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Abstract

When supersymmetry is broken by condensates with a single condensing gauge
group, there is a nonanomalous R-symmetry that prevents the universal axion from
acquiring a mass. It has been argued that, in the context of supergravity, higher
dimension operators will break this symmetry and may generate an axion mass too
large to allow the identification of the universal axion with the QCD axion. We show
that such contributions to the axion mass are highly suppressed in a class of models
where the effective Lagrangian for gaugino and matter condensation respects modular
invariance (T-duality).
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Banks and Dine [1] pointed out ten years ago that in a supersymmetric Yang Mills theory

with a dilaton chiral superfield that couples universally to Yang-Mills fields:

LY M =
1

8

∑
a

∫
d2θS(WαWα)a + h.c., (1)

there is a residual R-symmetry in the effective theory for the condensates of a strongly

coupled gauge sector, provided that there is a single condensation scale governed by a single

β-function, there is no explicit R-symmetry breaking by fermion mass terms in the strongly

coupled sector, the dilaton S has no superpotential couplings, and the Kähler potential is

independent of ImS. The latter two requirements are met in effective supergravity obtained

from the weakly coupled heterotic string, and explicit realizations of this scenario can be

found in the BGW model [2] and generalizations [3] thereof to include an anomalous U(1)X .

The R-symmetry transformations on the gauginos λa and chiral fermions χA:

λa → e
i
2
αλa, χA → e−

i
2
αχA, (2)

leave the classical Lagrangian (1) invariant, but are anomalous at the quantum level:

∆LY M =
iα

8

∑
a

b′a

∫
d2θ(WαWα)a + h.c., b′a =

1

8π2

(
Ca −

∑
A

CA
a

)
, (3)

where Ca and CA
a are quadratic Casimir operators in the adjoint and matter representations,

respectively. In the case that there is a single simple gauge group Gc the symmetry can be

restored by an axion shift:

a = ImS| → a− ib′cα. (4)

If this gauge group becomes strongly coupled at a scale

Λc ∼ e−1/3bcg2
0Λ0, ba =

1

8π2

(
Ca −

1

3

∑
A

CA
a

)
, (5)

the effective theory [4] below that scale will have the same anomaly structure as the under-

lying theory. A potential is generated for the dilaton d = ReS|, but not for the axion. If

the gauge group is not simple: G =
∏

a Ga, the R-symmetry is anomalous, but no mass is

generated for the axion as long as there is a single condensate. In the two condensate case

with β-functions b2 � bc for the models of [2, 3] the axion acquires a small mass:

ma ∼ (Λ2/Λc)
3
2 m 3

2
. (6)

In the context of the weakly coupled heterotic string a viable scenario for supersymmetry

breaking occurs if a hidden sector gauge group condenses with [5] bc ≈ .03, Λc ∼ 1013GeV,
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m 3
2
∼ TeV. Then if there is no additional condensing gauge group other than QCD, the

universal axion is a candidate Peccei-Quinn axion with mass

ma ∼ 10−9eV, (7)

as suggested1 by (6). Note that this mass is decoupled from the axion coupling constant,

which in these models2 is of the order of the reduced Planck mass mP = 1/
√

8πGN . As a

result, analyses [6] of the viability of such an axion must be revisited.

However Banks and Dine also pointed out [1] that in the context of supergravity one

would expect higher order terms to be generated; terms of the form

L′ =
1

8

∑
n

λn

∫
d2θ(WαWα)n + h.c., (8)

do not respect R-symmetry for n > 1. Supergravity is more restrictive than global supersym-

metry; in the language of Kähler U(1) supergravity [7], superpotential terms Wi must have

Kähler U(1) weight 2, where chiral fields ΦA have weight 0 and the Yang-Mills superfield

strength Wα has weight 1. Thus the following terms with at least one factor WαWα are

allowed

LSP =
1

2

∫
d4θ

E

R
WαWαF(e−K/2WαWα, ZA) + h.c., (9)

where E is the superdeterminant of the supervielbein, R is an element of the superspace

curvature tensor, and ZA is any chiral superfield. Effective supergravity from the weakly

coupled heterotic string is perturbatively invariant [8] under T-duality transformations that,

in the class of models studied in [2, 3], take the form

T I → aIT I − ibI

icIT I + dI
, ΦA → eiδA−

∑
I

qA
I F I

ΦA,

λL → e−
i
2
ImF λL, F I = ln

(
icIT I + dI

)
,

aIdI − bIcI = 1, aI , bI , cI , dI ∈ Z ∀ I = 1, 2, 3, (10)

and under which the Kähler potential and superpotential transform as

K → K + F + F̄ , W → e−F W, F =
∑
I

F I . (11)

1The result (6) cannot be directly applied to the QCD axion, since QCD condensation occurs far below
the scale of supersymmetry breaking and heavy modes need to be correctly integrated out.

2If the classical dilaton Kähler potential is used, the axion couping constant is approximately [6] 1016

Gev. The BGW model invokes string nonperturbative corrections to stabilize the dilaton. These have the
effect of dramatically enhancing the dilaton mass and moderately enhancing the axion coupling constant:
Fa ≈ (

√
6/bc)× 1016 Gev ≈ 6× 1017 Gev. In the third paper of [2] it was incorrectly stated that the axion

coupling constant was suppressed by these effects.
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Here the T I are gauge neutral Kähler moduli, and the moduli independent [9, 10] phases δA

depend on the parameters aI , bI , cI , dI of the transformation and on the modular weights qA
I .

Modular invariance then further restricts the superpotential couplings as follows

F = F(η2e−K/2WαWα, ηAΦA), η =
∏
I

ηI , ηA =
∏
I

η
2qA

I
I , ηI = η(iT I), (12)

with the Dedekind functions transforming under (10) as

η(iT I) → eiδIe
1
2
F (T I)η(iT I), F (T I) = F I , δI = δI(a

I , bI , cI , dI). (13)

Consider first terms with no ΦA-dependence; since [11] for a general transformation (10)

δI = nIπ/12, the only invariant superpotential is of the form:

LHW =
1

2

∫
d4θ

E

R
WαWαF(η2e−K/2WαWα) + h.c., F(X) =

∑
n=1

λnX
12n. (14)

If the [SL(2,Z)]3 symmetry implied by (10) were instead restricted, say to just SL(2,Z), with

aI , bI , cI , dI , independent of I, then the phase of η in (13) is 3δI = nπ/4, and lower dimension

operators would be allowed: F(X) =
∑

n=1 λnX
4n, which according to the estimate of [1] is

of sufficiently high dimension to avoid an unacceptably large mass for the QCD axion. We

can explicitly calculate this mass in the BGW model.

To construct an effective theory below the scale of gaugino condensation, one has to

introduce [12] a chiral superfield of chiral weight 2:

WαWα ∼ U ∼ eK/2H3, (15)

where H is an ordinary chiral superfield of zero chiral weight and dimension one. The

most straightforward way to implement this requirement is to put the dilaton in a vector

supermultiplet and impose [13, 14]

U = −(D̄2 − 8R)V, Ū = −(D2 − 8R†)V. (16)

This parallels the modified linearity condition for the underlying field theory in the dual

(and in fact string derived) formulation with the dilaton as the lowest component of a linear

supermultiplet whose components include a two-form potential bmn dual to the axion. This

formalism has the advantages that the Bianchi identity

(D2 − 24R†)U − (D̄2 − 24R)Ū = total derivative. (17)

is automatically satisfied, and that when the Green-Schwarz term needed to cancel the field

theoretic modular anomaly is included, there is no mixing of the dilaton with the Kähler
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moduli T I . In this formulation the axion shift is traded for a two-form gauge symmetry:

bmn → bmn + ∇[mΛn]. Since only the gauge invariant 3-form hmnr = ∇[mbnr] appears in

the Lagrangian, the role of this symmetry is less apparent. We will explicitly calculate

the modification of the scalar potential in the presence of a term of the form (14) with

WαWα → U and F = λ(η2e−K/2U)p = λXp.

The BGW Lagrangian [2, 3] is given by

L =
∫

d4θ E [−3 + V (2s(V ) + VGS)] + LV Y T + Lth, (18)

where s(〈`〉) = g−2
s , with ` = V | and gs the string scale gauge coupling constant, VGS is

the four dimensional analogue of the Green-Schwarz counterterm needed to cancel modu-

lar [15] and U(1) [16] anomalies, LV Y T is the “quantum” part of the condensate Lagrangian,

constructed by standard anomaly matching [4] to the quantum-induced correction [17] in

the underlying theory, and Lth is the string-loop correction [18] to the Yang-Mills coupling.

Upon solving the equations of motion for the auxiliary fields and the (static3) condensates,

the relevant part of the scalar Lagrangian takes the form (up to a total derivative)

e−1L = −1

2
r − (1 + b`)

∑
I

∂mt̄I∂mtI

(2RetI)2
− k′(`)

4`
∂m`∂m`− V + La,

V =
|u|2

16

(
`k′(`)

∣∣∣`−1 + bc + 4XF ′(X)
∣∣∣2 − 3 |bc + 4XF ′(X)|2

+(1 + b`) |b− bc − 4XF ′(X)|2
∑
I

∣∣∣1 + 4RetIζI)
∣∣∣2} ,

La =
k′

4`
BmBm + iBm

∑
I

b

4RetI

[(
1 + 4RetIζI

)
∂mtI − h.c.

]
− [bcω − 2i (F + XF ′ − h.c.)]∇mBm, (19)

where

u = U | = |u|eω0 , ω = ω0 − i
∑
I

ln(ηI/η̄I), X = e−K/2uη2 = x(`, yI , ω)eiω,

yI = |ηI |4(tI + t̄I), ∂IyI = |ηI |4
(
1 + 4RetIζI

)
, ζI =

∂ ln ηI

∂tI
. (20)

The expression for the real function x is determined by the equation of motion for the real

3The dynamical condensate case was studied ref. [19] for an E8 gauge condensate without matter. It
was found that both the condensate magnitude ρ and its phase ω have masses larger than the condensation
scale. After integrating out these fields, one recovers the theory with a static E8 condensate studied in the
first paper in [2].
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part (FU + F̄U)/2 of the auxiliary field of the superfield U :

|u|2 = ek(`)x2/
∏
I

yI = ρ2(`, yI) exp [−4 (F + XF ′ + h.c.)] , (21)

where ρ is the solution for |u| found in [2] with F = 0. The one-form Bm is dual to a

three-form:

Bm =
1

2
εmnpq

(
1

3!4
Γnpq + ∂nbpq

)
, (22)

with Γ and b 3-form and 2-form potentials, respectively. If ∇mBm = 0, Γ = 0, and bmn is

dual to a massless scalar. This is the case when F = 0, in which case the equation of motion

for ω is bc∇mBm = −∂V/∂ω = 0. In the presence of the terms F = λXp the potential is no

longer independent of ω and its equation of motion gives ∇mBm = εmnpq∂
mΓnpq/3!8 6= 0. In

this case the 2-form b can be removed by a gauge transformation Γnpq → Γnpq−3!4∂nbpq, and

the equation of motion for Γ is just ∂L/∂Bm = 0. Setting the moduli tI at self-dual points

tI = tsd, which minimize the potential and satisfy ∂IyI = 0, and retaining only leading order

terms in the correction F , the relevant equations of motion are:

δL
δω

≈ −bc∇mBm −
∂V

∂ω
= 0,

δL
δBm

≈ k′

2`
Bm + bc∂

mω, 2b2
c∇m

(
`

k′∂mω

)
≈ ∂V

∂ω
, (23)

which are equivalent to the equation of motion for the scalar ω with the Lagrangian La

replaced by (neglecting tI)

La(ω) = −b2
c`

k′ ∂mω∂mω. (24)

The normalized mass of the axion is given by

m2
a =

k′

2b2
c`

∂2V

∂ω2
≈ p3|u|2k′λ|X|p

4b2
c`

[3bc − (1 + bc`)k
′] ≈ 36p3λ|X|pb−1

c m2
3
2
, (25)

where

m 3
2
≈ bc|u|

4
(26)

is the gravitino mass, and we used the fact that (near) vanishing of the cosmological constant

requires [2] 〈`−1k′(`)〉 ≈ 3b2
c � 1. If, say, bc ≈ .03, m 3

2
≈ TeV, |X| ≈ |u| ≈ 10−13 in reduced

Planck units,4 λ ≈ 1, this gives ma ≈ 10−12eV (10−63eV) if p = 4(12).

4More precisely, |X| = e−k/2u
∏

I(yI)
1
2 with 〈yI〉 ≈ .7 at the self-dual points, and we generally expect

the factor 〈e−k/2〉 to be smaller that its classical value 〈`− 1
2 〉 =

√
2/gs ≈ 2.
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In order to obtain the axion couplings to unconfined gauge superfields Wα we have to

include them in the modified linearity condition (16) which then reads

U +WαWα = −(D̄2 − 8R)V, Ū +W α̇W
α̇

= −(D2 − 8R†)V. (27)

Then La in (19) is replaced by

La =
k′

4`
HmHm + iHm

∑
I

b

4RetI

[(
1 + 4RetIζI

)
∂mtI − h.c.

]
− [bcω − 2i (F + XF ′ − h.c.)]∇mBm,

Hm = Bm + ωm, (28)

where ωm is dual to the Yang-Mills Chern-Simons 3-form, normalized such that

∇mωm =
1

4
F · F̃ , ∇mHm = ∇mBm +

1

4
F · F̃ (29)

and Bm is decomposed as in (22). If F = 0, then ∂V/∂ω = 0 and the equation of motion for

ω gives ∇mBm = 0, Γ = 0. Setting the tI at self-dual points, the equation of motion for the

two-form bmn gives

εmnpq∇p

(
k′

2`
Hq

)
= 0,

k′

2`
Hp = ∂pa, ∇mHm =

1

4
F · F̃ = ∇m

(
2`

k′ ∂ma

)
, (30)

which is the equation of motion for a massless axion a with Lagrangian

La(a) = − `

k′∂
ma∂ma− a

4
F · F̃ . (31)

With F 6= 0 and ∂V/∂ω 6= 0, the equation of motion for ω gives the first line of (23), and

the second line is replaced by

δL
δBm

≈ k′

2`
Hm + bc∂

mω, 2bc∇m

(
`

k′∂mω

)
≈ ∂V

bc∂ω
− 1

4
F · F̃ . (32)

Setting a = −bcω, the equivalent axion Lagrangian is e
[
La(a)− V (a, `, tI)

]
, with the axion

mass given by (25).

In addition to the operators in (12) chiral superfields with zero chiral weight can be

constructed using chiral projections of any functions of chiral fields. Operators of this type

were found [20] in (2,2) orbifold compactifications of the heterotic string theory with six

dynamical moduli.5 In the class of models considered here we can construct zero-weight

5The results of [20] are presented in the superconformal formalism of supergravity with conformal gauge
fixing by a chiral compensator that plays an analagous to the Kähler weight factor in (9).
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chiral superfields of the form

F = e−(p+n)K/2(e−K/2WαWα)pη2(p+n)
n∏

i=1

(D̄2 − 8R)fi(yI) (33)

that are modular invariant provided (p + n)
∑

I δ = mπ. Since 〈F I〉 = 0, the corresponding

terms in the potential at the condensation scale are proportional to6 |u|p(m 3
2
)n+1, so for fixed

p + n one is trading factors of |u| for factors of m 3
2
∼ 10−2|u|, and these contributions to the

axion mass will be smaller than those in (25).

We may also consider operators with matter fields that have nonvanishing vev’s. Since

e−K/2WαWα transforms like the composite operators U1U2U3 constructed from untwisted

chiral superfields, the rules for construction of a covariant superpotential including this

chiral superfield can be directly extracted from the discussion in [21] of modular invariant

superpotential terms in the class of Z3 orbifolds considered here. They take the form of (12)

with

Fpnq = Πq(e−K/2WαWα)pη2(p+n)
n∏

α=1

Wi, Π = Y 1Y 2Y 3, (p + n)
∑
I

δI = mπ, (34)

where Y I is a twisted sector oscillator superfield, and Wi is any modular covariant [Wi →
e−F Wi under (10)] zero-weight chiral superfield that is a candidate superpotential term,

subject to other constraints, such as gauge invariance. For example,the superpotential terms

for matter condensates could contribute to this expression. However the equations of motion

for the auxiliary fields of these condensates give Wi ∼ m 3
2

for these terms, so again they are

less important than the contribution in (25).

Most Z3 orbifold compactifications of the type considered here have [22] a U(1) gauge

group, denoted U(1)X , that is anomalous at the quantum level of the effective field theory.

The anomaly is canceled by a Green-Schwarz counterterm that amounts to a Fayet-Illiopoulos

D-term [16]. A number n of scalars φA acquire vev’s along an F- and D-flat direction such

that m ≤ n U(1)a gauge factors are broken at a scale ΛD that is close to the Planck

scale. A priori there might be gauge and modular invariant monomials of the form (34)

with considerably larger vev’s than those in (14), and no modular covariant, gauge invariant

superpotential term Wi, so that the direction φA 6= 0 is F-flat. However if m = n, there is

no gauge invariant monomial
∏

A(φA)pA . Gauge invariance requires∑
A

pAqa
A = 0 ∀a, (35)

6The coefficients of the nonpropagating condensate superfield auxiliary fields vanish by their equations
of motion.
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where qa
A is the U(1)a charge of φA. If m = n these are linearly independent and form an

m×m matrix with inverse QA
a ; then (35) implies

pA = 0 ∀A. (36)

Similarly, for the chiral projection of a monomial
∏

A(φA)pA+qA(φ̄Ā)qA gauge invariance still

requires (35) and (36), so any such monomial can be written in the form

f(T J , T̄ J̄)
∏
A

[
|φA|2

∏
I

(T I + T̄ Ī)−qA
I

]qA

. (37)

It is the modular invariant composite fields |φA|2∏I(T
I + T̄ Ī)−qA

I that acquire [3] large vev’s;

any coefficients of them appearing in overall modular invariant operators are subject to the

same rules of construction as the operators in (33). The same considerations hold if N sets

of fields φA
i with identical U(1)a charges (qi

A)a = qa
A, i = 1, . . . , N acquire vev’s. This is the

class of “minimal” models studied in [3]; the dilaton potential in this class is identical to

that of the BGW model.

In the case n > m one cannot rule out the above terms. However in this case, charge

assignments that satisfy (35) for pA > 0, as in a holomorphic monomial, tend to destabilize [3]

the potential in a direction where the dilaton Kähler metric goes negative and are therefore

disfavored. Moreover, in this case part of the modular symmetry is realized nonlinearly on

the U(1)a-charged scalars after U(1)a-breaking. Monomials of the above type would generate

mixing of the axion with massless “D-moduli” that are Goldstone particles [23] associated

with the degeneracy of the vacuum at the U(1)a-breaking scale, requiring a more careful

analysis.

In conclusion, modular invariant Z3 models for gaugino condensation with no U(1)-

breaking or with U(1)-breaking by a minimal set of scalar fields have highly suppressed

contributions to the axion mass from higher dimension operators. Following [2] we have used

the linear multiplet formalism for the dilaton supermultiplet. However, we expect [13, 24]

that these results can be reproduced in the chiral multiplet formalism.
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