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Abstract: A feature issue is being presented by a team of guest editors containing papers based
on contributed submissions including studies presented at Optics and the Brain, held April 24-27,
2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver, Canada
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1. Introduction

We introduce the Biomedical Optics Express feature issue for Optics and the Brain, held April
24-27, 2023 as part of Optica Biophotonics Congress: Optics in the Life Sciences, in Vancouver,
Canada. This meeting served as a forum for discussion of existing and emerging techniques
as well as future directions to shed new light on the healthy and diseased brain. Optics offers
a unique toolkit for multiscale imaging of the living and intact brain from the microscopic to
macroscopic scale. At the same time, genetic labeling strategies provide optical contrast to image
neural function, and optogenetics permits the control of cellular function with light. To cover the
expertise needed to achieve these diverse goals, the meeting brings together engineers, optical
and medical scientists, biologists, chemists and physicians. The articles within this special issue
represent the broad scope of the community that participates in Optics and the Brain.

Diffuse optics can probe centimeters deep in human tissue with near-infrared light, to reach
the living brain non-invasively. A review article [1] highlights the measurement of oxidized
cytochrome-c-oxidase using a non-invasive optical imaging method of near-infrared spectroscopy
(NIRS) in adults and neonates. Another study [2] using conventional hemoglobin NIRS shows
that a virtual reality game task can modulate brain functional networks better than simple grasping
movements. This finding has implications for the recovery of grasping abilities in post-stroke
patients with hand paralysis.

Optical methods also elucidate structural and biochemical composition of brain tissue. In cancer
diagnostics, another study [3] investigated the use of laser-induced breakdown spectroscopy (LIBS)
and electrical spark-assisted laser-induced breakdown spectroscopy (SA-LIBS) in differentiating
glioblastoma (GBM) and oligodendroglioma (OG) against non-tumor infiltrated brain tissues.
The authors showed advantages of SA-LIBS in discriminating tumorous tissues, as well as
multiparameter characterization. In another work [4], a two-photon microendoscope intended for
label-free imaging in stereotactic neurosurgery was demonstrated. The device was small enough
to fit in a surgical cannula. Another work [5] demonstrated label-free imaging of myelin in a block
of human brain tissue using serial-sectioning polarization sensitive optical coherence tomography
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and quantitative birefringence microscopy. These technologies will aid in understanding the
brain’s complex fiber architecture over microscopic to mesoscopic scales. Finally, reminding us
that ‘optics’ extends to the x-ray regime, another study [6] showed the viability of speckle-based
phase contrast imaging and demonstrated the potential benefit of the dark-field modality for
virtual histology of brain tissue.

With the advent of optogenetics, advanced optical systems can now control and image brain
circuits with high spatiotemporal precision in 3D. One study [7] demonstrated an improvement to
Fast Light Targeting (FLiT), a technique previously developed for 3D holographic patterning with
rapid temporal sub-millisecond switching that is not limited by the refresh rate of the spatial light
modulator. The authors’ novel design shows better performance with reduced aberrations. Another
work [8] demonstrated a simple design for two-photon optogenetic holographic stimulation with
multiple laser wavelengths, a fiber bundle, and spatial light modulator. The simplified approach
can be used to perform scanless two-photon imaging combined with optogenetic stimulation to
modulate and record activity at the individual neuron-level.

Overall this special issue highlights the breadth of technologies and applications represented by
the Optics and the Brain community, and the wide range of spatial scales and brain observables
that can be measured or modulated by optical methods. The articles in this special issue represent
a just small sample of the high-quality brain-related research published in Biomedical Optics
Express recently [1–46]. We thank the Optica editorial board and staff for supporting this effort,
and we express gratitude to the community at large for providing high quality submissions and
reviews for this special issue.
Disclosures. Optovue, Inc. (VJS).
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