d)

u′(f(d))[P (d)− P (tn−1)]
[u(f(d))− u(f(tn+1))] ≤ f ′

−(d)

which contradicts f ′
+(d) > f ′

−(d).
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Let tN be the highest cut-off defining siminf(y|d). Clearly tN ≤ d, since y is flat above d

for a full insurance contract. Moreover Lemma 4 implies that tN < d.

Proof. Proposition 5. Let l(ω|d, c) be the amount paid by the consumer when the loss is

ω given a contract with deductible d and coverage rate c. Denote the perceived value to a

cautious agent of an insurance contract characterized by d, c as

UN (d, c) = max
t̂1,...,t̂N

N+1∑
n=1

[P (t̂n)− P (t̂n−1)]u(w − l(t̂n|d, c)) (14)

A fully rational agent would value the contract at

U∞(d, c) =

∫ d

0
u(w − ω)dP (ω) +

∫ ω̄

d
u(w − d− (1− c)(ω − d))dP (ω)

Let {t1, . . . , tN} be the solution to the maximization problem in 14, and let n∗ = max{n ∈

{1, . . . , N} : tn ≤ d} be the index of the highest cut-off below d. By the envelope theorem

UN
d (d, c) = −c

N+1∑
n=n∗+1

[P (tn)− P (tn−1)]u
′(w − d− (1− c)(tn − d)).

Moreover U∞
d (d, c) = −c

∫ ω̄
d u′(w − d− (1− c)(ω − d))dP (ω). Notice that

UN
d (d, c) < c[P (d)− P (tn∗)]u′(w − d− (1− c)(tn∗+1 − d))

− c
N+1∑

n=n∗+1

[P (tn)− P (tn−1)]u
′(w − d− (1− c)(tn − d))

≤ −c

∫ ω̄

d
u′(w − d− (1− c)(ω − d))dP (ω) = U∞

d (d, c)

where the first inequality follows since Lemma 4 implies tn∗ < d, and the second from

concavity of u. Notice that the second inequality holds with equality if and only if c = 1 for

u strictly concave. This proves part 1 of Proposition 5.
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The proof of part 2 is similar. In this case

UN
c (d, c) =

N+1∑
n=n∗+1

[P (tn)− P (tn−1)]u
′(w − d− (1− c)(tn − d))(tn − d)

> −[P (d)− P (tn∗)]u′(w − d− (1− c)(tn − d))(tn − d)

+
N+1∑

n=n∗+1

[P (tn)− P (tn−1)]u
′(w − d− (1− c)(tn − d))(tn − d)

≥
∫ ω̄

d
u′(w − d− (1− c)(ω − d))(ω − d)dP (ω)

= U∞
c (d, c)

where the first inequality follows from Lemma 4 and second from concavity of u.

C.12.1 Proof of Proposition 6

This result follows from a similar argument as Proposition 5. The key to the proof of

Proposition 5 was the result of Lemma 4 that tn∗ < d. When the baseline contract is full

insurance above d the following result allows us to draw the analogous conclusion that the

value of the greatest cut-off below d is increasing in N .

Let tN = tN0 , . . . , tNN+1 be the cutoffs defining siminf(y|d) when the agent has capacity

N and tN+1 = tN+1
0 , . . . , tN+1

N+2 be the cutoffs for capacity N + 1. When c = 1 we have the

immediate corollary ofLemma 7 and Valenzuela-Stookey (2022) Lemma 1: the largest cut-off

below d is increasing in N . Notice that for c = 1, n∗ = N where N is the capacity of the

agent. This follows since ex-post wealth is constant above d, and so it would not be optimal

to have a cut-off above d.

Corollary 3. For a full insurance contract above a deductible, tNN < tN+1
N+1.

We can now prove Proposition 6.

Proof. (Proposition 6) For c = 1 an envelope theorem implies that

UN
d (d, c) = −[1− P (tNN )]u′(w − d)

≤ [P (tN+1
N+1)− P (tNN )]u′(w − d)− [1− P (tNN )]u′(w − d)

= UN+1
d (d, c)

51



The proof for decreasing c (recall that c is bounded above by 1), is similar.

C.12.2 Propositions 9 and 10

Propositions 9 and 10 follow immediately from Lemma 7 and Valenzuela-Stookey (2022)

Lemma 12 and Theorem 1 respectively.

C.12.3 Proof of Propositions 8 and 7

I give the proof Proposition 8 here. The argument for Proposition 7 is essentially identical.

Proof. Let m be the out of pocket maximum, and UN (m) be the perceived value, holding c

and d fixed. Let l(m) = min{ω ∈ Ω : l(ω|d, c,m) = m}. Let C∗(N, [0, l(m)]) be the cut-offs

corresponding to the elements of the plan siminf. Since P is absolutely continuous and l(·)

is continuous, C∗(N, [0, ·]) is upper-hemicontinuous by Berge’s maximum theorem.

Recall that for a decreasing and continuous function f on an interval of the reals the cell

function corresponding to simple lower bounds is given by

v([a, b]) = f(b)P ({ω ∈ [a, b]}). (15)

Since utility is strictly decreasing on [0, l(m)] and P is full support the cell function

generating UN (m) is strictly submodular by Lemma 7. Moreover, it satisfies the conditions

for regularity in Tian (2015), so by Tian (2015) Theorem 3, C ′′ and C ′ are sandwiched for

all C ′′ ∈ C∗(N +1, [0, l(m)]) and C ′ ∈ C∗(N, [0, l(m)]), so upper-hemicontinuity implies that

for ε small enough there exist sandwiched selections from C∗(N,m) and C∗(N + 1,m− ε).

For an interval I ⊆ Ω and C ∈ CN (I) let V (I, C) be the coarse value correspond-

ing to the cell function in (15). Since utility is constant above l(m), we can write

UN (m) = V ([0, l(m)], C∗(N, [0, l(m)])) + (1 − P (l(m)))u(w − m) (with an abuse of no-

tation when C∗(N, [0, l(m)]) is non-singleton). The result follows from Valenzuela-Stookey

(2022), Theorem 4.

C.12.4 Lemma 5

Lemma 5. Consider two plans with no out-of-pocket maximum, coverage rate c, deductibles

d and d′, with d < d′, and premiums p, p′ such that p′ − p = (1− c)(d′ − d). Then a cautious
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agent is indifferent between the two plans if the lowest cut-off defining siminf of the high

deductible plan is (weakly) greater than d′. 26

Proof. Let t be the lowest cut-off for the siminf of the high deductible plan. Since the high

deductible dominates the low deductible plan, any set of cut-offs defines a less preferred

lower bound for the latter than for the former. Since the siminf of the high deductible plan

is also dominated statwise by the low deductible plan it is an element of the siminf for the

low deductible plan as well.

D Comparative Statics

Given the centrality of the siminf and simsup in the representations of incomplete and

complete preferences discussed above, it helpful in applications to understand how these

functions vary with the parameters of the problem. I discuss real valued acts, with the

understanding that all conclusions apply to the utility images of any acts. Moreover, I make

statements about every element of siminf and simsup, with the understanding that these

apply “up to sets of measure zero under P”. I first focus on properties of siminfN,w,P when

Ω = [ω, ω̄] ⊂ R and w is increasing. Results in this setting can be extended in two ways.

First, since siminfN,w,P = − simsupN,−w,P all results regarding siminf can be translated

directly to simsup. Second, using the dual “Lebesgue approach” of Appendix C.4.1, results

for increasing functions on an interval can be translated to results for arbitrary bounded

functions on an arbitrary state space. Finally, for simplicity I will assume throughout that

w ≥ siminfN,w,P . Using Proposition 1 we know when this will hold. Moreover, Proposition 1

tells us where violations of statewise dominance can occur. The results presented below will

apply with only minor modifications when ¬(w ≥ siminfN,w,P ), as we can just ignore the

zero measure set on which violations of statewise dominance occur.

26The siminf for the high deductible plan need not be unique. I state the result in this way for
simplicity, but it holds as long as the condition is satisfied for a selection from the siminf. In fact, if
siminf for the high deductible plan is single valued then the converse holds as well.
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D.1 Cell functions

Let PN be the space of N -element partitions of Ω, with typical element τ = (Ti)
N
i=1. We

can write the problem of finding siminfN,w,P as

max
τPN

V (τ) :=
N∑
i=1

v(Ti)

where v(Ti) := supω∈Ti
w(ω)P (Ti). Problems of this form are studied in Tian (2015), Tian

(2016), and Valenzuela-Stookey (2022). Following Tian (2015), I refer to v as the siminf cell

function, and V as the coarse value. Comparative statics for siminf follow from the results of

these three papers, given the following observations. First, it is without loss of generality to

restrict attention to interval partitions. The following is implied by the proof of Lemma 3.

Lemma 6. If w is increasing then every element of siminfN,w,P and simsupN,w,P has partition

consisting only of intervals.

Suppose τ ∈ TN (X) is an interval partition of the sub-interval X ⊂ Ω. Then τ can

be described by a set of cut-offs C = {ti}N−1
i=1 ∈ RN−1 giving the interior endpoints of the

partition intervals. I will sometimes use the convention t0 = inf{X} and tN = sup{X} when

referring to a partition of the interval X. Cut-off states can be assigned to partition cells

in any way.27 Since for finding the siminf it will always be optimal to assign cut-off states

to the higher interval I will assume this assignment from now on. Let CN (Ω) be the set of

cut-offs defining interval partitions of Ω. Abusing notation, I will write V (Ω, C) to denote

the coarse value of the partition induced on Ω by cut-off vector C ∈ CN (Ω).

Endow CN (Ω) with the pointwise partial order. Denote the least upper bound and

greatest lower bound of two cut-off vectors C,C ′ ∈ CN (Ω) by C ∨ C ′ and C ∧ C ′. Define

the union of two sets of cut-offs in the obvious way, as the ordered union of the two sets. 28

27Technically, a full description of the partition should include, in addition to the cut-offs, a vector
in {0, 1}N+1 identifying whether each cut-off state is assigned to the interval immediately above or
below it. A cut-off assigned the the lower interval is considered to be lower than the same cut-off
assigned to the higher interval, otherwise the usual order on RN is used to order cut-off vectors.

28By this definition the union of two cut-off vectors defines a partition which is the join, in the
refinement sense, of the partitions defined by each of the individual cut-off vectors. This is different
than the join of the cut-off vectors, which I define as the coordinate-wise maximum. The later notion
is restricted to cut-off vectors of the same length, whereas the union can be taken of any two cut-off
vectors.
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For an interval I = [a, b] and c in I, let ∆v(c, I) = [v([a, c]) + v([c, b])]− v(I).

Definition. A cell function v is (strictly) submodular if for all intervals I, I ′ with I∩I ′ ̸= ∅,

we have v(I ∩ I ′) + v(I ∪ I ′) (<) ≤ v(I) + v(I ′).

Notice that for submodular cell functions v(c, I) is always non-negative. Moreover, we

have the the following observation

Proposition 16. (Tian (2015), Observation 1) A cell function is (strictly) submodular

if and only if for all intervals I, I ′ with (I ′ ⊊ I ) I ′ ⊆ I and any c ∈ I ′ we have ∆v(c, I) (>

) ≥ ∆v(c, I ′).

Definition. A coarse value is (strictly) supermodular if it is (strictly) supermodular as a

function of cut-off vectors.

Proposition 17. (Tian (2015), Observation 3) The coarse value is (strictly) supermod-

ular if and only if the cell function is (strictly) submodular.

It is easy to verify that the siminf cell function satisfies the condition of Proposition 16,

and is thus submodular, so that the associated coarse value is supermodular by Proposition

17.

Lemma 7. The siminf cell function v(·) is submodular. It is strictly submodular if P has

full support and wa is strictly increasing.

Proof. For any interval [a, b] and c ∈ [a, b] we have

∆v(I, c) = wa([a, c])P ([a, c]) + wa(c, b)P ([c, b])− wa([a, b])P ([a, b])

= (wa([c, b])− wa([a, c]))P ([c, b])

where the last equality follows since wa([a, c]) = wa([a, b]) when wa is increasing, as it is here

by assumption. Suppose [a, b] ⊆ [l,m]. Then wa([c, b]) = wa([c,m]), wa([l, c]) ≤ wa([a, c])

and P ([c, b]) ≤ P ([c,m]), so ∆v([a, b], c) ≤ ∆v([l,m], c). The claim follows from Proposition

16.

Corollary 4. The coarse value for the siminf cell function is supermodular. It is strictly

supermodular if wa is strictly increasing and P has full support.
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Lemma 7 and Corollary 4 allow us to apply the comparative statics results of Tian

(2015), Tian (2016), and Valenzuela-Stookey (2022).

References
J. Abaluck and J. Gruber. Choice inconsistencies among the elderly. American Economic

Review, 101(4):1180–1210, 2011.

D. S. Ahn and H. Ergin. Framing contingencies. Econometrica, 78(2):655–695, 2010.

F. J. Anscombe and R. J. Aumann. A definition of subjective probability. Annals of
mathematical statistics, 34(1):199–205, 1963.

R. J. Aumann. Utility theory without the completeness axiom. Econometrica: Journal of
the Econometric Society, pages 445–462, 1962.

B. D. Bernheim and C. Sprenger. Direct tests of cumulative prospect theory. Available at
SSRN 3350196, 2019.

T. F. Bewley. Knightian decision theory. part i. Decisions in economics and finance, 25(2):
79–110, 2002.

S. Bhargava, G. Loewenstein, and J. Sydnor. Choose to lose: Health plan choices from a
menu with dominated option. The Quarterly Journal of Economics, 132(3):1319–1372,
2017.

S. H. Chew, B. Miao, and S. Zhong. Partial ambiguity. Econometrica, 85(4):1239–1260,
2017.

D. M. Cutler and R. Zeckhauser. Extending the theory to meet the practice of insurance.
Brookings-Wharton Papers on Financial Services, 2004(1):1–53, 2004.

M. Dean and P. Ortoleva. Allais, ellsberg, and preferences for hedging. Theoretical Economics,
12(1):377–424, 2017.

F. Echenique, L. Pomatto, and J. Vinson. Twofold conservatism in choice under uncertainty.
arXiv preprint arXiv:2012.14557, 2020.

F. Echenique, M. Miyashita, Y. Nakamura, L. Pomatto, and J. Vinson. Twofold multiprior
preferences and failures of contingent reasoning. Journal of Economic Theory, 202:105448,
2022.

D. Ellsberg. Risk, ambiguity, and the savage axioms. The quarterly journal of economics,
pages 643–669, 1961.

L. G. Epstein and J. Zhang. Subjective probabilities on subjectively unambiguous events.
Econometrica, 69(2):265–306, 2001.

T. Galaabaatar and E. Karni. Subjective expected utility with incomplete preferences.
Econometrica, 81(1):255–284, 2013.

P. Ghirardato and M. Marinacci. Ambiguity made precise: A comparative foundation.
Journal of Economic Theory, 102(2):251–289, 2002.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal of
Mathematical Economics, 18(2):141–153, 1989.

56



I. Gilboa, F. Maccheroni, M. Marinacci, and D. Schmeidler. Objective and subjective
rationality in a multiple prior model. Econometrica, 78(2):755–770, 2010.

F. Gul and W. Pesendorfer. Expected uncertain utility theory. Econometrica, 82(1):1–39,
2014.

L. Hartmann and T. F. Kauffeldt. A hierarchy of ambiguity aversion. Working Paper, 2019.

J. L. Horowitz. The bootstrap. In Handbook of econometrics, volume 5, pages 3159–3228.
Elsevier, 2001.

P. Klibanoff, M. Marinacci, and S. Mukerji. A smooth model of decision making under
ambiguity. Econometrica, 73(6):1849–1892, 2005.

E. Lehrer and R. Teper. Extension rules or what would the sage do? American Economic
Journal: Microeconomics, 6(1):5–22, 2014.

M. J. Machina and D. Schmeidler. A more robust definition of subjective probability.
Econometrica: Journal of the Econometric Society, pages 745–780, 1992.

M. Mandler. Incomplete preferences and rational intransitivity of choice. Games and
Economic Behavior, 50(2):255–277, 2005.

R. Mehra and E. C. Prescott. The equity premium: A puzzle. Journal of monetary
Economics, 15(2):145–161, 1985.

P. Milgrom and I. Segal. Envelope theorems for arbitrary choice sets. Econometrica, 70(2):
583–601, 2002.

P. G. Moffatt, S. Sitzia, and D. J. Zizzo. Heterogeneity in preferences towards complexity.
Journal of Risk and Uncertainty, 51(2):147–170, 2015.

W. S. Neilson. Some mixed results on boundary effects. Economics Letters, 39(3):275–278,
1992.

P. Ortoleva. The price of flexibility: Towards a theory of thinking aversion. Journal of
Economic Theory, 148(3):903–934, 2013.

K. R. Parthasarathy. Probability measures on metric spaces, volume 352. American Mathe-
matical Soc., 2005.

I. Puri. Simplicity theory of choice under risk. Working Paper, 2020.

N. Saponara. Revealed reasoning. Journal of Economic Theory, page 105096, 2020.

D. Schmeidler. Subjective probability and expected utility without additivity. Econometrica,
pages 571–587, 1989.

U. Segal. The ellsberg paradox and risk aversion: An anticipated utility approach. Interna-
tional Economic Review, pages 175–202, 1987.

K. Seo. Ambiguity and second-order belief. Econometrica, 77(5):1575–1605, 2009.

Z. Shapira and I. Venezia. On the preference for full-coverage policies: Why do people buy
too much insurance? Journal of Economic Psychology, 29(5):747–761, 2008.

D. Sonsino, U. Benzion, and G. Mador. The complexity effects on choice with uncertainty–
experimental evidence. The Economic Journal, 112(482):936–965, 2002.

57



J. Tian. Optimal interval division. Working Paper, 2015.

J. Tian. Monotone comparative statics for cut-offs. Working Paper, 2016.

Q. Valenzuela-Stookey. Monotone portfolio problems. Working Paper, 2022.

W. K. Viscusi and W. A. Magat. Bayesian decisions with ambiguous belief aversion. Journal
of Risk and Uncertainty, 5(4):371–387, 1992.

J. Von Neumann and O. Morgenstern. Game theory and economic behavior, 1944.

58


	The model
	Generalized Simple Bounds
	Simple Bounds
	Characterizing complexity
	Simple Bounds representation
	Theorem 3 discussion

	Extension: Completing preferences
	Properties of Caution
	Empirical evidence
	Alternative approaches
	A note on Consistency

	Applications
	Consumption-Savings
	Portfolio choice with a safe and risky asset
	Equilibrium Asset Prices

	Insurance valuation
	The setting
	Salient plan features
	Dominated choices
	Discussion
	MEU in insurance


	Axiomatizing Partitional Complexity
	Learning motivation for the simplicity conditions
	Appendix: Omitted Proofs
	Proof of Theorem 3 and 
	Theorem 2
	Proof of Theorem 4
	Existence of 
	``Lebesgue Approach''
	Existence proof

	Proof of Proposition 1
	Proposition 11
	Proof of Proposition 12
	Proof of Proposition 14
	Proofs for the applications
	Proof of Proposition 3
	Proof of Proposition 4
	Proofs for Section 5.2
	Proof of Proposition 6
	Propositions 9 and 10
	Proof of Propositions 8 and 7
	Lemma 5


	Comparative Statics
	Cell functions




