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Abstract

The category variability effect describes assigning objects to
high-variability categories. We show that similarity-based cat-
egorization theories can predict the category variability effect
and conduct a rigorous empirical test. In an optimized cate-
gorization experiment, participants learned to assign geomet-
rical figures to a high-variability and a low-variability category
and then categorized transfer stimuli located between the cat-
egories. We compared a formal model that ignores category
variability (Euclidean model) to one that considers category
variability (Mahalanobis model) during similarity computa-
tion. The data (N = 43) revealed that most participants did not
show the category variability effect, in line with the Euclidean
model. Nevertheless, the Mahalanobis model consistently de-
scribed the participants that selected the high-variability cate-
gory. This demonstrates that—contrary to previous claims—
similarity can explain the category variability effect. However,
in our data, most people do not seem to show the effect, maybe
because the low-variability category was more coherent than
the high-variability category.

Keywords: Similarity; Perceptual categorization; Category
variability effect; Exemplar theory; Computational modeling

Introduction

Different categories have different properties. Whereas some
categories include only a narrow range of objects, other cat-
egories encompass objects whose features vary much more.
Body weight, for example, varies more among males than fe-
males in some species: Male Great Danes can weigh 54 to 91
kg (a large variability), but female Great Danes weigh only
45 to 59 kg (a small variability). Hereafter, category vari-
ability refers to the feature variances across the members of
a category. This work examines to what extent people make
use of the variability of categories to categorize new objects.
To this end, we test how people categorize objects lying be-
tween two categories with differing variability (see Fig. 1
for a schematic illustration). The novelty of our approach is
twofold: First, our experimental design was mathematically
optimized in simulations to study category variability (opti-
mal experimental design, Myung & Pitt, 2009). Second, we
developed a cognitive model to test a similarity-based catego-
rization mechanism (Nosofsky, 1989) that processes the cat-
egory variability during similarity computation, thereby pre-
dicting the category variability effect defined below.

Figure 1: Category variability. Shown are a category with a
small variability concerning a feature (e.g., body weight) and
a category with a large variability concerning this feature. As-
signing the new object lying between the categories (shown
as grey ”o”) to the high-variability category represents the
category variability effect.

The Category Variability Effect in Categorization
The category variability effect refers to people assigning ob-
jects to high-variability categories rather than to comparably
low-variability categories. Most research investigating the
effect of category variability on human categorizations has
tested how people categorize objects that are located between
a high-variability and a low-variability category (cf. Rips,
1989 and Cohen, Nosofsky, & Zaki, 2001). Fig. 1 illustrates
this for a single-feature case, in which a to-be-classified ob-
ject (shown as a grey ”o”) could belong to a category contain-
ing members that vary a lot with respect to this feature (white
”o”s) or to a category that varies less with respect to this fea-
ture (black ”o”s). According to the category variability effect,
the object is systematically assigned to the high-variability
category. Importantly, categorization research has shown that
some people display the category variability effect, whereas
others do not (Cohen et al., 2001; Fried & Holyoak, 1984;
Hsu & Griffiths, 2010; Perlman, Hahn, Edwards, & Pothos,
2012; Rips, 1989; Sakamoto, Jones, & Love, 2008; Stewart
& Chater, 2002; Yang & Huang, 2021; Yang & Wu, 2014).

In Cohen et al. (2001), participants selected the high-
variability category in 63% of cases in one experiment in-
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volving objects with two features, but in only 30% to 47%
of cases in the other experiment with single-feature objects.
Similarly, Stewart and Chater (2002) found that participants
mostly assigned a mid-point object to the low-variability cat-
egory. Only when the salience of the category variability was
increased by showing the category members simultaneously
or by providing an explicit hint about the difference in vari-
ability between categories, the category variability effect oc-
curred. In contrast, the results of Perlman et al. (2012) and
Yang and Huang (2021) suggest that about 75% of partici-
pants show the category variability effect, which only disap-
pears when the differences in category variability are made
less salient. In Yang and Wu (2014), two equally sized sub-
samples of participants (about 28% each) consistently chose
the high-variability or the low-variability category, respec-
tively (the remaining participants’ classifications depended
on the preceding object). This highlights large interindividual
differences concerning the category variability effect.

Explaining the Category Variability Effect With
Similarity-Based Categorization Theories
The category variability effect has been considered evidence
against the theory assuming that people categorize objects
based on their similarity to previously experienced category
members (exemplars; Smith & Sloman, 1994; Yang & Wu,
2014). According to this exemplar-similarity theory, an ob-
ject is assigned to the category that contains the exemplars to
which the object is most similar (e.g., Nosofsky, 1986). A
category becomes more probable as the object’s similarity to
the category’s exemplars increases. Accordingly, similar ob-
jects are assigned to the same category and dissimilar objects
to different categories—an assumption that is well-supported
empirically (Kruschke, 2008; Nosofsky, 1986, 1989, 2011).

In the context of category variability, an object located in
the middle between two categories (the grey ”o” in Fig. 1) is
geometrically closer and therefore more similar to the mem-
bers of the small-variability category than to the members of
the high-variability category. Therefore, according to similar-
ity, the object should be assigned to the low-variability cate-
gory; yet, the category variability effect means selecting the
high-variability category. Consequently, it has been argued
that similarity-based categorization mechanisms such as the
generalized context model cannot produce a category vari-
ability effect (Smith & Sloman, 1994; Yang & Wu, 2014; but
see Nosofsky & Johansen, 2000 and Yang & Huang, 2021).

In the following, we show that psychological similarity can
account for the category variability effect. Cognitive systems
can process similarity in various ways, and one frequently-
used psychological similarity—the Euclidean similarity (e.g.,
Nosofsky, 1987, 2011)—ignores the category variability and
thus cannot predict the category variability effect. Another
way to compute similarity, rarely used in cognitive research
(except Battleday, Peterson, & Griffiths, 2020) compared to
machine learning research (e.g., Weinberger & Saul, 2009),
considers the category variability and can predict the cate-
gory variability effect: the Mahalanobis similarity. This work

Figure 2: Similarity and category variability. Shown are the
locations in a two-feature space with a constant similarity
to the center (”x”) as measured by the Euclidean similarity
(top) or the Mahalanobis similarity (bottom), given categories
(grey points) with different variability in their features.

compares these two similarities in the exemplar-similarity
framework to test if people make use of the variability of cat-
egories to categorize objects and thereby display the category
variability effect (see below for a formal implementation).

Fig. 2 illustrates how category variability can affect psy-
chological similarity. The grey circles in the figure show a
low-variability category and a high-variability category in a
two-feature space, and the solid lines depict the locations that
have the same Euclidean similarity or the same Mahalanobis
similarity to the center ”x”. Importantly, the category vari-
ability does not affect which locations have a constant Eu-
clidean similarity to the center, as this similarity ignores the
category variability and implicitly assumes unit feature vari-
ances for all categories. Unlike this, the locations around the
center with a constant Mahalanobis similarity adapt to the cat-
egory variability and increase with larger feature variances.
Thus, the Mahalanobis similarity between a to-be-classified
object and an exemplar increases with larger feature variances
in the category to which the exemplar belongs. For the cate-
gory variability effect, this entails that even though an object
lying between two categories is geometrically closer to the
low-variability category, it has the larger Mahalanobis simi-
larity to the high-variability category, because the categories’
difference in variability quickly outweighs their difference in
geometrical closeness to the to-be-classified object.

Formal Model Implementation
We formalized the Euclidean similarity and the Maha-
lanobis similarity within the generalized context model (see
Nosofsky, 1989), which assumes that the similarity to all
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previously experienced exemplars determines categorization.
Given two categories labeled A and B, the model computes
the evidence that an object belongs to category A from the
summed similarity to all category A exemplars relative to the
summed similarity to all exemplars in both categories. For-
mally, the evidence E(A|i) of object i for category A is

E(A|i) =
∑
j∈A

si j

∑
j∈A

si j + ∑
k∈B

sik
, (1)

where si j is the psychological similarity between object i and
exemplar j from category A. In the following, we describe
two model versions that either ignore or consider the category
variability during similarity computation.

Ignoring Category Variability: Euclidean Model. One
version of the generalized context model applies the Eu-
clidean similarity, which ignores category variability. This
means that a category’s feature variances do not affect how
similar the category’s exemplars are to another object. Specif-
ically, the Euclidean similarity si j of object i to exemplar j is

si j = exp
[
−c · (W(xi −x j))

⊤ (xi −x j)
]
, (2)

where the vectors xi and x j contain the N feature values
of i and j, respectively1. The equation has N free model pa-
rameters: The N-by-N diagonal matrix W= diag(w1, . . . ,wN)
(with 0 ≤ wn ≤ 1 for all n ∈ {1, . . . ,N} and ∑

N
n=1 wn = 1) con-

tains individual people’s attention weights for the N features,
and the scalar c (with c > 0) describes how steeply the simi-
larity declines with higher feature value differences (xi −x j).

Considering Category Variability: Mahalanobis Model.
Another, new version of the generalized context model uses
the Mahalanobis similarity, which considers the category
variability. This means that a category’s feature variances af-
fect how similar the category’s exemplars are to another ob-
ject. Larger feature variances (i.e., a greater category variabil-
ity) increase the similarity between the category’s exemplars
and another object. The Mahalanobis similarity si j∈A of ob-
ject i to exemplar j from category A is computed as

si j∈A = exp
[
−c · (W(xi −x j))

⊤ K−1
A (W(xi −x j))

]
, (3)

where K−1
A is the inverse of the N-by-N variance-covariance

matrix of category A. This matrix contains in its main diag-
onal the N feature variances, computed across all previously
experienced exemplars of category A. An analogous matrix
K−1

B is used to compute the Mahalanobis similarity to cate-
gory B exemplars. Eq. 3 is based on Mahalanobis (1936).

Relating the Two Models. The Euclidean similarity and
the Mahalanobis similarity are both based on squared feature
value differences and are thus related to each other. However,

1Non-scalar variables (vectors and matrices) are shown in bold.

the Mahalanobis similarity extends the Euclidean similarity
by standardizing the feature value differences by the category
variability (see the category-specific variance-covariance ma-
trix in Eq. 3). The predictions of the two similarities converge
as the feature variances within categories approach 1 (given
uncorrelated features within categories). Any other category
variability only affects the Mahalanobis similarity, which in-
creases with higher category variability, but not the Euclidean
similarity, which remains constant (see also Fig. 2).

Modeling People’s Category Responses. To model partic-
ipants’ responses, we transformed the category evidence to
category response probabilities using the softmax choice rule

Pr(A|i) = exp(τ ·E(A|i))
exp(τ ·E(A|i))+ exp(τ ·E(B|i))

(4)

with the free parameter τ (τ > 0, a higher value means more
deterministic responding) and E(A|i) as computed in Eq. 1.
Choice rule parameters such as τ can correlate negatively with
parameter c (e.g., Krefeld-Schwalb, Pachur, & Scheibehenne,
2022). We accepted this dependence as we did not focus on
participants’ parameter estimates but on modeling their cat-
egorizations, which are often more deterministic than pre-
dicted without a choice rule (Krefeld-Schwalb et al., 2022).

Summary We adapted the psychological similarity func-
tion of the generalized context model to investigate the cate-
gory variability effect. The model can categorize new objects
by ignoring the category variability (the original Euclidean
model) or by considering the category variability (the new
Mahalanobis model). Importantly, according to the Maha-
lanobis model, similarity increases with greater category vari-
ability, leading to the category variability effect (for a related
approach using the standard deviation of the categories’ fea-
tures in a prototype model, see Sakamoto et al., 2008).

Experiment
To investigate the category variability effect and model it in
the exemplar-similarity framework described above, we con-
ducted a binary categorization experiment in which partici-
pants categorized objects lying between a category with small
variability and a category with large variability.

Participants. We aimed for 42 participants, which allows
testing if one of the cognitive models describes more than
half the participants, given α = .05, 1−β = .95, and g = 0.25
as smallest effect size of interest (justified by the optimal ex-
perimental design detailed below). In total, 49 participants,
recruited over Prolific Academic (www.prolific.co), par-
ticipated in an online study and received a compensation of
£8.72 (about $12 during the study period). Six participants
were excluded for not having reached the category learning
accuracy criterion (see Procedure), resulting in a final sample
of N = 43 (8 females, Mage = 27.47 years, SDage = 7.94 years,
age range: 18-56 years). The experiment lasted about 40 min-
utes and was approved by the ethics board of the psychology
department of the University of Basel (#025-18-6).
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Optimal Experimental Task Design. The experiment con-
tained a trial-by-trial supervised category learning task fol-
lowed by an unsupervised transfer task (e.g., Nosofsky,
1989). Participants learned by feedback to classify stim-
uli with two continuous features into two categories (the
category structure) and then classified transfer stimuli (new
feature value combinations) without feedback. We used a
simulation-based optimal experimental design procedure (as
in Myung & Pitt, 2009) to find transfer stimuli that maximally
discriminate between the predictions of the Euclidean model
and the Mahalanobis model, given training on the category
structure from the learning task. Our optimization procedure
aimed to ensure that both models can learn the category struc-
ture but make maximally opposite category predictions for
the transfer stimuli afterward. This allows for a fair test of
the influence of category variability in the transfer task with-
out favoring any model during category learning.

In the simulations, the two models were trained to learn the
category labels of several feature value combinations (the cat-
egory structure) and then predicted the category labels of new
feature value combinations (the transfer stimuli). The simu-
lations encompassed a range of category structures, transfer
stimuli, and admissible model parameters, constraining that
in all category structures, the two features varied more in one
of the two categories and were uncorrelated and that both cat-
egories had the same average feature value combination (cen-
troid). The optimized task design resulting from these simu-
lations (i.e., the category structure and the transfer stimuli T1
to T8 that maximally differentiate between the Euclidean and
Mahalanobis models after learning) is shown in Fig. 3. The
figure also shows some less well-discriminating filler stimuli.

In this design, the aggregate model predictions are the
same for the different transfer stimuli T ∈ {T1, ..., T8}. The
Euclidean model, which ignores category variability, assigns
all transfer stimuli to the low-variability category A with
PrEucl(A | T) = .74, because the stimuli differ less from the
category A exemplars than from the category B exemplars.
In turn, the Mahalanobis model, which considers category
variability, assigns the transfer stimuli to the high-variability
category B, PrMaha(B | T) = .72, as this category occupies a
larger area of the feature space, which outweighs the geo-
metrical closeness of the transfer stimuli to category A. In
contrast to past studies (e.g., Hsu & Griffiths, 2010; Yang &
Wu, 2014), this design cannot be learned by unidimensional
rules and might thus foster the use of similarity-based cate-
gorization strategies (Rouder & Ratcliff, 2006). The category
structure can be learned by separating ”moderate” from ”ex-
treme” exemplars; however, such a rule arguably implicitly
considers the smaller category variability of the ”moderate”
category A relative to the ”extreme” category B.
Materials. The experiment was programmed in PsychoPy3
(Peirce, 2007). Participants classified geometric shapes
whose features were a circle of varying size and a line of
varying orientation (similar to Nosofsky, 1989; for a visual-
ization, see Fig. 3). Participants classified the stimuli with the

Figure 3: Optimal experimental design. Each point is a
stimulus, with the color denoting the category. Grey points
are the stimuli without a category label: the optimally-
discriminating transfer stimuli (T1 to T8) and exploratory,
less well-discriminating filler stimuli (grouped as F1 to F3).

”e” and ”i” keys, and the assignment of the keys (e and i) to
the categories (A and B) was randomized across participants.

Procedure. Participants’ task was to assign stimuli with
two features to one of two categories (similar to Nosofsky,
1989). After familiarizing themselves with possible feature
value combinations, participants repeatedly categorized stim-
uli one at a time until they learned the category structure in
Fig. 3. In each trial, they saw a stimulus (a combination of
two feature values), categorized it by pressing a key, and got
visual feedback about their categorization in the form of a
smiley and a notification for 1000 ms. To ensure that partici-
pants learned the category structure equally well, the learning
phase ended after a participant correctly classified more than
90% of the last 100 trials (similar to Seitz, von Helversen,
Albrecht, Rieskamp, & Jarecki, 2023). If a participant did
not reach this accuracy criterion in 1,280 trials (40 blocks),
learning ended and the respective participant was excluded.
To encourage learning, participants received a performance
message every 50 trials starting at trial 100, indicating how
many of the last 100 stimuli they classified correctly. After
learning, participants classified the transfer stimuli (denoted
by Ts in Fig. 3) without feedback. Participants were informed
of the absence of feedback and categorized the eight transfer
stimuli three times, the 32 old learning stimuli twice, and 12
filler stimuli (denoted by Fs in Fig. 3 and grouped into three
groups based on their location in feature space), resulting in
100 transfer trials with randomized order.

Results
Analyses were conducted in R (v3.6.1, R Core Team, 2017).
Inferential statistics used the lme4 package (v1.1-23, Bates,
Mächler, Bolker, & Walker, 2015); cognitive modeling used
the cognitivemodels package (v0.0.12, Jarecki & Seitz, 2020).
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Figure 4: Results. Bars and whiskers show the mean and stan-
dard error, respectively, of how participants categorized the
transfer stimuli (left; the leftmost bar averages across transfer
stimuli) and the filler stimuli (right). Shapes show the mean
model predictions across participants (see text for details).

Category Learning. Participants reached the 90% learning
accuracy criterion after on average M = 420 learning trials
(Mdn = 350, SD = 226, range = 132-1019). The accuracy
for the learning stimuli remained high in the transfer phase
(M = 89%, Mdn = 89%, SD = 5 percentage points; the values
are computed across each participant’s mean accuracy).

Category Variability Effect. We tested if participants
show the category variability effect and assign the transfer
stimuli to the high-variability category B. Alternatively, par-
ticipants can ignore the category variability and assign the
transfer stimuli to the low-variability category A. Consistent
with ignoring category variability, participants assigned the
transfer stimuli to category A in M = 71% of cases (see Fig. 4).

A linear mixed model with logit link modeling partici-
pants’ category responses as a function of the transfer stimuli
(fixed effect with eight levels) with a participant-wise random
intercept corroborated these results, see Table 1 for the result-
ing log-odds regression coefficients. The intercept coefficient
indicates that participants assigned the transfer stimuli to cat-
egory A with an average probability of .75, p < .001. The
fixed effect coefficients show that participants categorized the
individual transfer stimuli similarly to the grand mean (range:
.70-.78, e.g., Pr(A|T1) = .75+ .03 = .78, ps ≥ .23). Accord-
ingly, the fixed effect coefficients do not differ significantly
from each other, all ps = 1, based on Holm-Bonferroni cor-
rected post-hoc contrasts (Holm, 1979).

Participants thus assigned the transfer stimuli predomi-
nantly to the low-variability category A. These aggregate re-
sults are at odds with the category variability effect (see also
Cohen et al., 2001 and Yang & Wu, 2014) and do not seem to
reflect a pure category A bias as participants categorized the
three groups of filler stimuli much more variably (see Fig. 4).

Computational Modeling and Model Comparison. We
applied computational cognitive modeling to gain more in-
sight into how the cognitive processes differ across partic-
ipants. The free parameters of the Euclidean and Maha-
lanobis models (i.e., two attention weights ws summing up
to 1, sensitivity c with 0 < c ≤ 10, and temperature τ with

Table 1: Fixed effect estimates from a linear mixed model
with logit link on the category A choices.

Stimulus Coefficient Pr(A) SE z p
Intercept 1.10 .75 0.18 6.13 < .001
T1 0.17 +.03 0.20 0.83 .40
T2 0.17 +.03 0.20 0.83 .40
T3 −0.23 −.04 0.19 −1.19 .23
T4 0.03 +.01 0.20 0.15 .88
T5 0.12 +.02 0.20 0.61 .54
T6 −0.06 +.01 0.19 −0.30 .77
T7 0.03 +.01 0.20 0.15 .88
T8 −0.23 −.04 0.19 −1.19 .23

Note. The model was run with sum-to-zero contrasts. This
means the intercept is the grand mean across transfer stimuli,
and the fixed effects are the differences between the stimulus
mean and the intercept (Singmann & Kellen, 2017).

Table 2: Parameter estimates resulting from fitting the model
to the learning phase data with maximum likelihood.

Euclidean model Mahalanobis model

Parameter M Mdn SD M Mdn SD
wsize .65 .75 .28 .64 .63 .32
wangle .35 .25 .28 .36 .37 .32
c 7.42 7.22 2.51 2.40 0.14 4.18
τ 2.41 2.37 0.80 5.62 3.90 5.24

Note. Parameter estimates are aggregated across participants.
Note that c and τ negatively correlate (r = −.46) and may
trade off against each other (Krefeld-Schwalb et al., 2022).

0.1 ≤ τ ≤ 10) were estimated with maximum likelihood from
individual participants’ learning phase data without the first
block. Table 2 shows the resulting parameter estimates.

To test whether people consider category variability dur-
ing categorization, we conducted a model comparison on the
eight transfer stimuli (which were not used for model fitting,
i.e., the hold-out data). Individual participants’ best-fitting
parameter estimates were used to predict their categorizations
for the transfer stimuli. Based on the models’ predictions and
the participants’ responses, the log-likelihoods of the models
were computed for each participant. These log-likelihoods
were further transformed into model evidence strengths (mea-
sured as Akaike weights, w(AIC), Wagenmakers & Farrell,
2004), which range from 0 to 1 and which were used for the
model comparison. At the aggregate level, the mean model
evidence strength across participants was used. At the indi-
vidual level, each participant was assigned to the model with
the highest evidence strength w(AIC) (given w(AIC) ≥ .67),
resulting in the number of participants each model can de-
scribe. In addition to the Euclidean and the Mahalanobis
models, the model comparisons included a baseline random
choice model, predicting categorizations of Pr(A|T) = .50.
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Table 3: Descriptive model fit measures across all participants and across the participants assigned to the respective model.

All participants Assigned participants

Model w(AIC) ℓ Accuracy MSE n (%) w(AIC) ℓ Accuracy MSE
Euclidean .65 −13.40 71% .19 27 (63%) .96 −10.48 82% .14
Mahalanobis .20 −18.93 33% .29 7 (16%) .88 −12.97 66% .18
Random choice .15 −16.64 50% .25 2 ( 5%) .89 −16.64 50% .25

Note. The fit measures are: w(AIC) = mean evidence strength (Akaike weights), ℓ = mean log-likelihood, Accuracy = mean
correspondence with participants’ responses when assigning stimuli to the most likely category. MSE = mean squared error.

At the aggregate level, the Euclidean model clearly outper-
forms the Mahalanobis model, suggesting that participants on
average ignored the category variability when categorizing
the transfer stimuli. Specifically, the Euclidean model cor-
rectly predicted 71% of the transfer categorizations, while the
Mahalanobis model predicted only 33%. Both accuracies dif-
fer significantly from the 50% accuracy of the random choice
model (Euclidean model: χ2(1) = 176.68, p < .001; Maha-
lanobis model: χ2(1) = 124.88, p < .001). Also in terms
of model evidence, the Euclidean model excels with a mean
Akaike weight w(AIC) = .65, which exceeds the evidence for
the Mahalanobis model (w(AIC) = .20) by a factor of 3.27 and
the evidence for the random choice model (w(AIC) = .15) by
a factor of 4.32. Table 3 summarizes the model fit indices.

Also at the individual level, the Euclidean model excels
(see Fig. 5). It describes n = 27 participants (63%; among
them n = 18 with decisive evidence2). Still, the Mahalanobis
model also describes n = 7 participants (16%; n = 2 with de-
cisive evidence). For most of the remaining 9 participants,
there was no clear winning model (n = 7, 16%); the random
choice model described the other n = 2 (5%). The number
of described participants varied substantially across models
(exact multinomial test, p < .001), with the Euclidean model
outperforming the Mahalanobis model, p= .002, and the ran-
dom choice model, p < .001. Still, the Euclidean model did
not describe more than half the participants (exact binomial
test, p = .13), pointing up the interindividual differences.

The 27 participants described by the Euclidean model se-
lected the low-variability category in 83% of cases (Mdn =
83%, SD = 13 percentage points). Also, the Euclidean model
correctly predicted 82% of these 27 participants’ choices,
which significantly exceeds the accuracy of 50% resulting
from a random choice model, χ2(1) = 268.35, p < .001.
In turn, the 7 participants described by the Mahalanobis
model selected the high-variability category in 55% of cases
(Mdn = 58%, SD = 7 percentage points), and the model cor-
rectly predicted 66% of their choices, which is also signifi-
cantly larger than 50%, χ2(1) = 16.72, p < .001. This shows
that—contrary to previous claims (e.g., Smith & Sloman,
1994)—psychological similarity can account for the category
variability effect; yet, in our data, few people show the effect.

2As in Bayes factor interpretation, a model’s evidence is decisive
if it is at least 100 times larger than the next-best model’s evidence.

Figure 5: Evidence strength for the cognitive models. Each
bar represents a participant and shows the proportion of evi-
dence for each model (the stacked total evidence sums to 1).

Discussion
This work investigated to what extent people make use of
the variability of categories to categorize objects. Within
the exemplar-similarity framework, we compared the Eu-
clidean model, which formalizes ignoring category variabil-
ity, against a new Mahalanobis model, which formalizes con-
sidering category variability. Inferential statistics and predic-
tive cognitive modeling strongly suggest that the categoriza-
tions of many participants (n = 27, 63%) ignored the cate-
gory variability and followed the predictions of the Euclidean
model. Only a few participants (n = 7, 16%) consistently
behaved in line with the Mahalanobis model and seemed to
show the category variability effect (see Yang & Wu, 2014).

One reason for this might be the larger coherence of the
low-variability category A relative to category B (see Fig. 3),
which might have led participants to assign the new stimuli
to category A, unless they were very untypical of it (close
to an A/not-A task, see Casale & Ashby, 2008). We believe
our category structure is suited to study the effect of category
variability in the exemplar-similarity framework, as it can-
not be learned by simple rules, thereby arguably fostering the
use of similarity-based strategies. Moreover, we found sim-
ilar results in another study using an information-integration
category structure with two psychologically meaningful cat-
egories (Seitz, Jarecki, & Rieskamp, 2021).

Taken together, our work shows that—contrary to previous
claims (e.g., Smith & Sloman, 1994)—similarity can process
category variability and adds to the literature that extends the
exemplar-similarity theory to explain the category variability
effect (Nosofsky & Johansen, 2000; Yang & Huang, 2021).
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