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The Capacity of Classical Summation over a
Quantum MAC with Arbitrarily Replicated Inputs

Yuhang Yao, Syed Jafar
Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697
Emails: {yuhangy5, syed}@uci.edu

Abstract—The problem of entanglement-assisted summation
over a quantum multiple access channel (Σ-QMAC) is intro-
duced, involving S servers, K classical (Fd) data streams that
are replicated arbitrarily across various subsets of servers, and
a receiver who wishes to compute the sum of the K data
streams. Independent of the data, entangled quantum systems
Q1,Q2, · · · ,QS are prepared in advance and distributed to the
corresponding servers. Each server s, s ∈ [S] locally manipulates
its quantum system Qs according to its classical data and
sends Qs to the receiver. The total communication cost is
logd |Q1|+logd |Q2|+ · · ·+logd |QS | qudits, where |Qs| denotes
the dimension of Qs. Based on a measurement of the composite
system Q1Q2 · · · QS , the receiver must recover the desired sum.
The rate thus achieved is defined as the number of dits (Fd

symbols) of the desired sum computed by the receiver per qudit
(d-dimsional quantum system) of download. The capacity C is the
supremum of the set of all achievable rates. As the main result
of this work, the precise capacity of Σ-QMAC is obtained, from
which it follows that quantum entanglements allow a factor of 2
gain in capacity (superdense coding gain) relative to capacity
with no entanglements, in all cases (any S, K, Fd and any
data replication pattern) provided that the entanglement-assisted
capacity does not exceed 1 dit/qudit (Holevo bound). Coding
schemes based on a recent N -sum box abstraction are sufficient
to achieve capacity.

I. INTRODUCTION

We explore the information-theoretic capacity of an ideal
(noise-free) quantum multiple-access channel (QMAC) with
S transmitters (servers) and 1 receiver (Alice), used for the
elementary distributed classical computation task of summa-
tion (Σ) of K classical data streams of Fd symbols (dits),
when each data-stream is available to an arbitrary subset of
transmitters. In short, we explore the capacity of a Σ-QMAC.
To illustrate the problem with a toy example, consider a user,
say Alice, who wants to compute the sum of K = 4 classical
data streams (A,B,C,D), that are distributed among S = 4
servers as shown in Fig. 1 so that Servers 1, 2, 3, 4 have data
streams (A,B), (A,C), (B,C), (D), respectively. Alice initially
has no quantum resource available to her. Independent of the
data-streams, (entangled) quantum systems Q1,Q2,Q3,Q4

are prepared in advance, and distributed to the corresponding
servers. Each Server s, s ∈ [S] encodes its classical data-
stream(s) into its quantum system Qs by local operations, and
sends Qs to Alice, incurring communication cost logd |Qs|

qudits,1 where |Qs| denotes the dimension of the quantum
system Qs. By measuring the received quantum systems, Alice
must be able to recover A+ B+ C+ D. If L dits of the
desired sum can be computed with total communication cost
N qudits, then we say rate R ≤ L/N (dits/qudit) is achievable.
The capacity C is defined as the supremum of the set of
all achievable rates. The capacity in the classical setting2 (Σ-
MAC) is labeled as CC .

Fig. 1. A Σ-QMAC setting, with K = 4 data streams (A,B,C,D) and
S = 4 servers. Server s, s ∈ [S] sends quantum subsystem Qs to Alice, with
communication cost logd |Qs| qudits.

Prior works in [1]–[3] explore sum-computation over a
QMAC with correlated data streams and noisy quantum chan-
nels, but with the restriction that there are only 2 servers. Prior
works on Quantum Private Information Retrieval (QPIR) [4]–
[7] implicitly explore specialized linear computations over a
QMAC with multiple transmitters, but since each server in
QPIR tends to generate a unique answer, it is as if each server
has a unique data stream. The key distinctive aspect that makes
the Σ-QMAC setting interesting is that we allow both arbitrary
number of servers as well as arbitrary replication patterns for
the data streams across the servers.

The main motivation of this work is to determine the
capacity of the Σ-QMAC. As an elemental setting, a sharp
capacity characterization of Σ-QMAC is a stepping stone

1In contrast to a dit, which is a classical d-ary symbol, a qudit, short for
a quantum-dit, represents a d-dimensional quantum system. For d = 2 these
are the common ‘bit’ and ‘qubit,’ respectively.

2The Σ-MAC is obtained from the Σ-QMAC by removing all quantum
resources, and having the servers send classical dits instead of qudits.



towards understanding the capacity of a QMAC for general
linear computation tasks. Additional motivation comes from
the perspectives of superdense coding [8] and the N -sum box
abstraction [9]. Quantum systems are particularly interesting
because of quantum-entanglements, which lead to counter-
intuitive phenomena, e.g., quantum teleportation. In the con-
text of quantum communication, the benefits of quantum-
entanglements are manifested in the possibility of super-dense
coding gains. It is well known that in the absence of entan-
glements, each qudit of quantum communication can deliver
no more information than a classical dit (Holevo Bound).
Quantum entanglements have the potential to double3 the
capacity of the Σ-QMAC through superdense coding. Since
the data-streams are distributed among arbitrary subsets of
servers, the challenge is to design capacity-optimal distributed
quantum encoding schemes that maximally exploit superdense
coding gain.

Our approach to this task is facilitated by the N -sum box ab-
straction formalized recently in [9]. The N -sum box is a classi-
cal ‘black-box’ abstraction of a QMAC protocol, that translates
certain quantum protocols into a classical MIMO MAC func-
tionality4 subject to certain constraints on the feasible channel
matrices. Conceptually, the challenge from the achievability
perspective is to design suitable precoding schemes as well
as channel matrices that satisfy those constraints while per-
forming the computation task (summation in this case) with
maximal efficiency, whereas the challenge from the converse
perspective is to prove information theoretic optimality not
just within the class of coding schemes allowed by the N -
sum box abstraction, but among all possible coding schemes.
As our main result we characterize the exact capacity of Σ-
QMAC by providing N -sum box based achievable schemes,
with matching information theoretic converse bounds.

To complete the picture for our motivating example in Fig.
1, let us explicitly state our results for this case. For this
example, our results show that the capacity C = 4/5 dits/qudit.
From existing results on capacity of classical sum-networks
[10], [11], it is not difficult to see that without entanglements,
the capacity is only CC = 2/5 dits/qudit. Thus a factor of 2
super-dense coding gain is available in this case. We also show
that if coding schemes are restricted to 2-sum protocols [7],
then the capacity for this example is 3/4 dits/qudit. Evidently,
2-sum protocols are in general not sufficient to achieve the
capacity of the Σ-QMAC.

Notation: N denotes the set of positive integers. Z+ ≜ {0}∪
N. For n ∈ N, [n] denotes the set {1, 2, · · · , n}. A[n] is the
compact notation of the tuple (A1, A2, · · · , An). Fd denotes
the finite field with d = pr a power of a prime. C denotes the
set of complex numbers. R+ denotes the set of non-negative
real numbers. For any field F, Fa×b denotes the set of a × b

3Parallels are noteworthy to wireless research on full-duplex radios which
is motivated by a similar potential for doubling the network capacity.

4Taking advantage of the N -sum box abstraction, the achievability is
presented almost entirely in classical information theoretic terms, while
limiting explicitly quantum theoretic descriptions to the minimum necessary.

matrices with elements in F. Ia denotes the a × a identity
matrix. 0a×b denotes the a × b zero matrix. 2N denotes the
power set of N . The notation f : A → B denotes a map
f from A to B. The dimension of a quantum system Q is
denoted as |Q|.

II. PROBLEM FORMULATION

A. Σ-QMAC and Σ-MAC

The Σ-QMAC problem, and its corresponding classical Σ-
MAC problem, are both specified by a 4-tuple


Fd, S,K,W


.

Fd is a finite field of order d with d = pr being a power
of a prime. S is the number of servers. K is the number
of independent classical data-streams. The kth data stream is
denoted by Wk and is comprised of symbols Wk(ℓ) ∈ Fd, ℓ ∈
N. For each ℓ ∈ N, let W(ℓ) ≜ (W1(ℓ),W2(ℓ), · · · ,WK(ℓ)) ∈
F1×K
d denote the ℓth data instance. The mapping W : [K] →

2[S] identifies W(k) ⊂ [S] as the subset of servers where Wk

is available. There is a user (Alice) who wishes to compute the
sum WΣ(ℓ) ≜


k∈[K] Wk(ℓ) for all ℓ ∈ N. The distinction

between Σ-QMAC and Σ-MAC lies in the coding schemes
allowed in the two settings. In the Σ-QMAC the servers code
their information into quantum systems using quantum gates,
and send their quantum systems to Alice, whereas in the Σ-
MAC setting, no quantum resource is assumed, each server
codes only over classical dits and sends the classical dits to
Alice.

B. General Quantum Coding Scheme

A general quantum coding scheme specifies the batch
size for the computation, i.e., how many data instances
are to be coded together, the initial quantum entanglement,
the assignments of the entangled resources to transmitters,
the local quantum encoding operations to be performed
at each transmitter, the measurement to be performed at
the receiver, and a mapping of the measured value to the
desired computation results. Specifically, for a Σ-QMAC
Fd, S,K,W


, a coding scheme is specified by a 6-tuple

L, δ[S], ρ,Φ[S], {My}y∈Y ,Ψ

. L ∈ N is referred to as the

batch size, which is the number of computations (sums) to be
encoded by the coding scheme, i.e., the coding scheme allows
Alice to compute WΣ(ℓ) for all ℓ ∈ [L]. Denote the first L
data instances of all K data streams collectively as,

W(L) = (W(1)T ,W(2)T , · · · ,W(L)T )T ∈ FL×K
d , (1)

the first L instances of the kth data stream as

W
(L)
k ≜ (Wk(1),Wk(2), · · · ,Wk(L))

T ∈ FL×1
d , (2)

and the desired computation at Alice as,

W
(L)
Σ = (WΣ(1),WΣ(2), · · · ,WΣ(L))

T ∈ FL×1
d . (3)

Independent of data-streams, quantum systems
Q1,Q2, · · · ,QS are prepared in advance, with the
initial (in general, entangled) state of the composite
system Q1Q2 · · · QS denoted by the density matrix ρ.
For all s ∈ [S], δs ∈ Z+ specifies the dimension of the



quantum subsystem Qs, i.e., |Qs| = δs. The quantum
system Qs is distributed to Server s, for all s ∈ [S].
The parameters Φ[S] = (Φ1,Φ2, · · · ,ΦS) are functions
that specify the local quantum operations performed by
each Server s on its quantum system Qs, by which the
classical information is encoded into the quantum systems.
Specifically, the local quantum operations at Server s are
described by a C|Qs|×|Qs| unitary matrix Us, that is chosen
depending on the data streams available to Server s, as
Us = Φs(W

(L)
k , k : s ∈ W(k)). The resulting state of the

composite system is ρ′ = Uρ U†, U ≜ U1 ⊗U2 ⊗ · · ·⊗US .
The composite system is then sent to Alice, who performs
a quantum measurement (POVM) with the set of operators
{My}y∈Y . The output of the measurement is denoted as Y ,
which is a random variable with realizations in Y . Finally,
the function Ψ : Y → FL×1

d maps the measurement output Y
to the desired computation, i.e., W(L)

Σ = Ψ(Y ). Any coding
scheme must work for all dKL realizations of W(L). Let C
denote the set of feasible quantum coding schemes.

C. Feasible Region, Capacity

For the Σ-QMAC

Fd, S,K,W


, the download-cost per

computation (qudits/dit) tuple,

∆ = (∆1,∆2, · · · ,∆S) ∈ RS
+ (4)

is said to be feasible, if there exists a coding scheme
L, δ[S], ρ,Φ[S], {My}y∈Y ,Ψ


∈ C such that

∆s ≥ logd |Qs|/L = logd δs/L, ∀s ∈ [S]. (5)

Define D as the closure of the set of all feasible download-
cost tuples ∆, so that any ∆ inside D is feasible, and any
∆ outside D is not feasible. In terms of computation rates
(computations/qudit), a rate R is feasible if there exists a
coding scheme


L, δ[S], ρ,Φ[S], {My}y∈Y ,Ψ


∈ C such that

R ≤ L

logd δ1 + logd δ2 + · · ·+ logd δS
. (6)

Define

C ≜ sup
C

R (7)

as the computation capacity. Note that the reciprocal of
capacity, 1/C = min∆∈D


s∈[S] ∆s.

D. The N -sum Box

While we seek optimality among general quantum coding
schemes described above, our results will remarkably show
that coding schemes based on N -sum box abstractions turn
out to be capacity-achieving for the Σ-QMAC. The N -sum
box abstraction from [9] is summarized next.

Building on the stabilizer formalism and quantum error
correction, the N -sum box is a MIMO MAC setting with
2N classical inputs, labeled x1, x2, · · · , x2N ∈ Fd, and N
classical outputs y1, y2, · · · , yN ∈ Fd, described as,




y1
...

yN



 =




M1,1 · · · M1,2N

...
...

...
MN,1 · · · MN,2N








x1

...
x2N



 (8)

which can be represented compactly as y = Mx. The N -sum
box abstraction represents the setting where N entangled qu-
dits are distributed among S transmitters, such that each trans-
mitter can perform conditional quantum X,Z gate operations
on its qudit(s) to encode classical information. The transmitter
that has the nth qudit controls the inputs xn and xN+n of
the N -sum box. For example, if Qudits 1 and 3 are given to
Transmitter 1, then in the N -sum box abstraction the inputs
x1, x1+N , x3, x3+N are the inputs available to Transmitter 1.
The N outputs are the result of the quantum measurement
performed by Alice. Since the N qudits are sent to Alice for
the quantum measurement, the N -sum box has a quantum
communication cost of N qudits. Now let us consider the
channel matrix M. Different choices of entanglement states
and quantum-measurement bases produce different channel
matrices. Depending on the desired computation task a suitable
M may be chosen from the set of feasible choices. The
channel matrices that can be obtained from the stabilizer-based
construction are precisely those (see [9]) that are strongly self-
orthogonal, i.e., that satisfy the following two conditions,

rank(M) = N, MJ2NMT = 0N×N (9)

where J2N =


0 −IN
IN 0


and IN is the N × N identity

matrix. Designing quantum-codes for the Σ-QMAC using the
N -sum box abstraction entails a choice of not only which
N -sum boxes to use, how many of the inputs of each N -
sum box to assign to each transmitter, and how to precode
at each transmitter in the MIMO MAC for the desired com-
putation, but in contrast to conventional (wireless) MIMO
MAC settings where the channels are randomly chosen by
nature, here we also have the freedom to design suitable
channel matrices M for the desired computation task, within
the class of feasible choices. The N -sum box abstraction
then guarantees that corresponding to these choices there exist
initial quantum entanglements, quantum-coding operations at
the transmitters, and quantum-measurement operations at the
receiver, that achieve the desired MIMO MAC functionality,
at the communication cost of N qudits for each N -sum box
utilized by the coding scheme.

III. RESULTS

A. Capacity of Σ-QMAC

Theorem 1. For the Σ-QMAC

Fd,K, S,W


, the feasible

region D is characterized as,

D =


∆ ∈ RS

+




s∈[S] ∆s ≥ 1,
s∈W(k) ∆s ≥ 1/2, ∀k ∈ [K].


. (10)

We present the proof in Section IV. To illustrate the result,
let us briefly sketch the solution to the example in Fig. 1. For a
more intuitive notation, let us use subscripts ‘ab’,‘ac’,‘bc’,‘d’
to represent ‘1’, ‘2’, ‘3’, ‘4’, respectively, reflecting the data-
streams available at the corresponding servers. For example,
we indicate server S1 as Sab, making it explicit that this



server has data-streams A,B. With this notation, according to
Theorem 1 the feasible region is explicitly expressed as,

D =






(∆ab,∆ac,
∆bc,∆d) ∈ R4

+



∆ab +∆ac +∆bc +∆d ≥ 1,
∆ab +∆ac ≥ 1/2,
∆ab +∆bc ≥ 1/2,
∆ac +∆bc ≥ 1/2,
∆d ≥ 1/2.





.

Minimizing ∆ab +∆ac +∆bc +∆d over D leads to a linear
program with optimal value 5/4, thus establishing the capacity
for this example as C = 4/5. To show the achievability of
4/5, we specify a coding scheme that allows Alice to recover
L = 4 instances of the desired sums, based on an (N = 5)-
sum box in Fd so that in the 5-sum box server Sab controls
1 pair of inputs x1, x6; Sac controls 1 pair of inputs x2, x7;
Sbc controls 1 pair of inputs x3, x8; and Sd controls 2 pair
of inputs x4, x5, x9, x10. The input-output relationship for the
5-sum box is y = Mx with the transfer function M ∈ F5×10

d

specified as,

M =


1 0 0 0 0 0 1 1 0 1
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1 1 1
0 0 0 0 1 1 1 0 1 0


. (11)

Note that (9) is satisfied, so it is a valid 5-sum box.
Each server precodes its accessible data streams and maps

the coded symbols to the inputs of the 5-sum box controlled by
that server. For example, Server Sab, precodes the L×1 = 4×1
vector of data stream A (say, A(L) = A(4)) with the 2Nab×L =
2×4 precoding matrix V a

ab. Similarly, Sab precodes data stream
B with the 2×4 precoding matrix V b

ab. The precoded symbols
are then mapped to the inputs controlled by Server Sab, i.e.,
x1, x6, so that we have,


x1

x6


= V a

abA
(4) + V b

abB
(4). (12)

Each server similarly precodes the data streams available to it
with its corresponding precoding matrices.

To the output y ∈ F5×1
d , Alice applies a 4 × 5 decoding

matrix Vdec specified as,

Vdec =


0 1 0 1 1
0 0 0 1 1
1 0 0 0 1
0 0 1 1 1


. (13)

Fig. 2 illustrates the precoding and decoding operations.
The precoding matrices are now specified as,

V a
ab

V a
ac


=


VdecM[1,6,2,7]

−1
,


V b
ab

V b
bc


=


VdecM[1,6,3,8]

−1
,


V c
ac

V c
bc


=


VdecM[2,7,3,8]

−1
, V d

d =

VdecM[4,5,9,10]

−1
. (14)

where M[i1,i2,··· ,in] is an N × n submatrix of M comprised
of the (i1, i2, · · · , in)th columns of M. It is easy to verify
that det(VdecM[1,6,2,7]) = det(VdecM[2,7,3,8]) = 1 and
det(VdecM[1,6,3,8]) = det(VdecM[4,5,9,10]) = −1, thus all 4
inverses in (14) exist. With all choices explicitly specified, it
is similarly easy to verify that we have,

Vdecy = VdecMx = A(4) + B(4) + C(4) + D(4). (15)

A(4) B(4) C(4) D(4)

V a
ab V b

ab
V a
ac V c

ac V b
bc

V c
bc V d

d

y = Mx

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Vdec : 4× 5

(Comm. Cost: 5 qudits) y1 y2 y3 y4 y5

A(4) + B(4) + C(4) + D(4)

Fig. 2. Precoding and decoding for the Σ-QMAC example of Fig. 1.

Thus, Alice is able to compute 4 instances of the desired sum,
with the total download cost of 5 qudits. The rate achieved is
4/5 dits/qudit, matching the capacity of this Σ-QMAC setting.

B. 2-sum Protocol Capacity of Σ-QMAC in Fig. 1

If in Fig. 1 the servers are only allowed to use the 2-sum
protocol [7], we will show that the capacity (largest possible
rate under this restriction), denoted as C2-sum = 3/4 dits/qudit.

Consider a classical Σ-MAC setting, denoted as Σ2-MAC,
with 6 servers, each constructed by merging the storage of a
pair of servers in the original Σ-QMAC, so that they store
ABC,ABC,ABD,ABC,ACD,BCD, respectively. The three
servers with the same storage ABC can be considered as the
same server to obtain a Σ2-MAC with 4 servers. Label the
servers as Sabc,Sabd,Sacd and Sbcd. Now consider any use of
the 2-sum protocol by any pair of the servers in Σ-QMAC,
the output of the 2-sum protocol is 2 dits, which can always
be locally generated by a server in the Σ2-MAC. For example,
if Sab and Sac use the 2-sum protocol to output (y1, y2), then
Sabc is able to directly generate (y1, y2). Since each use of
the 2-sum protocol costs 2 qudits, and sending (y1, y2) directly
costs 2 dits, it follows that the capacity of the Σ-QMAC cannot
be greater than the capacity of the Σ2-MAC. Now the capacity
of the Σ2-MAC is bounded by cut-set bounds as,

∆abc +∆abd +∆acd ≥ 1, ∆abc +∆abd +∆bcd ≥ 1,

∆abc +∆acd +∆bcd ≥ 1, ∆abd +∆acd +∆bcd ≥ 1, (16)

which together yield that ∆abc +∆abd +∆acd +∆bcd ≥ 4/3.
Thus, the (classical) capacity of the Σ2-MAC is not greater
than 3/4, which implies in turn that C2-sum ≤ 3/4. For achiev-
ability, first note that in the Σ2-MAC, the rate 3/4 is achieved
by downloading the 4 dits Yabc = A1−A2+A3+B1−B2+C1,
Yabd = A2 − A3 + B2 + D1, Yacd = A3 + C2 + D2 − D1,
Ybcd = B3 +C3 −C2 +D3 −D2 +D1, which allows Alice to
recover 3 instances of the desired sum from Yabc+Yabd, Yabd+
Yacd, Yacd+Ybcd. Then note that two independent instances of
each of these downloads can be equivalently recovered from
a 2-sum box in the Σ-QMAC. For example, two instances of
Yabc can be recovered from Sab,Sac using a 2-sum box. Thus,



the Σ-QMAC allows Alice to recover 6 dits of desired sum
computation by downloading 2× 4 = 8 qudits, thus achieving
the rate 3/4 dits/qudit.

IV. PROOF OF THEOREM 1

A. Proof of Achievability

The following two lemmas will be useful in the proof.

Lemma 1. Let Mk ∈ FN×mk
q , k ∈ [K] such that

mink∈[K] rk(Mk) ≥ L. If q > KL, then ∃U ∈ FL×N
q ,Vk ∈

Fmk×L
q , k ∈ [K] such that UMkVk = IL for all k ∈ [K].

Proof. For each k ∈ [K], since rk(Mk) ≥ L, there exist
matrices Uk ∈ FL×N

q , Vk ∈ Fmk×L
q such that UkMkVk =

IL. Now consider a matrix U ∈ FL×N
q whose elements

are variables with values yet to be determined. Note that
Pk ≜ det(UMkVk) is a polynomial of degree L′ in these
variables, and it is not a zero polynomial because setting
U = Uk yields the valuation Pk = det(IL) = 1. It
follows that P ≜


k∈[K] Pk is a non-zero polynomial with

degree KL. By Schwartz-Zippel Lemma, the probability of P
evaluating to zero is not more than KL

q . Therefore, if q > KL,
there exists a realization of U for which the evaluation of P
is non-zero =⇒ UMkVk is invertible for all k ∈ [K] for
this realization of U. Now let Vk ≜ Vk(UMkVk)

−1. We
obtain that UMkVk = IL for all k ∈ [K].

Definition: Say M = [Ml,Mr] ∈ FN×2N
q is the transfer

matrix of an N -sum box operating in Fq . Ml,Mr ∈ FN×N
q

denote the left and right halves. Let i1, i2, · · · , in ∈ N be
n ≤ N distinct indices not greater than N . We say M is half-
MDS if for all such indices, rk


Ml

[i1,··· ,in],M
r
[i1,··· ,in]


=

min{2n,N}, where M[i1,i2,··· ,in] denotes the N×n submatrix
of M comprised of the (i1, i2, · · · , in)th columns of M.

As an example, consider feasible transfer matrices for 2-sum
boxes,

M1 = ( 1 1 0 0
0 0 1 1 ), M2 = ( 1 0 1 0

0 1 0 0 ). (17)

Note that M1 is half-MDS while M2 is not. The submatrix
comprised of the 2nd and 4th columns of M2 has rank 1 < 2.

Lemma 2 (Half-MDS N -sum box). If q ≥ N , there exists an
N -sum box with half-MDS transfer matrix M ∈ FN×2N

q .

The proof of Lemma 2 appears in the Appendix. Let us
describe a general linear scheme based on the N -sum box.
Given z ∈ N, denote q = dz . Servers s ∈ [S] together
implement an N -sum box operating in Fq with Server s
controlling Ns pairs of inputs so that N1+N2+· · ·+NS = N .
This requires the dimension of the quantum system Qs to be
qNs = dNsz for s ∈ [S]. The transfer matrix of the N -sum box
is denoted by M ∈ FN×2N

q . Recall that for each data stream
Wk, k ∈ [K], one can consider each z symbols in Fd as one
symbol in Fq . Therefore, let Wk ∈ FL′×1

q denote the first L′

symbols of Wk considered in Fq (which correspond to L′z

symbols in the original field Fd, i.e., W(L′z)
k ). For the N -sum

box, the output is y = Mx ∈ FN×1
q where x ∈ F2N×1

q .

For s ∈ [S], k ∈ [K], V k
s ∈ F2Ns×L′

q specifies a coder at
Server s if s ∈ W(k). Otherwise, let V k

s be an empty matrix
with size 0× 2Ns. The input to the N -sum box at Server s is
specified as


k:s∈W(k) V

k
s Wk. The output is,

y = Mx =


k∈[K]

Mk





V k
1

V k
2

...
V k
S





  
Vk

Wk, (18)

where Mk is a submatrix of M comprised of


s∈W(k) 2Ns

columns of M that are accessible by Wk. To see this, for any
k ∈ [K], consider Wk′ = 0L′×1 for k′ ∕= k, k′ ∈ [K]. The
input to the n-sum box at Server s is then V k

s Wk if s ∈ W(k),
or 02Ns×1 otherwise. The output y is then MkVkWk. Note
that y is a linear function of W1,W2, · · · ,WK . Therefore,
we obtain the general expression of the output y as in (18).

Next, Vdec ∈ FL′×N
q specifies a decoder so that Alice is

able to compute Vdec


k∈[K] MkVkWk. Let q > KL′, i.e.,
z > logd KL′ and L′ ≤ mink∈[K] rk(Mk). With Lemma 1,
there exist such Vdec and Vk, k ∈ [K] so that

Vdec


k∈[K]

MkVkWk =


k∈[K]

Wk, (19)

which is the desired sum in Fq for L′ instances.
Equivalently, this is the desired sum in Fd for L =
L′z instances. This shows that the download-cost tuple
(logd |Q1|/L, · · · , logd |QS |/L) = (N1/L

′, · · · , NS/L
′) is

feasible if L′ ≤ mink∈[K] Mk. With Lemma 2, if q ≥
N , i.e., z ≥ logd N , then there exists a half-MDS N -
sum box. Now that M is half-MDS, the rank of Mk is
equal to min{


s∈W(k) 2Ns, N}. Therefore, the download-

cost tuple (N1/L
′, · · · , NS/L

′) is feasible if L′ ≤ N and
L′ ≤


s∈W(k) 2Ns for all k ∈ [K]. It follows that the feasible

region contains

closure





∆ ∈ RS

+



L′, N1, N2, · · · , NS ∈ Z+


s∈[S] Ns ≥ L′,
s∈W(k) 2Ns ≥ L′, ∀k ∈ [K],

∆s ≥ Ns/L
′, s ∈ [S].





(20)

=


∆ ∈ RS

+




s∈[S] ∆s ≥ 1,
s∈W(k) ∆s ≥ 1/2, ∀k ∈ [K].


(21)

which is the feasible region D specified in Theorem 1.

B. Proof of Converse

For the converse, consider this scenario. Bob has a quantum
system QB with dimension |QB | and Alice has a quantum
system QA with dimension |QA|. Bob observes a random vari-
able X that is independent of the initial state of the composite
system QBQA. Bob encodes X into QB and transmits QB to
Alice, who measures QBQA by a POVM [12] and gets output
Y . The Holevo bound [13] implies I(X;Y ) ≤ logd |QBQA|
dits. In addition, [14, Prop. 6] implies I(X;Y ) ≤ 2 logd |QB |
dits, reflecting the Information Causality Principle [15].

Now let us go back to the proof. Consider any feasi-
ble coding scheme


L,Q[S], ρ,Φ[S], {My}y∈Y ,Ψ


. Since the

scheme must work for all dKL realizations of W(L), for
any k ∈ [K], it must work for the cases when W

(L)
k′ =



0L×1, ∀k′ ∈ [K], k′ ∕= k. In these cases, Alice must be
able to decode W

(L)
k . Assume the L elements of W

(L)
k are

drawn i.i.d. uniform in Fd. Let us denote Bk ≜ W(k) and
Ak ≜ [S]\Bk. Assume that Servers in Group Ak collaborate
with Alice by bringing their quantum resource and sharing
their accessible data with her. In other words, every server
that does not have access to the k-th data stream collaborates
with Alice. Consider the servers in Group Bk collectively as
the transmitter, while Alice and the servers in Group Ak col-
lectively form the receiver. Denote QBk

as the quantum system
sent from Group QBk

, QAk
as the quantum system brought

from Group Ak and QBk
QAk

as the composite system.
We obtain that min


logd


s∈[S] |Qs|, 2 logd


s∈Bk

|Qs|

=

min

logd |QBk

QAk
|, 2 logd |QBk

|


≥ I(W
(L)
k ;Y ) ≥

I(W
(L)
k ;W

(L)
k ) = H(W

(L)
k ) = L dits, where Y is the

measurement result of the composite system QBk
QAk

. There-
fore, min


s∈[S] logd |Qs|, 2


s∈Bk

logd |Qs|

≥ L =⇒

min


s∈[S] ∆s,


s∈Bk
2∆s


≥ 1, ∀k ∈ [K]. Since

s∈[S] ∆s does not depend on k, the condition is equivalent
to that in (10).

V. CONCLUSION

The Σ-QMAC is an elementary and idealized setting to
explore the potential for distributed superdense coding gain.
As such its sharp capacity characterization is a promising step
towards future generalizations, e.g., towards noisy quantum
channels, generalized models for limited entanglements, and
generalized distributed function computations. The sufficiency
of the N -sum box abstraction for the Σ-QMAC is also promis-
ing, and further generalizations will reveal the limitations of
this abstraction.
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APPENDIX

The proof is by construction. We make use of the Gen-
eralized Reed Solomon (GRS) code. Let Fq be a field.
n, k ∈ N such that k ≤ n. α = (α1, · · · ,αn) ∈ Fn

q ,
u = (u1, · · · , un) ∈ Fn

q , such that αi ∕= αj for i ∕= j
and ui ∕= 0 for i ∈ [n]. This requires that q ≥ n. Define
GRSq

k,n(α,u) as the k × n generator matrix of an [n, k]

GRS code over Fq , whose (i, j)th element is ujα
i−1
j . GRS

codes have the properties [16] that (1) GRS codes are MDS,
i.e., any k columns of the matrix GRSq

k,n(α,u) are linearly
independent, and (2) the dual code of an GRS code is also a
GRS code, i.e., there exists v = (v1, v2, · · · , vn) ∈ Fn

q , vi ∕= 0
for i ∈ [n] such that

GRSq
k,n(α,u) · GRSq

n−k,n(α,v)T = 0k×(n−k). (22)

Note that ⌈N/2⌉+ ⌊N/2⌋ = N . Given q ≥ N , define

M =


GRSq

⌈N/2⌉,N (α,u) 0⌈N/2⌉×N

0⌊N/2⌋×N GRSq
⌊N/2⌋,N (α,v)


∈ FN×2N

q .

(23)

We claim that this M is half-MDS and it is a valid transfer
matrix of an N -sum box. Let us first verify that it is a valid
transfer matrix of an N -sum box.

(MJ2N )MT

=


0⌈N/2⌉×N −GRS(α,u)
GRS(α,v) 0⌊N/2⌋×N

 
GRS(α,u) 0⌈N/2⌉×N

0⌊N/2⌋×N GRS(α,v)

T

=


0⌈N/2⌉×⌈N/2⌉ −GRS(α,u) · GRS(α,v)T

GRS(α,v) · GRS(α,u)T 0⌊N/2⌋×⌊N/2⌋



= 0N×N (24)

Finally, since GRS codes are MDS, it follows that the M
constructed in (23) is half-MDS.
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[3] M. Hayashi and Á. Vázquez-Castro, “Computation-aided classical-
quantum multiple access to boost network communication speeds,”
Physical Review Applied, vol. 16, no. 5, p. 054021, 2021.

[4] S. Song and M. Hayashi, “Capacity of quantum private information
retrieval with multiple servers,” IEEE Transactions on Information
Theory, vol. 67, no. 1, pp. 452–463, 2020.

[5] ——, “Capacity of quantum private information retrieval with colluding
servers,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp.
5491–5508, 2021.

[6] M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti,
“On the capacity of quantum private information retrieval from MDS-
coded and colluding servers,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 3, pp. 885–898, 2022.

[7] S. Song and M. Hayashi, “Capacity of quantum symmetric private
information retrieval with collusion of all but one of servers,” IEEE
Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp.
380–390, 2021.

[8] C. H. Bennett and S. J. Wiesner, “Communication via one-and two-
particle operators on Einstein-Podolsky-Rosen states,” Physical review
letters, vol. 69, no. 20, p. 2881, 1992.

[9] M. Allaix, Y. Lu, Y. Yao, T. Pllaha, C. Hollanti, and S. Jafar, “N -sum
box: An abstraction for linear computation over many-to-one quantum
networks,” 2023. [Online]. Available: https://arxiv.org/abs/2304.07561

[10] B. K. Rai and B. K. Dey, “On network coding for sum-networks,” IEEE
Transactions on Information Theory, vol. 58, no. 1, pp. 50–63, 2012.

[11] A. Ramamoorthy and M. Langberg, “Communicating the sum of sources
over a network,” IEEE Journal on Selected Areas in Communications,
vol. 31, no. 4, pp. 655–665, 2013.

[12] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[13] A. S. Holevo, “Bounds for the quantity of information transmitted by
a quantum communication channel,” Problemy Peredachi Informatsii,
vol. 9, no. 3, pp. 3–11, 1973.

[14] S. Massar, S. Pironio, and D. Pitalúa-Garcı́a, “Hyperdense coding and
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