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Dynamic Modeling of Visual Search 

 
Abstract 

In 1998/1999 three participants trained for up to 74 hour long 
sessions to find a target in visual displays of 1, 2, or 4 objects. 
There were four targets and four foils that never changed. 
Displays occurred simultaneously, or the objects occurred 
successively, or the features of each object occurred 
successively. When successive, the SOAs were short (17, 33, 
or 50 ms) so the displays appeared simultaneous, making it 
likely that the search strategy was the same in all conditions. A 
2004 publication examined only the simultaneous condition 
and found evidence for serial search as well as some small 
amount of automatic attention to targets, and occasional early 
or late search termination. A 2021 publication examined only 
the displays with single objects, obtaining evidence for 
dynamic perception of features. Building on these results we 
present a simple dynamic model that explains the main 
processes operating in all the experimental conditions. 
 

Keywords: visual search; serial search; mathematical 
modeling 

Introduction 
An enormous literature has examined the processes of visual 
search (e.g. to pick a few examples from thousands: Eriksen 
& Hoffman, 1972; Schneider & Shiffrin, 1977; Shiffrin & 
Schneider, 1977; Treisman & Gelade, 1980; Wolfe, 1994; 
Geisler, Perry & Najemnik 2006; Huang, Theeuwes, & Donk, 
2021). Many of the studies have used static displays with 
binary decisions about target presence or absence: A target 
object is defined, and a display of N objects is presented, 
usually half the time containing the target and half the time 
not (in which case the display has all ‘foils’). A binary 
response is made and its accuracy and response time are 
measured. The studies have identified a large number of 
factors that determine how search proceeds. Often, search is 
serial in nature, each object being assessed one at a time in 
turn, usually when search is difficult (for example when a 
conjunction of features is required to determine whether an 
object is a target or foil; e.g. Schneider & Shiffrin, 1977; 
Wolfe, Cave & Franzel, 1989). Sometimes, search is parallel, 
usually when search is easy (e.g. Shiffrin & Gardner, 1972; 
Treisman & Gelade, 1980), or when sufficient consistent 
training allows attention to be drawn automatically to a target 
(Shiffrin & Schneider, 1977; Shiffrin, 1988), or when abrupt 
onset of a stimulus draws attention (Yantis & Jonides, 1996). 
Occasionally, possibly always, search is a mixture of serial 

and parallel processes (e.g. Shiffrin & Czerwinski, 1988; 
Wolfe, 1998). Evidence from these various publications 
notwithstanding, it is notoriously difficult to establish 
whether search is fundamentally serial or parallel (Townsend 
& Nozawa, 1995.).  

In an effort to explore the temporal aspects of 
search, two of the present authors carried out in 1998/1999 a 
visual search study with dynamic displays. The eight stimuli, 
four of which were targets and four foils, were initially novel 
and had four features each (see Figure 1). The stimuli and 
target-foil assignments never changed during training 
sessions (up to 74 one-hour sessions). The objects and 
features of the objects appeared in three types of conditions, 
each with display sizes of 1, 2, and 4: 1) simultaneous 
displays (the usual method); 2) displays in which the objects 
appear in sequence; 3) displays in which the objects appear 
simultaneously, but the features of the objects appear in 
sequence.  

 
Figure 1. Experimental stimuli. 

 
The stimuli were initially novel, so the search results 

would be minimally influenced by prior life experience. 
Extensive training was used so that the objects and their 
features would become extremely well learned, analogous to 
alphabet characters. Thus the aim was to understand search 
when the stimuli in the visual displays were well learned. In 
this report we analyze and model the results from two 
participants who completed seventy-four hour-long sessions, 
and one who completed 55 hour-long sessions. The stimuli 
are shown in Figure 1. Each consisted of a circle with four 
spokes extending in various directions. The four features 
defining targets and foils were chosen so that no single 
feature would discriminate targets from foils. Instead each 
target was defined by a conjunction of two features, the same 
two features for two of the targets and a different two features 
for the other two targets. These perfectly diagnostic features 
are highlighted in red and green in Figure 1, but were not 
color-highlighted in the actual study. When a single salient 
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feature discriminates targets from foils, search is often 
described best by ‘pop out’ with search time and accuracy 
largely independent of display size, even for untrained stimuli 
(e.g. Treisman & Gelade, 1980). When targets and foils are 
discriminated by a conjunction of features, search tends to be 
strongly dependent on display size, with time approximately 
linearly increasing, albeit extensive training can produce 
occasional automatic attention to targets, short-cutting serial 
search (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 
1977; Shiffrin, 1988; Wolfe, et al., 1989). 

Cousineau and Shiffrin (2004) published an initial 
analysis of the 1998/1999 data based only on the 
simultaneous conditions, an analysis focusing particularly on 
the distributions of response times. The distributions for 
target responses had multiple modes when display sizes were 
2 or 4, strongly suggesting serial search (the modes 
corresponding to a target being assessed in the first, second, 
or later serial position). More subtle aspects of the 
distributions suggested that two of the three participants on 
some trials had their attention attracted automatically to the 
target (so the target would be compared early, with a higher 
than random probability). Additional analyses suggested that 
the participants sometimes terminated search early on trials 
without a target, suggesting a small amount of fast guesses 
(Eriksen, 1988; Gondan & Heckel, 2008). 

Harding, Cousineau, and Shiffrin (2021) examined 
and modeled the 1998/1999 conditions in which only one 
object appeared, but features appeared either simultaneously 
or one at a time. Again, using both accuracy and response 
time distributions, they obtained evidence that the features of 
the displayed object were perceived individually as time 
passed, rather than together as a group. Thus different 
features were perceived at different times. Their model 
assumed that each feature was independently perceived at an 
exponentially distributed time after the moment of 
presentation (the exponential assumption was made for 
convenience). Evidence was obtained that this dynamic 
perception took place even when the features arrived 
simultaneously (i.e. different features were perceived at 
different times). These stimuli were trained for a huge 
number of sessions, likely causing them to be learned 
holistically. If so it could be surprising that the features were 
perceived at different times. However, Harding et al. (2021) 
did obtain evidence for holistic/configural processing, but 
only after a sufficient number of features had been perceived. 
Thus processing occurred in stages, starting with individual 
features perceived separately and then, for well learned 
stimuli, coalescing into configural wholes (see also Cox & 
Shiffrin, 2017). 

The evidence obtained by Cousineau and Shiffrin 
(2004) and Harding et al. (2021) was strong but based on 
subtle aspects of the response time distributions. We present 
a rather simple dynamic model in this article that is able to 
predict the main effects of accuracy and median response 
time for all the conditions of this study, without incorporating 
the subtle effects inferred from these two prior reports from 
the response time distributions. We believe that this 

demonstration is valuable because the processes of this 
simple model implement the main processes at work and 
explain most of the variance in the results. The demonstration 
that this model predicts the data quite well suggests that the 
medians of the response time distributions are a decent 
‘stand-in’ for the entire distribution. If we did produce a 
model that included the various processes inferred from the 
analyses of the response time distributions, the model would 
be sure to fit well, but would be extremely complex. Such a 
model would make it difficult to ascertain the main processes 
at work: It would be difficult to see the forest for the trees.  

Thus we present in this article a simplified model. It 
assumes that serial search is performed in a random order in 
all conditions except those in which the objects occur 
sequentially. In those conditions the model assumes that there 
is a tendency to start the search with the first object presented, 
the probability of doing so rising with longer SOA. Whatever 
object is chosen for the first comparison, the model for that 
comparison is based on the one presented in Harding et al. 
(2021). That should be appropriate because that model was 
applied to the conditions with a single object presented.  

Method 
The data we model in this paper is part of a large study 
exploring the dynamic aspects of visual search. The data were 
collected in 1998 and 1999 by Denis Cousineau and Richard 
Shiffrin. The number of objects presented on a trial was 1, 2, 
or 4. Half the trials contained one target and otherwise foils, 
and half contained no targets and all foils. The four targets 
and four foils never changed as the participants carried out 
visual search for a very large number of hour-long sessions. 
These eight stimuli were initially novel but were quickly 
learned.  

Stimuli 
Figure 1 shows the four targets and four foils. Each stimulus 
consisted of an empty circle with four spokes (the features) 
coming out of the circle at different angles. The four spokes 
could be placed in eight different positions on any given 
circle. The four features defining targets and foils were 
chosen so that no single feature would discriminate targets 
from foils.  

Participants 
Six participants participated in the experiment, but only three 
of them completed a sufficient number of trials to be included 
in the present analysis and modeling. Participants were 
instructed to respond as quickly as possible without 
exceeding 5% error rate. Participants A and D were women. 
Participant C is the second author. All three were right-
handed. Participants A and D were uninformed of the 
sequential presentation manipulations. That the stimuli were 
well learned was shown when Participant C demonstrated 
practically perfect transfer of search ability after a 22 year 
delay (Maxcey, Shiffrin, Cousineau & Atkinson, 2021). 
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Procedure 
Each trial included one, two or four displayed items. Half of 
the trials included a target object, and half only foils, the 
probability of each being 0.5. Targets and foils were selected 
randomly from their respective sets of four, and in positions 
that varied randomly from trial to trial. The objects were 
presented in four positions occupying the corners of an 
imaginary square with a central fixation point. After a 500 
ms. signal that the next trial is starting, empty circles were 
presented for 500 ms. in the positions in which that trial’s 
objects were going to appear. Then the objects, or the features 
of objects first appeared. Participants were instructed to give 
a binary decision to indicate whether a target object was 
displayed or not using the keys “1” and “2” of the numeric 
keypad of a regular keyboard.  

Sessions with simultaneous presentations were 
randomly interleaved with sessions with sequential 
presentations. In the sequential sessions analyzed and 
modeled in this article, trials were randomly selected to be 
one of two types: The objects occur sequentially or the 
objects occur simultaneously but with features that occurred 
sequentially. When objects or features occur sequentially the 
SOA was either 17, 33, or 50 ms.; these SOAs were permuted 
randomly to occur with equal probability. In the sequential 
object conditions the target could be first or last; in the 
sequential feature conditions the two diagnostic features 
could be first or last, these conditions also being randomly 
ordered. Figure 2 shows an example for a foil trial with 
simultaneous objects but sequential feature presentations.  
 

 
Figure 2. Example of a sequential feature presentation trial  

 
The sessions containing the data analyzed and 

reported here were sessions 33 to 74 for Participants A and 
C, and sessions 33 to 55 for D, in addition to the odd-
numbered sessions between 1 and 32 for all participants. 
Even-numbered sessions prior to session 32 included a 
different detection task that is out of this report scope. 

The three SOA values were short enough that all the 
sequential displays would appear simultaneous, making it 
likely that the search strategies would remain invariant across 
the various simultaneous and sequential conditions. 
Subjective reports by the participants indicated the 
perception of simultaneity remained even at the end of very 
many sessions of training (one naive participant noticed that 
the display occasionally felt blurry).  

Results 
Figures 3 to 6 show median response times and average 
accuracy values for target and foil tests, for set sizes of 1, 2, 
and 4, for simultaneous conditions, object sequential 
presentation conditions with three SOAs (with target 

presented first or last) and feature sequential presentation 
conditions with three SOAs (with target features presented 
first or last). Median response times are reported and modeled 
because some conditions had insufficient data to justify 
detailed distributional analysis and modeling. On the other 
hand, the large number of training sessions contained enough 
data for each of the three participants to make the accuracy 
and median RT results we mention in this section highly 
statistically significant. With respect to this issue we 
emphasize that our goal is a model that captures the major 
processes at work in this study, a model that will match the 
qualitative patterns observed, not a model that will predict the 
results precisely.  

Figures 3 (simultaneous conditions) and 4 
(sequential object conditions) show the results for accuracy 
(probability of correct response) and median response time. 
In both the simultaneous and sequential conditions, targets 
had lower accuracy than foils. This could reflect a bias to 
respond ‘foil’ when early comparisons do not find a target. In 
addition, targets had faster response times than foils, a result 
that in part could reflect the bias in the prior paragraph, but 
the more important cause of this result would be search that 
is serial and terminates when a target is found: On a target 
trial comparisons stop when a target is found; on a foil trial 
comparisons continue through all the objects.  

Strong evidence for serial search was reported by 
Cousineau and Shiffrin (2004) when they showed multiple 
modes of the RT distributions for targets, presumably 
reflecting termination at different comparisons. Here serial 
search is seen in the large increase in response times as set 
size rises from 1 to 4. 

These figures illustrate differences among the three 
participants. Participant A exhibits uniformly higher 
accuracy and slower response times than C and D. Most 
striking, in the sequential object conditions, the results for 
participants C and D exhibited higher accuracy and faster 
responses when targets were presented first, and this result 
increased with SOA. In the modeling it is assumed that there 
is a tendency for these participants to start serial comparisons 
with the first presented object, a tendency that rises with 
SOA. In contrast, Participant A did not show much tendency 
if any to respond better and faster when targets arrived first. 
It may be that A was motivated to maintain accuracy at all 
costs, and in order to do so, decided to compare in an 
invariant chosen order on all trials. If so, that suggests that 
the tendency to start comparisons with the first arriving 
object, i.e. search governed by onset, is not a completely 
automatic process, and can be controlled by a participant. 

Figures 5 and 6 present the data from the sequential 
feature conditions. In these conditions features appear 
sequentially but on all objects simultaneously: e.g. the first 
feature appears on all objects simultaneously (see Figure 2), 
and the same for subsequent features. Thus order of 
comparisons should be treated as random for all three 
participants. The median RT results are straightforward: 
They rise with set size and SOA, targets are faster if target 
features arrive first, and foils are faster if foil diagnostic 
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features arrive first. Such results are natural because increases 
in SOA will delay the average arrival time of diagnostic 
features, and more so when those features are last to appear.  

Participant A maintains high accuracy, as always, 
with a slight tendency to be less accurate when the target 
features arrive last. It appears that for the most part 
participant A waits to perceive most (or all) of the features in 
order to decide. The accuracy results are more complex and 
more variable for Participants C and D. Generally accuracy 
drops with set size. Averaging across the variable results, 
accuracy varies with SOA in a way that reflects the RT 
results, though inversely: Targets are more accurate when 
target features arrive first; foils are more accurate when foil 
features arrive first. It is best to interpret the results with the 
help of the modeling. 
 
Modeling 
As warranted by the data described earlier, and as is usually 
the case in visual search studies when target identification 
requires a conjunction of two or more features, we assume 
serial terminating search (e.g. Schneider & Shiffrin, 1977; 
Shiffrin & Schneider, 1997): The visual objects are compared 
one at a time, with a decision to stop and report when a target 
is identified; when no targets are found a foil report is made. 
When set size is greater than one, it is assumed that the order 
of comparison is random, with one exception: when objects 
occur sequentially, there is a tendency to compare first the 
object that arrives first.  This tendency is represented by a 
probability that rises with SOA is more evident in subjects C 
and D, and is estimated separately for each participant and 
each of the three SOAs. There are thus three onset parameters 
to be estimated.  

Whatever object is first compared, the model for that 
comparison is the one published by Harding et al. (2021): 
That model is quite complicated because their evidence 
showed that features arrive dynamically at probabilistically 
determined times, even when the features are presented 
simultaneously. In addition the model has to take into account 
the diagnosticity of the features as they appear, the possibility 
of error, and all of the calculations are different at each SOA 
when features are presented sequentially. Incorporating that 
model into the present one would have made the model 
extraordinarily complex, making it difficult to understand the 
main processes at work. Thus we decided to simplify by using 
that model for the first comparison for the three participants, 
for every trial, and for every condition.  

However, there was one complication in doing so. 
The Harding et al., model was fit to the response time 
distributions, and the present modeling only predicts median 
response times. It turns out that the 2021 model 
systematically overestimated the median response times, 
because the assumption (made for simplicity) that feature 
arrivals were exponential produced a predicted RT 
distribution that did not precisely match the observed 
distribution. Consequently, we decided it would be best to use 
the 2021 model, but re-estimate the parameter values based 
on a match to the median RTs rather than a match to the 

distributions. We then used these parameter estimates to 
produce predictions for every first comparison in the present 
modeling. The result was an excellent account of the data.  It 
is that version of the model reported here. We attempted 
another model where response times and accuracy values of 
first comparisons were fitted, not borrowed from Harding et 
al. predictions. This model produced predictions that were 
qualitatively similar to those for the model reported here, but 
were somewhat less accurate quantitatively. The predictions 
of that model can be found on this archived version: 
https://doi.org/10.23668/psycharchives.12560.   

The second assumption is that the time needed by a 
participant to finish the first comparison and make a decision 
is long enough that all objects and their features have been 
fully perceived by the time the second comparison takes 
place. For each participant, each comparison after the first is 
assumed to have an accuracy PT+ and PF+ for a comparison 
of a target and foil, and a median response time of T+ and F+ 
for correct responses. (We do not predict error response times 
because there were too few errors). Thus seven parameters 
were estimated for each participant.  

To predict the accuracy and median response times 
for the various conditions it is necessary to consider all orders 
of comparison, all differences in order of presentation, all 
differences in diagnosticity of features at each stage, and all 
possibilities of errors for a comparison. For example, in the 
sequential object conditions, the first object may or may not 
be compared first, and in either case the results will differ 
depending on whether the target appears first or last; in 
addition, the possibility of error in comparison means that 
some target comparisons will be missed and some foil 
comparisons will be seen as targets, ending search.  

 
Table 1: Estimated parameter values 

 
To predict response times and accuracies jointly, we 

set the objective function to be the sum of squared differences 
between observed and predicted response times and observed 
and predicted accuracy values. The sum of squared 
differences was standardized for response times and 
weighted for accuracies to maintain comparable scales for 
both measures. The optimization program was constrained to 
ensure that the onset probabilities for participants C and D 

  
 Participant 

Parameter A C D 
p1 onset prob. for SOA 17 0.14 0.21 0.42 
p2 onset prob. for SOA 33 0.14 0.35 0.63 
p3 onset prob. for SOA 50 0.17 0.51 0.66 
For comparisons after the first: 
T+ median RT for target 296 202 238 
F+ median RT for foil 195 114 138 
pT+ mean target accuracy 0.98 0.89 0.91 
pF+ mean foil accuracy 1.00 0.98 1.00 

Response time SSE 51 104 75 
Accuracy SSE 55 227 443.5 
Objective value (z) 106 331 518.5 
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increased with SOA. Parameter values were estimated for 
each subject separately using a nonlinear optimizer “Ipopt” 
that was available through the Julia programming language 
(Bezanson et al., 2017). The parameter values that produced 
the best fit by this criterion are given in Table 1.  
 
Model Assessment and discussion The predictions of the 
model (Figures 3-6) are qualitatively excellent, matching all 
the trends in the data, save for some variability that produces 
non-monotonic trends in a few conditions (these would be 
hard to predict for any model). Most of the predictions are 
pretty close quantitatively as well, though the task of the 
modeling was eased by fitting only median response times 
rather the entire distributions.  

The present model is quite simple because most of 
the complex and interesting aspects of the visual search and 
decision processes occur during the first comparison, and the 
first comparison predictions were borrowed from Harding et 
al. (2021). That publication should be accessed for complete 
details and discussion, but we mention here just a few key 
aspects of the processes operating in the first comparison. 
The features of the first object compared are not perceived at 
once, but rather are perceived sequentially as time passes, so 
that different features are perceived at different times. At 
each moment the evidence for the object being a target or foil 
is determined by the current set of features perceived. That 
evidence will therefore depend on which features with what 
diagnosticity are perceived at different times (which will vary 
in accord with sequential conditions and timing). When 
enough features are perceived, they merge and operate 
configurally as a whole. Evidence accumulates until one of 
two decision criteria is reached. When there is only one object 
in the display a response is given in accord with that decision. 
Note that the decision criteria reached is not always the 
correct one. Thus for any display size the response made is 
usually but not always correct.  

To use the Harding et al. model in the present 
modeling one needs to know which object is first compared. 
This is a random choice except in the object sequential 
conditions: In that case there is a probability of starting with 
the first object presented, a probability that rises with the 
SOA particularly for subjects C and D. 
 Although most of the model complexity lies in the 
first comparison, most of the variance in accuracy and 
response time lies in the set size effects and the order of 
comparison (and the way order interacts with target presented 
first or last in the object sequential condition). The first 
comparison predictions for the Harding et al. (2021) model 
show very little variation in accuracy and limited differences 
in response time: Most of the RT differences across 
conditions are quite small except for the feature sequential 
conditions when SOA is 33 and especially 50 ms. This latter 
result is unsurprising given that an accurate decision requires 
waiting until sufficient features are perceived. In this article 
we were interested in using a simplified model to capture the 
major processes that produce the largest effects, and these are 
due mostly to the choice of object for a first comparison (for 

participants C and D specifically) and the large effects of 
successive comparisons for sets sizes 2 and 4.  
 After the first comparison, matters become 
extremely simple, at least to a good approximation. We 
assume that by the time the first comparison is complete, all 
the objects and features of the current trial are fully perceived. 
This is a reasonable assumption because even the shorter 
comparison times after the first take more than 200 ms (see 
Table 1), and even the largest SOA only adds at most 150 ms 
to the first comparison. Thus after the first comparison we 
assume simple serial terminating search takes place, with 
some probability of correct comparison for targets and foils, 
and some time for a correct response for targets and foils. 
Thus all three participants have these four estimated 
parameter values.  
 A look at the estimated parameter values reveals 
some interesting results. The probability of a correct 
comparison is very high, as expected for stimuli and a task 
trained this extensively. Nonetheless there seems to be a bias 
for responding ‘foil’ because the probability correct for 
comparisons after the first is lower for a target trial than a foil 
trial. This hypothesis is strongly reinforced by the estimated 
time to respond correctly: This time is almost twice as high 
for responding to a target than a foil. Note that this difference 
is inconsistent and mostly missing for the first comparison, 
as shown by the predictions from Harding et al. (2021). A 
bias to respond ‘foil’ quickly after the first comparison would 
be natural for serial terminating search: As each comparison 
fails to find a target, the evidence mounts that the trial is a 
foil trial. For simplicity, the model estimates equal correct 
response times for all comparisons after the first. However, it 
would not be surprising if the bias to give fast foil responses 
rises as successive comparisons result in no target. We could 
have estimated different values of accuracy and response 
time for each successive comparison at the cost of four extra 
parameters per participant but this would have been a 
pointless exercise given the rather good predictions shown in 
Figures 3 to 6. 
 The probability of starting comparisons with the 
first object presented clearly rises as SOA increases. Such a 
result was expected, and is quite reasonable. The surprise was 
participant A who did not seem to respond strongly to onset 
and might have stuck with a predetermined order of 
processing.  
 For participants C and D, in the feature sequential 
conditions, there are strong effects of target features first or 
last (there is some indication this holds for participant A as 
well, for accuracy, but the high levels of accuracy for A make 
it hard to see such effects). The model of Harding et al. (2021) 
explains such effects due to the assumption of dynamic 
search: The momentary evidence is based on the features 
currently perceived. Thus target features first will produce 
evidence favoring target decisions. Target features last will 
do the opposite.  

For the object sequential conditions there are strong 
effects of order for participants C and D—accuracy is higher 
and response time lower when a target appears first, and these 
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effects are magnified as SOA increases. The model predicts 
such results because these participants are assumed to have a 
higher tendency to start comparisons with the first object that 
appears, a tendency that rises with the SOA.  
 Particularly for sets sizes of 2 and 4 the data exhibit 
a bias to respond more accurately and much faster for foil 
trials than target trials. The model predicts these effects for 
comparisons after the first with appropriate parameter values: 
Foil comparisons have higher estimated accuracy and much 
lower estimated response times. As mentioned earlier this 
bias is natural given that every successive comparison judged 
to be a foil increases the probability that the current trial is a 
foil.  
 In sum, it seems clear that this simple model, serial 
terminating search with a tendency for two participants to 
start search with an object that appears first, and with the first 
comparison predictions borrowed from Harding et al. (2021), 
captures the main findings from all the conditions of the 
1998/1999 study. It does ignore certain processes that are 
evidenced by careful analysis of the distributions of response 
times, such as those reported by Cousineau and Shiffrin 
(2004) for the simultaneous conditions, such as a tendency 
for some participants to start comparisons with a target, and 
a tendency for some participants to terminate search early 
with a foil response. These effects may be valid but are very 
small in the larger picture. A more complex model with many 
more parameters to represent these processes could be fit to 
the data including the full distributions of response times. 
However the predictions would be hard to improve 
significantly. 
 

 

Figure 3. Predictions (dashed) and observations (solid) for 
simultaneous presentation conditions. 

 

 
Figure 4. Predictions (dashed) and observations for the 

sequential object conditions. 
 

 
 

Figure 5. Predictions (dashed) and observations (solid) for 
response times, sequential feature presentation conditions. 

 

 
 

Figure 6. Predictions (dashed) and observations (solid) for 
accuracy, sequential feature presentation conditions. 
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