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Abstract

Objective: Modeling the effect of meal composition on glucose excursion would help in 

designing decision support systems (DSS) for type 1 diabetes (T1D) management. In fact, 

macronutrients differently affect post-prandial gastric retention (GR), rate of appearance (Ra), 

and insulin sensitivity (SI). Such variables can be estimated, in inpatient settings, from plasma 

glucose (G) and insulin (I) data using the Oral glucose Minimal Model (OMM) coupled with 

a physiological model of glucose transit through the gastrointestinal tract (reference OMM, 

R-OMM). Here, we present a model able to estimate those quantities in daily-life conditions, 

using minimally-invasive (MI) technologies, and validate it against the R-OMM.

Methods: Forty-seven individuals with T1D (weight= 78±13 kg, age= 42±10 yr) underwent three 

23-hour visits, during which G and I were frequently sampled while wearing continuous glucose 

monitoring (cGm) and insulin pump (IP). Using a Bayesian Maximum A Posteriori estimator, 

R-OMM was identified from plasma G and I measurements, and MI-OMM was identified from 

CGM and IP data.

Results: The MI-OMM fitted the CGM data well and provided precise parameter estimates. GR 

and Ra model parameters were not significantly different using the MI-oMm and R-OMM (p>0.05) 

and the correlation between the two SI was satisfactory (ρ=0.77).
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Conclusion: The MI-OMM is usable to estimate Gr, Ra, and SI from data collected in real-life 

conditions with minimally-invasive technologies.

Significance: Applying MI-OMM to datasets where meal compositions are available will allow 

modeling the effect of each macronutrient on GR, Ra, and SI. DSS could finally exploit this 

information to improve diabetes management.
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Bayesian estimation; continuous glucose monitoring; diabetes management; meal composition

I. Introduction

DIABETES mellitus is a metabolic disease characterized by chronic elevated levels of blood 

glucose (BG) and disorders in the metabolism of carbohydrates, lipids, and proteins. This 

chronic condition is caused by a deficiency in insulin secretion (type 1 diabetes, T1D), the 

development of resistance to insulin (type 2 diabetes, T2D), or a combination of the two 

[1]. Uncontrolled BG levels damage the vascular system and lead to more severe clinical 

complications over time, including cardiovascular disease, retinopathy, and nephropathy [2]. 

For this reason, people with diabetes, especially T1D, undergo frequent administration of 

exogenous insulin analogs to keep BG levels within the safe range (approximately between 

70 and 180 mg/dL). However, optimal dosing of this hormone is notoriously a challenging 

task, due to the presence of several external factors that affect BG levels, such as meals, 

physical exercise, or psychological stress.

Current T1D therapies involve the administration of an insulin bolus before each meal to 

anticipate and compensate for the post-prandial glucose excursion. However, current open- 

and closed-loop control therapies do not take into account meal nutrients different from 

carbohydrates [3], [4], [5], [6], even if proteins and fats in the meal are known to strongly 

affect gastric retention (GR, i.e., the fraction of food still in the stomach) [3], [7], glucose 

rate of appearance (Ra, i.e., the velocity at which glucose is absorbed in the bloodstream) 

[8], [9], as well as insulin sensitivity (SI, i.e., the effectiveness of insulin in reducing BG 

levels) [3], [10]. In turn, all these factors affect the glucose excursion and can lead to 

a prolonged hyperglycemia if not properly considered in the calculation of the prandial 

insulin bolus. Therefore, including the information about meal composition in the control 

algorithms for insulin administration (from the simplest formulas to the most advanced 

automatic controllers) would be a significant step toward optimal insulin dosing. Recently, 

some attempts were made to develop a closed-loop therapy that is able to account for fat 

intake [11], [12], however, this was achieved by an iterative procedure requiring the patient 

to undergo several meals with different amounts of fat until a good glycemic target was 

reached. A more refined approach would be the inclusion of the effect of the meal content 

directly in the insulin delivery algorithm, however, this step is hampered by the lack of a 

physiological model quantitatively describing the effect of different macronutrients on BG 

dynamics. To do this in an effective way, one needs a model able to estimate GR, Ra, and SI, 

if possible, in daily-life conditions.
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In [13], we proposed a reliable model quantitatively describing glucose traversing through 

the gastrointestinal tract (esophagus, stomach, intestine), splanchnic bed, and its appearance 

in the peripheral circulation. However, one needs an Ra profile to identify such a model, 

which cannot be directly measured but can be estimated, in hospitalized setting, using 

multiple tracer dilution techniques [14]. Other models were proposed in the literature to 

estimate Ra after an oral glucose and/or meal challenge (OGTT/MTT), without the need 

for sophisticated tracer techniques [15], [16]. For instance, the Oral glucose Minimal 

Model (OMM) [16] allows for simultaneously quantifying both SI and post-prandial Ra

after an OGTT/MTT, assuming a simple piece-wise linear description of the unknown Ra

profile. However, parameters describing Ra have not a direct physiological interpretation 

and, moreover, this method requires plasma glucose and insulin data, thus, it is not usable 

in free-living conditions. Recently, we incorporated the physiological description of the 

gastrointestinal tract into the OMM, overcoming the first mentioned limitation of the OMM 

[17]. Such a modified version of the OMM is still not suitable for our purpose, since it 

is identified on plasma glucose and insulin data. Nevertheless, here, it was used as the 

reference method (R-OMM).

To the best of our knowledge, few models [18], [19] tried to describe glucose dynamics 

in outpatient conditions exploiting data provided by minimally-invasive (MI) devices, i.e., 

continuous glucose monitoring (CGM) and insulin pump (IP), in subjects with T1D. In 

both works, the aim was to describe some of the key aspects of glucose regulation in order 

to evaluate what would have happened if a different insulin dosing was administered. To 

do that, the authors made some simplifications to the original model structure, especially 

on the gastrointestinal glucose absorption module, which preclude their use to accurately 

quantify the key variables characterizing glucose absorption (i.e., GR and Ra). In this 

work, the aim is to extend the applicability of the R-OMM to outpatient conditions, in 

subjects with T1D wearing MI devices (i.e., CGM and IP), while also allowing an accurate 

description of the key processes of gastrointestinal glucose absorption. For such a scope, we 

resorted to a dataset of real subjects with T1D containing both plasma glucose and insulin 

measurements, as well as CGM and IP data, after receiving a standardized mixed meal [20]. 

The simultaneous collection of both plasma glucose and insulin measurements and MI data 

allowed us to develop the here-called Minimally-Invasive OMM (MI-OMM), identified from 

MI data, and compare its results in terms of GR, Ra, and SI against the R-OMM identified 

from plasma glucose and insulin data.

II. Methods

A. Database

The database used in this study is that presented in [20] and is composed of 47 subjects 

with T1D (age = 42.0±10.1 years, body weight, BW = 77.5±13.4 kg, body mass index, BMI 

= 24.4±0.1 kg/m2), recruited in six different clinical centers (Academic Medical Center, 

Amsterdam, The Netherlands; Centre Hospitalier Regional Universitaire, Montpellier, 

France; Medical University, Graz, Austria; Profil Institute for Metabolic Research GmbH, 

Neuss, Germany; University of Cambridge, Cambridge, U.K.; and University of Padova, 

Padua, Italy) within the AP@home FP7-EU project. The trial was conducted in accordance 
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with the ethics principles set forth in the Declaration of Helsinki and was approved by the 

medical ethics committees of participating centers (clinical trial reg. no. ISRCTN62034905). 

Briefly, each subject underwent three randomized 23-hour admissions: one open-loop and 

two closed-loop sessions. During the open-loop admission, subjects were treated with 

their usual insulin therapy through an IP whereas, during the closed-loop admissions, 

two different control algorithms were used for insulin infusion. Subjects received a mixed 

meal for dinner (19:00, first day), breakfast (08:00, second day), and lunch (12:00, second 

day) containing 80 g, 50 g, and 60 g of carbohydrates and standardized macronutrient 

composition, respectively, and performed 30 minutes of moderate physical activity (15:00, 

second day). In case of hypoglycemia, subjects were treated with 15 g carbohydrate snacks 

until the recovery to normal glucose levels. Blood samples were collected to measure plasma 

glucose and insulin every 15 min in the first 2 hours after a meal and during physical 

activity, every hour during bedtime (from 23:00, first day, to 7:00, second day), and every 30 

min in the rest of the admission.

Plasma glucose (Fig. 1, panel A) was measured using YSI 2300STAT Plus Analyzer (YSI 

Incorporated, Yellow Springs, OH, USA) and plasma insulin (Fig. 1, panel B) was measured 

using an insulin chemiluminescence assay (Invitron Ltd, Mon-mouth, U.K.). Throughout 

the admissions, subjects wore a CGM system (Dexcom Seven Plus CGM, Dexcom, San 

Diego, CA) which collected glucose measurements every 5 minutes (Fig. 1, panel C), and 

an insulin patch-pump (Omnipod, Insulet, Bed-ford, MA) which administered insulin every 

5 minutes (Fig. 1, panel D). Calibration of the sensor was performed using finger-stick 

glucose measurements (self-monitoring of blood glucose, SMBG) before dinner (18:75, first 

day), before bedtime (23:00, first day), before breakfast (07:00, second day) and before the 

exercise session (14:50, second day), as per manufacturer’s instructions. More information 

about the protocol is reported in [20].

For the purpose of this work, only data from 15 minutes before (06:45 pm) to 8 hours 

after dinner (03:00 am) were considered to avoid the need to model the so-called “dawn 

phenomenon”, usually occurring from 03:00 to 07:00 [21]. From the 141 available sessions, 

16 were discarded due to problems in insulin administration (pump replacement, pump 

occlusion, or missing bolus), and 8 due to missing or erroneous CGM sensor data. 

Therefore, a total of 117 sessions of 8 hours were used for model development and 

validation. In Fig. 1, median and interquartile range (25th and 75th percentiles) of such 

data are reported.

B. The Reference Oral Glucose Minimal Model (R-OMM)

This model originated from the OMM [16] which describes plasma glucose dynamics after 

a meal as a function of the measured plasma insulin concentration and the unknown meal 

glucose Ra. However, at variance with [16], where Ra was approximated by a piece-wise 

linear function with fixed break-points and amplitudes to be estimated from the data, here, 

we used the structural model of the gastrointestinal tract proposed in [13] which provides 

meaningful parameters describing the physiology of the gastrointestinal tract (Fig. 2, panel 

A). This revisited version of the model was already used as a reference model in other 

modeling studies [17]. Model equations are:

Faggionato et al. Page 4

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.isrctn.com/ISRCTN62034905


G
.
(t) = − [p1 + X(t)]G(t) + p1Gb + Ra(t)

VG
G(0) = G0

X
.
(t) = − p2X(t) + p2SI[Ip(t) − Ib] X(0) = X0

(1)

where G(t) is plasma glucose, X(t) is insulin action in a remote compartment, and Ip(t) is the 

plasma insulin concentration, Gb and Ib are basal levels of glucose and insulin in plasma, 

VG is the volume of glucose distribution, p1 is the fractional glucose effectiveness, p2 is the 

rate constant describing the dynamics of insulin action, and SI is insulin sensitivity, i.e., the 

ability of insulin to suppress glucose production and enhance glucose utilization. Ra(t) is 

the post-prandial glucose rate of appearance in plasma and is described by the following 

differential equations [13], whose parameters and variables have a straightforward and clear 

physiological interpretation:

Q
.

sto1(t) = − kmaxQsto1(t) + Dδ(t) Qsto1(0) = 0
Q
.

sto2(t) = − kempt(t)Qsto2(t) + kmaxQsto1(t) Qsto2(0) = 0
Q
.

gut(t) = − kabsQgut(t) + kempt(t)Qsto2(t) Qgut(0) = 0

Ra(t) = f
BWkabsQgut(t)

(2)

where D is the amount of ingested glucose, Q sto1(t) and Qsto2(t) represent the amount of 

glucose in the stomach (solid and liquid phase, respectively), and Qgut(t) is the amount of 

glucose in the intestine. kmax is the constant rate of meal grinding, kabs the constant rate of 

intestinal absorption, f is the fraction of glucose that is actually absorbed in plasma (i.e., 

glucose bioavailability), and BW is the body weight of the subject. kempt(t) represents the rate 

of gastric emptying, which varies depending on the total amount of glucose in the stomach 

Qsto(t) = Qsto1(t) + Qsto2(t), according to the formula:

kempt(t) = kmin + kmax − kmin
2 tanh[α(Qsto(t) − cD)]

− tanh[β(Qsto(t) − dD)] + 2

(3)

with α = 5 ∕ [2D(1 − c)] and β = 5 ∕ (2Dd), and c and d the model parameters that determine 

the flex points of the curve describing the behavior of kempt as function of Qsto, with kmin

and kmax the minimal and maximal constant rates of stomach emptying. For a complete 

description of (3), we refer to the original work [13].

C. The Minimally-Invasive Oral Glucose Minimal Model (MI-OMM)

The MI-OMM model couples the R-OMM described in (1)-(3), with the descriptions of 

subcutaneous absorption of fast-acting insulin analogues [22], [23] (Section II-C1), and 

plasma-interstitium glucose kinetics [24], [25] (Section II-C2) (Fig. 2, panel B). The 

incorporation of these modules extended the usability of the R-OMM to non-hospitalized 
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experimental settings since it allowed describing CGM data as a function of subcutaneous 

insulin infusion rate and the ingested amount of carbohydrates while keeping the model’s 

ability to provide parameters and variables with a clear physiological meaning.

1) Subcutaneous Insulin Absorption and Plasma Insulin Kinetic Model: The 

subcutaneous insulin absorption model [22], [23], coupled with a single-compartment model 

of insulin kinetics in plasma [26], is described by the following differential equations:

Q
.

sc1(t) = − (ka1 + kd)Qsc1(t) + U(t − τI) Qsc1(0) = Qsc1, 0

Q
.

sc2(t) = − ka2 + Qsc2(t) + kdQsc1(t) Qsc2(0) = Qsc2, 0

Q
.

p(t) = − keQp(t) + ka1 + Qsc1(t)
+ka2Qsc2(t) Qp(0) = Qp, 0

Ip(t) = Qp(t)
VI

(4)

where U(t) is the pump rate infusion, Qsc1(t) and Qsc2(t) represent the amount of insulin in the 

subcutis (non-monomeric and monomeric state, respectively), Qp(t) and Ip(t) are the insulin 

amount and concentration in plasma, respectively. ka1 and ka2 are the constant rate of insulin 

absorption in plasma from the two subcutaneous compartments, kd is the constant rate of 

insulin dissociation in monomers, ke is the constant fractional insulin clearance in plasma, 

and VI is the plasma insulin distribution volume.

2) Interstitial Glucose Kinetic Model: The diffusion process of glucose from the 

blood, G(t), to the interstitial space, Gi(t), is modeled by a linear single-compartment 

model, corrected for the plasma-to-interstitium glucose gradient in steady-state conditions, 

as reported in [24], [25]:

G
.

i(t) = − 1
τG

Gi(t) + 1
τG

G(t) Gi(0) = Gi, 0

(5)

where Gi(t) is interstitial glucose concentration and τG is the equilibration time constant 

between plasma and interstitium.

D. Model Identification

1) R-OMM Identification: The R-OMM is a priori nonidentifiable, i.e., an infinite 

number of solutions for model parameters exists [27]. In particular, paralleling what was 

done in [16] and [17], we fixed VG = 1.45 dL/kg and, to help numerical identifiability, f=0.9. 

In addition, to avoid nonphysiological parameter configurations we constrained kmax to be 

greater than kmin and c to be greater than d, as done in [13]. Finally, as done in [25] and [17], 

p1 was reparametrized to separate the insulin-dependent and -independent components that 

both contribute to the fractional glucose effectiveness [28]:
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p1 = GEZI
VG

+ SI Ib

(6)

where Ib was obtained from the plasma insulin data at the end of the meal session. Therefore, 

the final set of model parameters of the R-OMM to be estimated was SI, p2, Gb, GEZI, kabs, 

kmax, kmin, c, and d.

R-OMM was numerically identified on plasma glucose data using the amount of 

carbohydrate ingested as input and plasma insulin concentration as model forcing-function, 

hence assumed to be known without error. Model parameters were estimated using a 

Bayesian Maximum A Posteriori estimator [29], using prior information coming from the 

literature [16], [30]. Measurement error on glucose data was assumed to be independent, 

Gaussian, with zero mean and known standard deviation (constant coefficient of variation, 

CV=2%).

2) MI-OMM Identification: The MI-OMM is a priori non-identifiable. In particular, we 

fixed: VI=0.135 L/kg and, as for the R-OMM, VG=1.45 dL/kg, and f=0.9. In addition, to help 

numerical identifiability, we fixed to population values τI = 5.62 min, ka1 = 1.34 ⋅ 10−4 min−1, 

kd = ka2 + 0.0155 min−1 [23], and the same constraints to parameter kmax and kmin, c, and d were 

imposed as for the R-OMM. Parameter p1 was reparametrized as reported in (6). In addition, 

here we calculated Ib from pump data as

Ib = Ub
ke VI BW

(7)

where Ub is the basal insulin infusion rate of the subject in the last hour before the 

start of the experiment. Hence, the final set of model parameters of the MI-OMM to be 

estimated was SI, p2, Gb, GEZI, kabs, kmax, kmin, c, d, ka2, ke, and τG. MI-OMM was identified 

simultaneously on CGM sensor and, if available, SMBG data using the amount of the 

ingested carbohydrate and the subcutaneously administered exogenous insulin profile as 

model inputs. As known from literature [31], CGM traces of old-generation sensors (like the 

Dexcom Seven Plus used here) were affected by temporal and proportional drift and offset. 

These were accounted in the model by modulating Gi(t) of (5) as follows:

CGM(t) = (a0 + a1t)Gi(t) + b0 + b1t

(8)

where a0, a1, b0, and b1 are the parameters describing the offset (subscript 0) and the temporal 

drift (subscript 1) of the sensor after a sensor calibration, to be estimated from the data 

in each between-calibration interval. Of note, on some occasions, the confidence interval 

of the estimated parameters of the CGM error model may include the zero term. In this 
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case, the CGM error model can be simplified by fixing these values to zero. Moreover, 

the noise superimposed to CGM, v(t), is known to be colored. To account for that, we 

used the autoregressive model of order 2 reported in [31]. Needless to say, the choice 

of the appropriate CGM model depends upon the CGM device used in the experiment. 

For instance, in more recent CGM devices, drift and offset might be negligible and the 

superimposed error noise could be described by a simpler model. Measurements noise on 

SMBG data, w(t), was assumed to be independent, Gaussian with constant CV=2%. To 

facilitate the a posteriori identifiability, model parameters were estimated using a Bayesian 

Maximum A Posteriori estimator [29], with the a priori probability density function assumed 

to be log-normally distributed, with known mean μp and covariance matrix ∑p of the log-

transformed parameters, derived from the literature [16], [23], [30], [31]. In summary, the 

objective function to minimize was:

J(θ ) = vTΣv
−1v + wTΣw

−1w + (θ − μp)
TΣp

−1(θ − μp)

(9)

where v is the difference between measured and predicted CGM, ∑v the covariance matrix 

of v(t), calculated from the autoregressive model proposed by Facchinetti and coworkers 

[31] using the Yule-Walker’s equation [32], w is the difference between measured SMBG 

and model predicted glucose concentration, ∑w the covariance matrix of w(t), and θ is the 

estimated vector of the log-transformed parameters.

Model identification was performed in MATLAB (MATLAB R2020a, The MathWorks, Inc., 

Natick, Massachusetts, United States [33]) using the ode45() solver to integrate differential 

equations and the lsqnonlin() built-in function to find model parameters minimizing (9).

E. Model Assessment and Validation

The model assessment was performed by checking for randomness and normality 

distribution of weighted residuals, a posteriori identifiability, and physiological plausibility 

of parameter estimates [29]. Randomness of weighted residuals was assessed by the Runs 

test and normality of the distributions by the Kolmogorov-Smirnov test. Precision of 

parameter estimates was expressed as percentage CV for those that can assume only positive 

values and as standard deviation (SD) otherwise. In both cases, SD was derived from the 

square root of the diagonal elements of the covariance matrix of the estimates, which, in 

turn, was obtained as the inverse of the Fisher Information matrix. Physiological plausibility 

of model parameters was assessed by checking if the value of the estimates falls inside a 

physiological range.

MI-OMM validation was performed by comparing key clinically relevant quantities, i.e., SI, 

Ra(t), and GR(t) calculated as:

GR(t) = 100Qsto(t)
D

(10)
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derived from the MI-OMM, against those obtained from the reference R-OMM. Finally, 

MI-OMM prediction of plasma glucose and insulin profiles were visually compared against 

the measured plasma glucose and insulin concentration that were available in the dataset but 

not used in the identification process.

F. Statistical Analysis

Data and results are reported as median and interquartile range (25th, 75th percentile) unless 

otherwise specified. Two-sample comparisons were done by Student’s T-test, for normally 

distributed variables, Wilcoxon’s signed rank test, otherwise. Pearson’s correlation was used 

to evaluate univariate linear correlation, in the case of normally distributed variables, or 

Spearman’s ranked correlation, otherwise. Normality of the parameter distributions was 

assessed by the Lilliefors’ test.

III. Results

A. Model Assessment

The R-OMM predicted plasma glucose data well both in the overall population and at a 

single individual level and provided precise estimates of model parameters (not shown).

The MI-OMM was able to satisfactorily predict CGM data both in the overall population 

and at a single individual level. Mean and standard deviation of weighted residuals over 

time are reported in Fig. 3. They were reasonably uncorrelated with approximately unitary 

variance. The CGM signal predicted by the MI-OMM and the measured CGM data are 

shown for a representative subject in panel A of Fig. 4.

As an independent validation, plasma insulin and glucose concentration data predicted by 

MI-OMM (despite such data were not used for model identification) well compared with 

their measured counterparts, as it can be seen in panels B and C of Fig. 4, for the same 

representative subject. Estimated model parameters are reported in Table I together with the 

mean CV, proving the ability of the model to estimate physiologically plausible parameters 

with precision. The only parameter estimated with poor precision was kabs, for which we 

found CV between 100% and 112% in 7 out of 117 sessions. Estimated error parameters are 

reported in Table II. They showed distributions comparable to those reported in the original 

work. Their precision is expressed as SD because the CV is not suitable for this type of 

variable that can assume both positive and negative values.

B. Model Validation

The comparison of the MI-OMM with the R-OMM provided satisfactory results. In 

particular, Spearman’s ranked correlation between SI estimated with the two models was 

0.77 (p<0.01). In addition, the probability density functions of the SI estimated with the 

two models were not statistically different (p=0.33). The visual comparison of the two 

distributions is shown in panel A of Fig. 5, while a point-to-point comparison is shown in 

panel B of the same figure.
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Moreover, the MI-OMM provided GR(t) and Ra(t) curves similar to those obtained with the 

R-OMM, as it can be seen in panels A and B of Fig. 6, where their medians and 25th 

and 75th percentiles are reported. The model predicted also plasma glucose well while 

overestimating plasma insulin peaks, as shown in panels C and D of Fig. 6.

Finally, also the probability density functions of all the parameters related to the glucose 

absorption (i.e., kabs, kmax, kmin, c, and d) estimated with the two models were not statistically 

different (p>0.05).

IV. Discussion

The performance of both decision support systems for diabetes management and artificial 

pancreas algorithms would benefit from the knowledge of how and how much non-

carbohydrates macronutrients alter post-prandial gastric retention and glucose absorption 

[5]. A few studies were performed in hospitalized settings, e.g., [6], [34], however, now that 

large CGM data sets collected in free-living conditions are available, it would be useful to 

have a tool to accurately estimate such key variables in these experimental conditions from 

such minimally-invasive devices.

In this work, we developed a semi-mechanistic model that provides an accurate description 

of gastric retention, glucose rate of appearance, and insulin sensitivity in patients with T1D 

wearing a CGM sensor and an IP. We focused our attention on those three quantities since 

they are known to be highly affected by different meal compositions [5] and developed a 

model to assess those variables, as accurately as possible, in real-life conditions.

To do that, we started from a modified version of the validated OMM [16], incorporating 

a semi-mechanistic model of glucose transit through the gastrointestinal tract [13] and 

able to describe GR, Ra and SI in hospitalized patients, using plasma glucose and insulin 

measurements. Such a model was also used as a reference (R-OMM) to assess the 

performance of the proposed MI-OMM, which extends the domain of validity of the R-

OMM to work in outpatient conditions, using data coming from MI devices.

We proved that MI-OMM can satisfactorily fit the CGM profiles and generally provide 

precise and physiologically reliable parameter estimates. The only exception was parameter 

kabs, which was estimated with poor precision (100%< CV<112%) in 7 out 117 analyzed 

sessions. This was imputable to the weak a priori information associated with that parameter, 

which in fact presented the highest a priori variance overall, with CV=168%. A further 

validation of the model was the comparison of plasma glucose and insulin prediction against 

the measured concentration. Plasma glucose concentration was predicted well, while plasma 

insulin concentration was predicted with kinetics that appear faster than the observed ones, 

thus, leading to the over-estimation of the insulin peaks. This was probably due to the 

employed prior distributions for ka2 and ke, which were derived from a model developed 

on data coming from a single insulin injection in hospitalized patients and, therefore, 

that may present different kinetics than those shown in this case. However, this does not 

seem to affect the quantities of interest, such as SI, probably due to compensation with 

the parameter p2. Overall model performance is still acceptable even if prior information 
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was not perfectly adequate for insulin kinetics parameters. This is likely the result of the 

robust physiology-based model structure and the availability of an informative prior for the 

remaining parameters, both contributing to the a posteriori identifiability of this complex 

model and maintaining its physiological interpretability.

The most important feature of the MI-OMM is that it provides estimates of GR, Ra, and 

SI that well matched their R-OMM counterparts, both in terms of correlation, median, and 

variability. The same result holds for all the model parameters related to the gastrointestinal 

tract, like minimal (kmin) and maximal (kmax) gastric emptying and gut absorption (kabs). 

Further studies are needed to assess if some, all, or none of these parameters/curves are 

good predictors of meal composition, but we foresee that meals with high relative fat content 

should present slower GR and Ra profiles. To quantitatively characterize these two curves 

one could compute indices like the half-life of the GR curve [35], and the area under the 

Ra profile in the first 2 hours after the meal [36], normalized to the amount of ingested 

carbohydrates. We found that also the distribution of these two indices estimated from 

MI-OMM-derived curves well matched their R-OMM-derived counterparts (not shown).

A first limitation of the presented work is that all the patients received a mixed meal of 

60 g of carbohydrates and standardized macronutrient composition during the experiment. 

Therefore, the variability observed in model parameters/curves is likely to be underestimated 

compared to those one would find in real-life conditions, where meals with different 

compositions are consumed. This is a drawback of the dataset, which however presented 

an important and unique feature, i.e., the frequent collection of both plasma measurements 

and CGM data. Preliminary results obtained on an independent dataset of subjects with T1D, 

studied in real-life conditions while wearing CGM and IP, showed promising results in terms 

of model ability to detect differences between high-fat and low-fat meals [37].

A second limitation is that the assumptions for the calculation of the initial conditions of 

the model (see Appendix A) might have hampered the fit of the data in the first minutes, 

affecting the estimate precision. For example, the slight undershoot in the pattern of the 

residuals in the first hour (see Fig. 3) might be caused by an inaccurate model initialization 

in some sessions. This could have led to an imprecise estimation of the parameter kabs

whose estimation strongly relies on the measurements immediately after the meal, which 

are directly related to the rapid carbohydrate absorption. However, this problem would be 

reasonably overcome if the model was incorporated in a control algorithm working online, 

or ensuring that the patient is in a reasonable steady state prior to starting the experiment.

A final remark is that the dataset of the present study was collected using an outdated CGM 

sensor (Dexcom Seven Plus CGM, Dexcom, San Diego, CA). With this in mind, we can 

speculate that the MI-OMM was tested in a challenging scenario, still providing satisfactory 

results. More recent and accurate glucose sensors are available to researchers and people 

with diabetes all over the world. We believe that the performance of MI-OMM could greatly 

improve if the model was fed with the data collected with such devices. Furthermore, with 

the advent of real-time insulin sensors [38], [39], [40], the complexity of the MI-OMM 

could be reduced by eliminating, in part or completely, the insulin subsystem (Section 

II-C1) and using measurements from the insulin sensors instead. In addition to that, the 
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direct measurement of plasma insulin would allow for the identification of the MI-OMM 

in subjects with T2D, without the need to extend the already-complex MI-OMM with a 

submodel for insulin secretion, which may be a rather challenging task.

As already anticipated, we plan to apply the MI-OMM to the aforementioned dataset 

containing data of patients with T1D studied in real-life conditions while wearing CGM and 

IP. The aim will be to detect differences in the GR, Ra and SI depending on the type of meal, 

such as high vs low-fat content, or high-fat vs high-protein content. Needless to say, before 

going to this stage of our research we first needed to develop and validate the MI-OMM in a 

dataset where plasma glucose and insulin measurements were collected together with CGM 

and IP data. Future work would also include the analysis of the MI-OMM using nonlinear 

mixed-effects modeling. Within this framework, we expect to introduce the information 

about meal composition directly into the model, as a descriptor for model parameters.

Extending the R-OMM, used in hospitalized settings, to the MI-OMM, applicable in 

real-life scenarios, can really be a game-changer in the treatment of diabetes due to the 

recently available large amount of data coming from wearable devices, which would allow 

improving diabetes management while limiting the need of expensive clinical trials and 

patient’s burden. In addition, we believe that our model has the potential to improve 

diabetes management by understanding the key factors affecting meal absorption and insulin 

sensitivity in real-life scenarios and consequently adjusting the treatment. This can be 

potentially used to re-design current insulin therapies, or in more advanced frameworks, the 

model itself could be incorporated in automatic controllers for insulin delivery or used to 

inform machine learning techniques for detecting unannounced meals. Finally, upcoming 

sensors and insulin infusion devices would only improve model performances and extend its 

range of applicability (e.g., patients with T2D) in the future.

V. Conclusion

In this work, we developed a model for the estimation of GR, Ra, and SI after a meal, in 

patients with T1D wearing a CGM sensor and an IP. The presented model is an extension 

of the OMM, which was previously developed to work with data collected in hospitalized 

settings. The MI-OMM is able to provide an accurate and physiologically interpretable 

quantification of those quantities in daily-life conditions as proven by comparison with the 

R-OMM. GR, Ra, and SI are known to be strongly affected by meal composition, and for 

this reason, the next step of our work will be the application of the MI-OMM to a dataset 

where meals with different compositions were consumed by the patients with T1D, with the 

objective of detecting how and how much each macronutrient affects GR, Ra, and SI, and thus 

also the post-prandial glucose excursion. Thanks to the easily accessible data that it requires, 

the MI-OMM has potentially multiple other applications, such as the incorporation into 

controllers for insulin delivery or algorithms for meal detection. Finally, the employment of 

such knowledge in open- and closed-loop diabetes therapies would allow a great step ahead 

toward the optimal insulin dosing in patients with diabetes.
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Appendix

A. Initial Conditions and Integration of Model Equations

In real-life conditions, it may happen that the system is not in steady state at the time of 

the meal. This can lead to the problem of setting the proper initial conditions for model 

integration. Here below, we reported the strategy implemented in this work to overcome 

this issue. For what concerns the submodel of the subcutaneous insulin absorption (Section 

II-C1), it was integrated from the time corresponding to the first available IP rate datum, 

exploiting the fact that these data were available several hours before the starting of the 

experiment. Therefore, we could safely identify such time with −∞ and assume that the 

subsystem was at steady state earlier than this time. The submodels describing glucose-

insulin dynamics and the interstitial glucose kinetics (Section II-B, (1), and Section II-C2) 

were integrated from t=−15 min, assuming Ra( − 15) = 0. Initial conditions were calculated 

by solving (1) and (5):

Gi( − 15) = CGM( − 15)

(11)

G( − 15) = Gi( − 15) + G
.

i( − 15) τG

(12)

X( − 15) = Gb p1 − G
.
( − 15)

G( − 15) − p1

(13)

where Gi( − 15) is the derivative of the CGM measurements at −15 min, calculated by 

applying a weighted linear regression to CGM data collected between −15 min and 0 min, 

and G( − 15) was assumed equal to Gi( − 15). Conversely, for what concerns the submodel 

for the gastrointestinal tract (Section II-B, (2)), it was integrated from t=0, with all initial 

conditions set to zero, assuming the stomach of the patient was empty at that time.
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Fig. 1. 
Median (solid black lines) and 25th and 75th percentiles (gray shaded area) of the data 

used for model development and validation. Panel A: plasma glucose concentration. Dashed 

lines represent mealtime. Panel B: plasma insulin concentration. Panel C: CGM sensor 

measurements. Panel D: Insulin pump rate (right y-axis, solid line and shaded areas) and 

pre-prandial insulin bolus (left y-axis, dot and bars). The black dot represents the median 

pre-prandial bolus while the lower and upper bars represent the 25th and 75th percentiles, 

respectively. All the plots are aligned with mealtime at 19:00 on the first day (0 hours).
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Fig. 2. 
Schematic representation of the models used in this work. Panel A: Reference oral minimal 

model (R-OMM) used in [17]. Panel B: Minimally-invasive oral minimal model (MI-OMM) 

developed in this work, which integrates the R-OMM, a model of subcutaneous insulin 

absorption, and a model of plasma-interstitium glucose kinetics. Circles represent state 

variables, continuous arrows represent mass transfers and inputs, and dashed lines represent 

controls. Dashed lines with black dots represent the measurement variables.
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Fig. 3. 
Average weighted residuals of the model (black solid line); vertical bars represent ± one 

standard deviation.
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Fig. 4. 
MI-OMM predicted signals for a representative subject. Panel A: Model predicted CGM 

(thick black line) plotted against CGM data (grey dots). Panel B: Model predicted G(t) 

(thick black line) plotted against plasma glucose data (white dots) and SMBG measurements 

(grey triangles). Panel C: Model predicted I(t) (black thick line) plotted against plasma 

insulin data (white dots). Dashed vertical lines at time zero indicate mealtime.
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Fig. 5. 
Comparison between the SI estimated with the two models. Panel A: Comparison between 

histograms (left y-axis) and probability density functions (right y-axis). Light blue and 

orange bars represent the frequency of SI estimated with the R-OMM and the MI-OMM, 

respectively. Blue and red thick lines represent the log-normal distribution curves fitted 

against SI obtained with the R-OMM and the MI-OMM, respectively. Panel B: Point-to-point 

comparison of SI estimated with the R-OMM and the MI-OMM. The dashed black line is the 

bisector of the first quadrant.
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Fig. 6. 
Comparison of MI-OMM results (red lines and orange areas) against curves obtained with 

R-OMM and original data (blue lines and light blue areas). Thick lines represent medians, 

while shaded areas represent 25th and 75th percentile ranges. Panel A: GR(t) obtained from 

R-OMM and MI-OMM. Panel B: GR(t) obtained from R-OMM and MI-OMM. Panel C: 
Measured plasma glucose and G(t) obtained from MI-OMM. Panel D: Measured plasma 

insulin and Ip(t) obtained from MI-OMM.
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