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Abstract 

Key questions in the study of categorization are how individuals 
form categories from experience and extend that knowledge to 
assess membership of novel examples. Popular accounts 
predict generalization to be based on either  similarity to 
reference points or the application of rules or bounds. 
However, recent data show that some categorization behavior 
defies the predictions of leading accounts. Expanding on these 
findings, in the present study participants learned a one or two 
dimensional alternating category structure and were then tested 
on near and far transfer tasks. Findings reveal that individuals 
can extend a learned alternating category structure across 
multidimensional spaces and increasingly distant 
generalization regions. Additionally, subjects readily invoke 
alternation during the far transfer task (a task which does not 
involve classification), providing critical evidence that learning 
of the alternating category structure was driven by relational 
rather than feature-based similarity. 

 

Keywords: Categorization; Classification Learning; Relational 
Categories; Generalization of Learning 

Introduction 
The way in which individuals determine the category 

membership of new items is a question of persistent and 
profound interest in the field of categorization. Individuals may 
decide by comparing new items to previously stored category 
members (e.g.,  Nosofsky, 1984), to a representation of the 
average category member (drawing on prototype theory, e.g., 
Rosch & Mervis, 1975), or by employing a rule that explicitly 
separates items into different categories. However, there is 
recent evidence that not all generalization behavior can be 
comprehensively captured by currently held theories of 
categorization. 
 Kurtz and Wetzel (2021) trained participants on a one-
dimensional alternating category structure (e.g., A B A B) and 
found that a majority of participants generalized new test items 
according to the overarching alternating pattern during an 
unsupervised test phase and only a minority of participants 
generalized based on distance in similarity space. Specifically, 
the untrained region most proximal to the training region 
represented a critical test: items in this region are close in 
feature space to the B items at the extreme of the alternated 
training set, but they would be considered A items if 
extrapolating the alternation pattern into the untrained region. 
In a second experiment testing an alternating structure based on 
one diagnostic dimension embedded in a two-dimensional 
domain, the researchers found a  decrease in the proportion of 
participants that generalized the alternation, but still a notable 
level and clearly more than would be expected from chance. 

These findings indicate that some generalization strategies are 
not captured by proximity (i.e., adjacency in similarity space) 
based descriptions of generalization. 
 A potential non-proximity, or similarity, based description 
may lie in the relational category literature. Members of 
relational categories do not necessarily exhibit feature-based 
similarity, but are instead unified by fulfilling the same core 
relationship – having relational similarity (Gentner, 1983; 
Gentner & Kurtz, 2005; Gentner & Markman, 1995). Since 
relational category members need not share feature-based 
similarity, a relational account is proposed  as a contending 
explanation  of the generalization behavior observed in Kurtz 
and Wetzel (2021). This is intriguing and novel territory in that 
that a relational category does not take individual items in the 
categorization domain as examples; instead the totality of the 
categorization domain represents a singular example of the 
relational category of alternating systems (that includes 
checkerboards, striped patterns, the day/night cycle, 
opportunities for competitors to score points in games, etc.). 
 The present investigation seeks to expand on the findings of 
Kurtz and Wetzel (2021) by replicating the single dimension 
findings and expanding on the two-dimensional findings with 
a modified two-dimensional structure in which both 
dimensions are category-relevant. We created a two 
dimensional category structure with a partially diagnostic non-
alternating dimension, and a fully diagnostic alternating 
dimension. This was intended to evaluate whether subjects 
remain sensitive to the alternating dimension when given a 
non-alternating dimension that can inform category 
membership. This category structure also allowed us to 
evaluate whether the alternating structure would be generalized 
to regions which would not explicitly be continuations of the 
alternating pattern of the training items. Further, in order to test 
the potential applicability of relational categories, a transfer 
task was administered to evaluate the proportion of alternating 
responses in an unsupervised environment with stimuli visually 
entirely distinct from that used in training and near transfer. 
Given the importance of relational similarity in the accurate 
application of analogies during far (superficially distinct) 
transfer tasks (Gentner & Kurtz, 2005; Gentner & Markman, 
1995), evidence of successful far transfer from individuals who 
learned the alternating category structure would suggest that 
alternation-based generalization behavior may be best 
understood in terms of activation and application of a relational 
category. 
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Method 

Subjects 
160 undergraduates at SUNY Binghamton participated in the 
experiment for partial fulfillment of a participation 
requirement for a psychology course.  

Stimuli 
There were two types of tasks used in the experiment: 
classification tasks (the training phase and near transfer phase 
were classification tasks) and non-classification tasks (the far 
transfer phase was a non-classification task). The stimuli for 
the far transfer (non-classification) task consisted of eight 
marbles differing only in color (four red and four blue), which 
were displayed in a random initial configuration prior to 
being arranged by the participant. 
There were two sets of stimuli for the categorization task 
corresponding to two between-subjects conditions. One 
stimuli set varied along a single dimension (1D condition), 
while the other stimuli set varied along two dimensions (2D 
condition).The one dimensional stimuli consisted of a gray 
circle with a red line anchored to the center of the circle and 
protruding outward at a certain angle (Figure 1).The angle of 
this red line in relation to the circle was the dimension that 
was varied. These 1D stimuli followed an alternating 
category structure, such that as the values along the variable 
dimension increased, the category labels corresponding to 
those feature values alternated 

Figure 1: Sample Stimulus. 
  

systematically. Training stimuli ranged from a line angle of 
20 degrees to 179.5 degrees. Within this range, category 
exemplars were clustered in groups of three.  Within a given 
cluster, items were all of the same category and were buffered 
by 5 degrees of angle difference. Between two consecutive 
clusters, there was an angle difference of 51.5 degrees. The 
alternation of category labels happen at the level of the cluster 
(all items within a cluster were of the same category, while 
all items of the immediately preceding cluster were of the 
contrasting category). The line angle of the near-transfer test 
items ranged from 226 degrees to 334 degrees distributed in 
a pattern in keeping with that of the training items (see Figure 
2).  

The two-dimensional stimuli were of the same type as 
shown in Figure 1; however, these stimuli varied both in 
terms of line angle and in terms of circle diameter. These 
stimuli alternated with respect to category labels along the 
angle dimension (similar to the 1D stimuli), and were 
partially distinguishable based on the diameter – if 

classification judgments were made based only on diameter, 
then accuracy would be 50% (see Figure 3). 

Figure 2: Representation of the single dimension category 
space. Stimuli had consistent diameter but varied in line 
angle. “A” and “B” indicate training items that are “Alpha” 
or “Beta,” respectively. Each “?” refers to a stimulus item 
shown during the test phase. The leftmost group of “?” 
indicates testing region 1.  

Figure 3: Representation of the two dimension category 
space. Stimuli varied in diameter and line angle. “A” and “B” 
indicate training items that are “Alpha” or “Beta” 
respectively. Each “?” refers to a  stimulus item shown during 
the test phase. The leftmost column of “?” indicates testing 
region 1. 

Procedure 
Participants were randomly assigned to one of three groups: 
The single dimension condition (1D, n = 54), two dimension 
condition (2D, n = 55), or control (n = 51). Control 
participants only experienced  the far transfer task. 
 
Training Phase. Participants were told they would be trained 
to evaluate “instrument readouts.” Stimuli were displayed 
individually on each trial. Participants were instructed to 
indicate category membership by selecting the “Alpha” or 
“Beta” button. Corrective feedback was provided after each 
response. During a training block each stimulus was 
evaluated once, in random order, for a maximum of ten 
blocks. Participants progressed to the near transfer 
component of the testing phase after correctly evaluating 
twelve consecutive training stimuli. 
 
Near Transfer Phase. In random order, a single training or 
test stimulus was shown, and participants indicated category 
membership by selecting the “Alpha” or “Beta” button. Each 
item was evaluated once and no feedback was provided. 
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Upon completion, participants continued on to the far transfer 
phase. Only individuals that scored 90% or higher on the 
training items during this test phase were included in the 
analyses; this learning criterion is the same as that 
implemented by Kurtz and Wetzel (2021). 

Amount of alternation extension was operationalized via 
testing regions. The right half of each categorization space 
comprises the entire testing region for each structure (see 
Figures 2, and 3 for a general visualization, and Figures 4, 
and 5 for a visualization including test data). Each third of the 
entire testing space is its own test region, with the region 
closest to the training stimuli designated the first testing 
region, or region 1 (testing regions explicitly indicated in 
Figures 4 and 5). 
 
Far Transfer Phase. We note again that this component was 
the entire experiment for Control group participants. 
Experimental participants were informed that they were 
moving on to the next part of the experiment. This was 
somewhat ambiguous since the participants were completing 
multiple separate studies within a one-hour experimental 
session; therefore it could have been viewed on one extreme 
as an extension of the learning task with the instrument panels 
or on the other extreme as entirely unrelated. Participants 
were shown eight marbles (four red and four blue) in a 
random arrangement. Horizontally, along the bottom of the 
screen, there were eight empty boxes. Participants were given 
the following instructions “These marbles are currently in 
random positions. Please arrange them along a line into an 
ordering of your choice. Press the finished button when you 
are done.” Participants received no feedback. A successful 
alternation outcome on the far transfer test was 
operationalized as comprehensively and consistently 
alternating across the sequence of marbles either by 1’s 
(rbrbrbrb), by 2’s (rrbbrrbb), or by flanking (rrbbbbrr). A 
successful alternation was awarded a score of “1” while any 
other arrangement was assigned a value of “0.” 

Results 
28 subjects were removed from the one dimension (1D) 
condition and 33 subjects were removed from the two- 
dimension (2D) condition for failure to meet learning criteria 
during training. All analyses were performed on participants 
that met learning criteria during training (1D: n = 26; 2D: n = 
22). There were 55 subjects in the control condition (only 
exposed to the far transfer task). 

Participants were considered proximity classifiers if 100% 
of items in the first testing region (Region 1) extended the 
value of the adjacent training region. Participants were 
considered to have extended the alternation pattern into the 
testing region once if 100% of items in the testing region 
closest to the training region (Region 1) extended the 
alternation pattern (Alpha, Beta, Alpha, etc.). Participants 
were considered to have extended the alternation pattern 
throughout the entire testing region if 100% of the items in 
each group of test stimuli properly extended the alternation 
pattern (i.e., throughout Region 2 and Region 3). Testing 

regions are indicated in Figures 4 and 5. This criterion is 
consistent with that of Kurtz and Wetzel (2021). 

61.5% of 1D subjects and 63.6% of 2D subjects extended 
the alternation pattern into at least the first testing region 
(Region 1 in Figures 4 and 5 for the 1D and 2D conditions 
respectively). 23.1% of all 1D participants, and 31.8% of all 
2D participants extended the alternation pattern throughout 
the entire testing region (aggregate near transfer 
categorization decisions for each condition visualized in 
Figures 4 and 5).  

11.5% of 1D subjects classified items in the first testing 
region according to the closest training region (proximity 
classifiers; i.e., If the training items most adjacent to the 
testing items are “beta” then Region 1 was also classified as 
“beta” in proximity classifiers). No 2D participants were 
considered proximity classifiers. 

In the far transfer task of arranging the marbles, 53.8% of 
1D participants and 72.7% of 2D participants produced an 
alternation outcome. 45.1% of control participants produced 
an alternation outcome. A majority of successful transfer 
responses alternated the sequence of marbles by 1’s 
(rbrbrbrb; 1D: n = 14; 2D: n = 15; Control: n = 19); very few 
alternated by 2’s (rrbbrrbb; 1D: n = 0; 2D: n = 1; Control: n 
= 2) or by flanking (rrbbbbrr; 1D: n = 0; 2D: n = 0; Control: 
n = 2). Far transfer performance was evaluated via goodness 
of fit tests using the proportion of successful vs. unsuccessful 
transfer in the control condition as expected values. There 
was no significant difference in proportion of successful 
transfer found between the 1D condition (n = 26, M = 0.54) 
and control (n = 51, M = 0.45; X2(1, N = 77) = 0.822, p = .37). 
However, there was a significant difference between the 2D 
condition (n = 22, M = 0.73) and control (X2(1, N = 73) = 
6.83, p < .01, w = 0.56; Figure 6). Phi (w) indicates a large 
effect size. 

 
 

 
 

 
Figure 4: All 1D near transfer responses (n = 26). A single 
stimulus item is represented by a single square; color 
represents the proportion of participants that selected Alpha 
or Beta. The three rightmost groups indicate the three near 
transfer testing regions. Region 1 is the testing region most 
adjacent to the training region, with region 3 being the 
farthest away in the stimulus space. 
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Figure 5: All 2D near transfer responses (n = 22). A single 
stimulus item is represented by a single square; color 
represents the proportion of participants that selected Alpha 
or Beta. The three rightmost groups indicate the three near 
transfer testing regions. Region 1 is the testing region most 
adjacent to the training region, with region 3 being the 
farthest away in the stimulus space. 
  

 
 
 
 
 
 
 
 
 
 

 
Figure 6: Proportion of alternation outcomes observed for 
each condition in the far transfer task. There was only a 
significant difference observed between the two-dimension 
and control conditions. 

Simulation 
As a possible explanation of the learning and generalization 
of alternating category structures, Kurtz and Wetzel (2021) 
report a simple neural-network model that simulates the 
qualitative patterns of human performance on a 1D 
alternating category structure; which, may suggest that the 
ability to learn and generalize an alternating category 
structure can emerge as simple inputs progress through a 
connectionist system. 

Employing the connectionist principle of error driven 
learning (Rumelhart, Hinton, & Williams, 1986) and 
recreating the architecture described in Kurtz and Wetzel 
(2021), we constructed a simple neural network model to see 
if such a model could simulate the current behavioral 
observations.  The model can be described as a multilayer 
perceptron (MLP): its architecture consisted of an input layer, 
a hidden layer with a single input node, and an output layer 
with a single output node.  At the hidden node, a sine function 
was used, and at the output node a linear activation function 
was used.  Kurtz and Wetzel found that a periodic activation 
such as a sine function was able to simulate various forms of 
alternation behavior. The model had two free parameters: 
learning rate (0.1) and initial weight range (a range from 6.0 
to 6.1). The model was trained on data that represented 
alternating structures incorporating either a single dimension 
or two dimensions; and was trained for 2000 epochs with 
random item presentation.  The data used as input was scaled 
between 0 and 1, and was of the same structure types as those 
given to human subjects.  The model was not quantitatively 
fit to the human behavioral data, rather the model was trained 
on an alternating structure to see if it could produce various 
human-like qualitative outcomes. Therefore, this model is not 
posited as a mechanistic account of the observed behavioral 
data; instead, the model is simply a proof-of-concept that a 
simple connectionist system is able to replicate similar types 
of behavior. In the 1D case it was found that the model 
produced response probabilities that would appropriately 
predict item labels in the case of alternation, a unidimensional 
rule, and a partial alternation (Figure 7). However, when the 
input incorporates two features (such as our 2D condition), 
the model poorly simulated the human capacity to learn an 
alternating category.  

The model was able to predict item labels appropriately for 
the case of a unidimensional rule and partial alternation, but 
in the case of the full alternation the model fails. The model’s 
hyperparameters were then adjusted in an attempt to better 
produce alternating behavior. It was found that when the 
number of hidden nodes in the model was increased to five, 
the model was able to perfectly output response probabilities 
that predict alternating item labels (Figure 8).  
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Figure 7:  Given one dimensional input, an MLP using a sine 
function as hidden node activation is able to simulate various 
behaviors exhibited by humans when faced with an 
alternating category structure. The red line represents 
response probability along the single alternating dimension. 
The x-axis corresponds to the feature space, and the y-axis 
corresponds to response probability. 

 

 
Figure 8: Given two dimensional input, an MLP using a sine 
function as hidden node activation successfully learns an 
alternating category structure. The surface in the figure 
represents response probability in terms of the ‘A’ category. 
The x-axis corresponds to the feature 1 (angle), the y-axis 
corresponds to feature 2 (size), and the z-axis corresponds to 
category label. 
 

Discussion 
Near Transfer 
 
One Dimension. Kurtz and Wetzel (2021) found that 67.8% 
of their participants extended the alternation into the first 
testing region while 25.0% of participants extended the 
alternation throughout all three testing regions (one-
dimensional stimuli). The present study found that a 
comparable proportion of 1D participants extended the 
alternation pattern into the first region (61.5%) and 
throughout all three testing regions (23.1%). However, more 
proximity classifiers were observed (11.5%) than previously 

reported (Kurtz & Wetzel, 2021; 3.5%) on single dimension 
alternating stimuli. 

The exact same one-dimensional structure, stimuli, feature 
values, and criteria from Kurtz and Wetzel (2021) were used 
in our 1D condition. Given the similar proportion of 
alternation behaviors observed between the two studies, the 
one-dimensional findings of Kurtz and Wetzel (2021) were 
successfully replicated. 
 
Two-Dimension. When testing the alternating structure on 
two-dimensional stimuli, Kurtz and Wetzel (2021) found that 
34.8% of participants extended the alternation (only one 
testing region used). The present study observed a higher 
proportion of alternation extension (63.6% of 2D participants 
extended alternation into at least the first region). 
Interestingly the two-dimensional space employed by Kurtz 
and Wetzel (2021) had only one diagnostic dimension; the 
two-dimensional space used here had one diagnostic and one 
partially diagnostic dimension. Despite the addition of a 
partially diagnostic dimension, a higher proportion of this 
study’s participants extended into testing region 1 than 
observed in Kurtz and Wetzel (2021).  

Building off the single testing region findings of Kurtz and 
Wetzel (2021), we used three testing regions and observed 
that 31.8% of 2D participants extended the alternation 
throughout all three testing regions. No 2D participants 
categorized such that a majority of final training region 
responses matched the majority of responses in the first 
testing region (i.e., no proximity classifiers). This is much 
less than previously reported (Kurtz & Wetzel, 2021; 26.1% 
proximity classifiers) for two dimensional alternating stimuli. 

The two dimensional category space used was arranged 
such that only a middle portion of the space alternated while 
very high diameter values were diagnostic of Alpha items and 
very low diameter values were diagnostic of Beta items 
(Figure 3). No 2D participants alternated items with middle 
diameter values while simultaneously maintaining the 
diagnostic separation of high and low diameter values. 

Overall, it has been shown that a reasonable proportion of 
individuals will extend an alternation pattern in both a one 
and two dimensional category space. This generalization 
pattern is not explained by proximity-based theories of 
categorization and therefore remains a point of considerable 
interest. 
 
Far Transfer 
Since generalization via an alternating pattern of category 
membership does not depend on proximity or feature-based 
similarity, a far transfer task was used to evaluate whether 
alternation as a relational category could explain the 
generalization. Given the importance of structural alignment 
of relational information during analogical transfer (Gentner, 
1983; Gentner & Kurtz, 2005; Gentner & Markman, 1995) it 
was reasoned that successful transfer of the alternation 
pattern from the training/testing stimuli to the marbles would 
indicate that alternation was at least supported by relational 
knowledge of the structure. It was found that a much higher 
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proportion of individuals in the 2D experimental condition 
produced a successful alternation of the marbles compared to 
the control subjects. This supports the notion that a relational 
category may underlie the observed extension of alternating 
category membership. However, it is not clear why those in 
the experimental 1D condition did not produce evidence of 
transfer to the far transfer task (i.e., were not found to perform 
significantly differently from control participants). It could 
be the case that the 2D condition exposes subjects to the 
relation of alternation in a way that provides them with 
progressive alignment (Kotovsky & Gentner 1996). In the 1D 
case, subjects have seen direct evidence (in the form of 
training items) that the two contrast categories alternate 
across feature space. However, the partial diagnosticity set up 
in the 2D structure requires the subject to invoke alternation 
in portions of feature space where there is no direct evidence 
of alternation. In the training set, alternation only occurred 
along the angle dimension when the diameter size dimension 
was of a medium magnitude- this is what made diameter size 
partially diagnostic. In the test set, subjects generalized 
alternation not only beyond the training items, but also 
beyond the feature space suggested by these items; for 
example, subjects applied the alternating label to items that 
had very large or small diameters even though alternation was 
not observed on these types of items at training. This 
departure from specific training items may create progressive 
alignment for the relation of alternation, allowing subjects to 
depart even farther and apply the relation to a completely 
different domain and task. 
 

General Discussion 
The current work replicates and extends the findings of Kurtz 
and Wetzel (2021). Exemplar theory, prototype theory, and 
rule based theories all fail to predict the ability to learn and 
generalize an alternating category structure.  Kurtz and 
Wetzel (2021) offered two possible explanations for which 
the current results provide important evaluation. 
The first possible explanation was that this complicated 
pattern of categorization could emerge as simple neural-level 
data is propagated through a connectionist system. We 
replicated the simulation results of Kurtz and Wetzel (2021) 
for the one dimensional case, and extended this model 
performance to 2 dimensional inputs simply by increasing the 
number of hidden nodes in the model. This demonstrates that 
a simple connectionist model is able to learn an alternating 
category structure. However, how these simulation results 
relate to the psychological mechanism that underlie the 
human capacity to learn and generalize alternating category 
structures is ambiguous.  

The second possible explanation was that subjects may 
accomplish the learning and generalization of an alternating 
category structure through relational reasoning. This would 
mean that rather than learning something just about the 
specific attributes of trained items, subjects are abstracting 
the relational category of alternation from the mapping 
between feature inputs and category labels. This explanation 

is lent support by far transfer task data: in the 2D condition 
subjects given classification training were significantly more 
likely to invoke alternation during the far transfer task than 
were subjects in the 1D condition or subjects who did not 
receive classification training at all. This strongly suggests 
either transfer or priming of an activated relational category 
given that there was no similarity between the two tasks or 
stimuli.    
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