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Abstract

Analysis of an evolution model for a river channel shows hbve¢ types of
shocks determine the profile of the channel. This model stibassin a young
river channel, evolution is driven by white noise magnifyinto a bore followed
by a hydraulic jump. This mechanism produces a convex prgfilieal of young
landscapes. A small knick-point then develops at the bottbifme unstable convex
profile. This knick-point is magnified and colored into a dgive shock which
travels upslope, digging into the convex profile until thefile becomes concave,

typical of mature landscapes.

1 Introduction

The evolution of a one-dimensional river channel on an etindsurface is a chal-
lenging problem with many potential applications. Firsttye would like to understand
the general topography of a river profile as the river digslfitsito an eroding land-
surface that may be eroding at a slower rate than the rivei®ecbndly the evolution

of such a one-dimensional profile gives information aboatdtolution of the surface
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itself since both water and sediment flow down the directicthe maximal (negative)
gradient of the water surface. The water surface is the wageimagine covers the
surface at least during big rainstorms and these one dimeaigdaths to some extent
carve out the whole surface. It is interesting to note thatrttaximal gradient of the
water surface does not coincide with the maximal gradientheflandsurface due to
water’s confluence. Thirdly landsurface evolution is a wangtable and noisy process.
The instabilities magnify the (white) noise that is alwaysgent in nature and give it a
characteristic coloring. One dimensional channels allevioustudy the details of this
coloring process. The end result is large noise that is cheriatic of the system and
drives its evolution.

The paper that laid the foundation for all subsequent wot&ridsurface evolution
was written by Smith and Bretherton in 1972 [20] and many eghbent papers [18, 4,
7, 5] are essentially attempts to make small modificatiorhef$mith and Bretherton
(SB) model. The problem that Smith and Bretherton ran inte that all reasonable
hillslopes were unstable in their model. This instabilitgsasimilar to the backward
heat equation, where the smallest frequencies grow thestaand this precluded any
numerical analysis of the nonlinear SB model.

However, in the mid nineties the advance of modern computesarticular par-
allel computers towards the end of the century, made it ptesgd solve the SB model
numerically with the instabilities present. It was foundttthe nonlinear term in the
equations saturated the growth of the instabilities andais wossible to evolve rea-
sonable landsurfaces numerically, using physically basedels. These results were
published in two papers by Smith, Birnir and Merchant [2]], 19

It quickly became clear with the appearance of the new nuaésults that noise
plays a large role in the evolution of the solutions of the S&del. This may be sur-
prising, because the SB model is deterministic, but theaaqilon is the effect of the

instabilities on the noise that is always present in thererwnent—in particular on any



realistic landsurfaces. The white noise is magnified by tiséabilities and saturated
by the nonlinearities into large colored noise that drivesdquations. Thus effectively
the numerical solution of the SB model is a stochastic pmcsslving a nonlinear
stochastic partial differential equation driven by largdoced noise. This stochastic
process can be characterized by the scaling propertiesadsociated statistical quan-
tities (the variogram) and this was done by Birnir et al. [Pfe numerical methods are
very sensitive to the magnification of the noise by the in$itas. It was shown in the
thesis of G. Merchant [14] that whereas implicit numerica&thods produce correct
scaling of statistical quantities, explicit methods do.nbibwever, the latter capture
the large-scale features of the evolving surface. Morentbcehe stochastic processes
determining the evolution of the landsurfaces have beend@und proven that they do
have the correct scaling properties: see Birnir et al. [ij][and [9].

In a 2000 paper Smith et al. [22] found all one-dimensionatighary solutions
and classified them. These can be thought of as particulgrgpbic formations where
perturbations in the transverse direction are suppresderk usefully these solutions
are the profiles of river channels that have already formeldsaa evolving. Smith and
his collaborators did not connect the various profiles by madyic evolution but that
was done in the thesis of E. Welsh [23] and is carried furthehis paper. It will be
shown that an initially linear profile will develop a shockire water flow when a small
perturbation is inserted at the top. This shock is a boreptmgiagates downstream; in
the wake of the shock is another shock in the water surfacgdrahlic jump that digs
up sediment. In the increased water volume between themstati hydraulic jump and
the traveling bore sediment is deposited. If this processpgated in several storms
it results in a convex hillslope. Once the convexity meegslthver boundary, a small
concavity is created. This creates a shock in the gradietheotediment flow; its
profile in the riverbed is called a knick point. The shock élawpstream. Once it gets

all the way to the top of the hillslope, it will have carved @toncave profile. This



is the evolution of the transport limited river profile anayes the conjecture made by
Birnir, Smith and Merchant in [2]. Bores and hydraulic jungve widely observed and
it is well known that knick points (rapids) travel upstreamtime.

Our analysis holds in a two-dimensional landscape becaaservand sediment
flow down the gradient of the water surface. It uses the motterory of shock for-
mation and propagation, see P. Lax [11], using the fact tatejuations are one-
dimensional in the direction of the gradient, to do both wsialand numerics and
compare the two. It also shows how the noise gets magnifieccaloded, namely
small noise generates shocks that are (colored) chastatddr the system. The for-
mation of shocks in the forms of flood bores and hydraulic janspvell-known [13].
In the hydrology literature, see for example [6] and [3]. Titeraction of these shocks
with sediment erosion and deposition is new. The formatfandiffusive shock in the
sediment flow, and its subsequent carving out of a concaee profile, is also new.

How rivers are formed is a harder problem and is still opentid&aesults have been
obtained recently Mertens, Putkaradze and Vorobieff [ithstigating the formation
of a river and its meandering on a non-erodible surface. Whelear is that surface
tension plays a role, but it remains to show how the river digslf down into an
erodible surface. Surface tension terms are absent in the@&®I| and the formation
of river channels requires a nontrivial modification of thedel. The existence of
channels on the surface will also play a role, but the gerdirattion of the river is
a random walk among the channels already existing on thaarfin this paper we
have assumed that the river has already formed and studyoitgtien.

In the present paper, we will show how the SB model createseadral a hydraulic
jump through the magnification of white noise. We then usentibelel to show how
these mechanisms create a young, convex hillslope afteateg application. Because
this hillslope is unstable, the SB model forms a knick-pairthe lower reaches of the

slope. This knick-point represents colored noise, and pioiteeds upslope, it creates



a mature, concave profile. These processes tell the whaledtthe evolution of the

river profile after the river channel itself has formed.

2 The Model

As presented in [19], the SB model begins with continuouddarface elevatiom =
z(x,y,t), water deptth = h(x,y,t), and the free water surfate= z+ h. If we assume
water flux per unit widthdy) and sediment flux per unit widttyg) both flow downbhill
according to the free surface (that is, in the directie%ﬂH), then conservation of
water mass and conservation of landmass give us the coupieaf partial differential

equations

oh OH
C R*”(m%) @)
0z OH
a - U*”(m%) @)

whereR is rainfall rate, andJ is tectonic uplift rate (generally uniform in both space
and time). The initial hillslope will be approximately an inclined plane on which
a river channel has already formed. We will use periodic loauy conditions in the
transverse direction (corresponding to a long ridge), andtesorbing body of water
at the bottom of the slope. No water or sediment will flow intet top of the domain
(ridgeline).

Because both water and sediment flow in the direction of tﬁia/entor%, we
will reduce our equations to a single spatial dimensionndke analysis in Appendix
A of [2]. In one spatial dimension, lét slope down from its maximum at= 0 to
heighthy at X = Xmax. In this case|OH| = |Hx| = —Hy over the entire domain (as

long as the water surface slopes down from left to right).d8ise most of the erosion

occurs during big storms (that is, under turbulent cond#)p we will use turbulent



flow velocity v = h?/3|0H |2, giving us water fluxgy = h®3|0H|Y2. Equation (1)

becomes

oh 5/3(14 |1/2
5 = R0k 31k 2] 3)
If we assume we have transport-limited erosion, we will usgiraent fluxgs =

h1%3|0H |3 (corresponding to [17]), so equation (2) becomes

oH oh

ot r]a =U — 0« [h10/3|Hx|3} ; (4)
when we use a scaling such as in [2]. The paramgtersmall.

These equations will evolve forward from tirhe= 0 on a spatial domain € x <
Xmax- INitial conditionsh(x, 0) andH (x, 0) will be given. Boundary conditions are zero
water depth, water flux, and sediment flin h>/3|o,H [%/2 = h1%3|o,H |3 = 0) at the
top of the ridgelineX = 0). We also assume zero elevation and prescribed water depth
and water surfacén(= H = hy) at the bottom of the domaix & Xmax)-

Using the scaling arguments discussed in [2], we may evalumtion (3) on a
short timescale on WhiC%;—' is small. If we then evolve equation (4) on an intermediate
timescale, we may eliminate tf%é term from equation (4), obtaining

aa—': —U—d, [h1°/3|HX|3] . (5)

We may couple equations (3) and (5); it is also possible tonzger depth steady-

state information

0= R—dy [h5/3|aXH|l/2} (6)

in equation (5) and evolve the resulting single equatiorthBehemes are useful.

We solve the water depth equation (3) following the clagsieeory of scalar con-



servation laws. Continuous solutions can be found usingribthod of characteristics
[11] as we show below. Characteristics are the lines alongtwihitial data is carried.
In addition, we consider solutions with shocks, which amagudiscontinuities in the
water thickness, occurring at a particular spatial posi¥g(t). The shock position
moves with speed satisfying the Rankine-Hugoniot jump condition. For a ama-
tion law of the formh; + (F (h))x = O, the condition is that the jump iR divided by
the jump inh must equal the shock speed. We view equation (3) as haviadahm,
with the addition of a source term, R, the rainfall amounte phesence of the source
term does not affect the Rankine-Hugoniot condition [11].

Below we present a special solution that is comprised of laothrefaction fan
(which we find using the method of characteristics) and alstsatisfying the Rankine-
Hugoniot condition. Such rarefaction-shock solutionsusda other shallow water
models for liquid flow on surfaces (see e.g. the solution oppart for viscous flow
down an incline [8] and more recent rarefaction-shocksénrtrally driven films [16]).

We will examine three types of shocks that develop in thisesys The first shock
occurs in the water deptihwhen a large volume of water is suddenly introduced, for
example by heavy rainfall. This behavior physically cop@sds to a flood pulse or a
bore in a riverbed. The second type occurs as a dramatic eliatige water surfacd
behind the bore caused by a drop in water velocity and cooregspto a hydraulic jump.
The third type of shock occurs when a young, unstable conegegngurface develops a
small concavity or “knick-point.” This type of shock phyaity corresponds to rapids.

See the numerical illustration in Figures 13 and 14.

3 Bore Formation in the Water Depth

We now show how shocks can form in the water depth equation (3)



oh
ot

R— 05 [n°/3Hy( 7.

h5/3
2|Hy|1/2 Fhoc

5
R— §h2/3|HX|1/2hx+

Let us examine how water degitevolves along currend with speech?/3|H,|%/2,

We can formally define these trajectories, or charactesistly

X(s,0)=s (7

and

ax — 212032 : (8)
dtlxsnn 3 (X(st)1)
equation (3) may be represented in Lagrangian form as
d h5/3
—h=R+ ——75Hxx ) 9)
172
dt 2|Hy |V XE01)
which integrates to give the solution
t h5/3
h(X(st),t) = h(s,0)+Rt+/ BN dr. (10)
0 2|Hy|Y/2
(X(s1).7)

Along a characteristic, or trajectory, water depth evolesording to equation (9);
see several characteristics graphed in Figure 1. If rdiRfahd water surface curvature
Hxx are zero (or very small), equation (10) tells us that alorayatteristics, the water
depthh is equal to (or very close to) the initial water depth. Whearewo or more
characteristics intersect, as at tilggckin the figure, a shock may form. Because these

trajectories always travel to the right, any shocks thanfuaiill travel downslope.
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Figure 1. An example of characteristics (or trajectoriam) Water flowing down a
constant slope. At timinock Characteristics originating betwers- 0 andx, intersect
and form ashock (depicted inbold). Note the rarefaction fan to the left of the shock.
The shock proceeds downslope; characteristics continaetey the shock from both
the left and the right.

3.1 A Special Solution for the Water Depth Equation

In the demonstrations to follovk, hy > hp, andx, are all positive constants, and
rainfall Ris 0. A more thorough treatment of the computations can badan pp.
62-70 of [23].

Using the constant-slop#(x) = k?(Xmax— X) + hp, we will examine the convenient

initial water deptth:

0 x=0
2/3 1 2/3 \ 32
h(x,0) = <hf,|/3 - wg 0< X< Xp (11)
hp Xp < X < Xmax

Because the characteristics resolve very nicely for thitiqudar initial condition, we

can find an exact solutidm(x,t). Solving the characteristic equation (8), we find that,



in the absence of a shock,

Xo(X(5,t) = 3K xp(X(St) — vt)
s= = (12)
xp— SK(h53 —hZ3t X0 — (VM — V)t

with the constant velocitiegy = %khf,,/3 andvy, = %kh§/3.

Note that several characteristics emanate feom0. Each value oh between 0
andhy is carried on a characteristic with spegki?/3; these different characteristics
spread out, forming a rarefaction fan, appearing along-#eds in Figure 1. In this

rarefaction fan,

3/2
h(x,t) = (%) . (13)

Outside the rarefaction fan,

3/2
i %0 — (b~ )
neet) = ( Xo— (VM — Vo)t oK

since water depth is preserved along characteristics.

These formulas hold until a shock forms. At time

Xb

tshock: (15)

VM — Vp
(shown in Figure 1) all characteristics originating frone tlegion 0< s < x, intersect
at a single point

hf,,/3xb

Xshock= 573 573 (16)
i~y

(shown in Figure 1) and the entire shock forms at this point.
After the shock forms, it travels on a special characterisi{t) according to the

condition

10



Xs(tshock) = Xshock 17)

and the Rankine-Hugoniot condition

dX% (%)S/BK‘VE’

—=0=-—g—.
3X
dt 5k — Mo

(18)

This special characteristic is the bold curve in Figure 1te\bat a (messy) closed-
form equation relating(s andt exists, but it cannot be explicitly solved f&. Charac-
teristics continue to enter the shock from both sides, soghock is physical.

Collecting all of the information, we have

(53—|ft)3/2 X < vyt andx < Xs(t)
2/3, . n2/3 2/3\ 3/2
h(x,t) = <%*‘M_Vb;b>> wt <x<wpt+x (19
hp Vpt + Xp < X < Xmax andx > X(t)

whereXs(t) obeys equations (17) and (18). We can see the three portidhis solu-
tion in Figure 1: the first portion is the rarefaction on thi &f the graph, the second
is the small triangle with base 0 x < 0.2, and the third is the collection of parallel
characteristics on the right.

The exact solution (19) is indistinguishable from an appr@tion generated by
a numerical scheme. Skt=+/.2, hy = 0.4, h, = 0.01, X, = 0.2, andXmax= 1. We
use an upwind scheme, see LeVeque [12], subdividing the ihoimi@ 1000 cells of
size Ax = .001; a timestep oft = .001 is short enough to accommodate the fastest
characteristic with speegy = %hf,,ﬂkz .4046. See the results in Figure 2.

To further test the numerical scheme, we record the heighspaed of the shock

11
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Figure 2: Water depth at timest = 0 (top),t = .54 (center), and = 5.7 (bottom).
Note the rarefaction wave on the left. After the shock foritisavels downslope and
decreases in height.

in the numerical solution at each time step. We can compésétight to the value
predicted by characteristic information. We can also tthekspeed of the shock in the
numerical solution and compare it to that predicted by thelkiitee-Hugoniot condition
(18). Observed shock height gives a second prediction ofkshpeed. Height and
speed comparisons are graphed over time in Figure 3.

The predicted values are very close to the observed valspmstrating that the
upwind scheme respects shock behavior. Shock formationtispecific to this one
example. Let us use these numerical tools to examine a moeriggerturbation of

initial water depth.

3.2 Model for Magnification of White Noise

In nature, small bumps may appear uniformly distributethenwater thickness. (Think
of raindrops.) To understand what happens to this whitesnaie will examine small,

generic perturbations in water depth and see if they fornelshander the SB model.

12
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Figure 3: Shock height (left) and speed (right) over time.teNihat the exact solu-
tion predicts a larger and faster shock initially; the petidn and numerics agree very
closely after tima = 1.

Consider the small Gaussian initial condition

2
h(x,0) = %hbexp l— <X_O'1> ] (20)

0.05

We will again use the fixe#l of constant slopél (x) = k? (Xmax— X) + hp; as beforek
andhy, are positive constants, and rainfglls 0.

It is not possible to do a complete characteristic analysiwith the previous ex-
ample, but we can extract some useful information. The dbariaticX(0.1,t) carries
% as much water as the (essentially) base-level charaatei€.2,t), so it will travel
about 16% faster, and overtake the slower characteristib@itx = 0.8. We expect a
shock to form here.

Using an upwind scheme, we will model the evolution of the €&#an initial water

depth according to equation (3):

hy = R [n%/3]1 2]

with h(0,t) = 0. We will again examine the formation of the shock and trask i
progress. The water surfa¢t is still held fixed with constant slopefHy|Y? = k,

and rainfallR is zero. We use initial water depth (20). As befdtes /.2, h, = .01,

13
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Figure 4:h(x,0), h(x,8.8), h(x,17.6), andh(x,21). The typical rarefaction wave forms,
while the initial Gaussian magnifies into a shock traveliogidslope.
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andxmax = 1; the domain is subdivided into 1000 cells of sive= .001. A timestep
of At = .02 is short enough to accommodate the fastest charaatevisti speeds =
3 (gh§/3) k=~ 0.0401. See the results in Figure 4.

Here we see the magnification of a Gaussian initial conditiba portion downs-
lope of the water depth maximura£ 0.1) sharpens into a shock neas 0.8, while
the upslope portion joins the rarefaction wave. So we seeethen small perturbations

form shocks, regardless of their initial shape.

4 The Effect of Water Depth Shocks on the Water Sur-
face

Up to this point, we have held the water surfaldg fixed in time. If we allow the water
surface to evolve, what effect does the water depth shock bavhe water surface?
What effect does the changing water surface have on the slatek? We will examine
these questions numerically.

Recall the water surface equation (5):

Ho=U — dy [h1°/3|Hx|3] .

We use a constant slope initial water surfatfex, 0) = k?(Xmax— X) + hp, and maintain
zero sediment fluk'%3|H,|® = 0 for x = 0 and all timet > 0, and fixH (Xmaxt) = hp.
We will evolve equation (5) using an upwind scheme.

At the same time, we will use an upwind scheme to evolve theng®pth equation

(3):

he = R— 9 [h5/3|HX|1/2}

with h(0,t) = 0 and the piecewise linear initial water depth (21):

15



0 x=0
h(x,0) =< hy — h'V'X; ho 0< X< Xp (21)

hp Xp < X < Xmax

As before k, hy > hyp, andx, are all positive constants, and rainflls 0.

Because equation (5) evolves on a timescale longer thartieqy8), we evolve
the water surface equation (5) two steps of dire= .001 for every ten steps of size
At = .005 we evolve the water depth equation (3). The parameterd ar .00002,
k=+.2,hy = .4, h,=.01, % = .2, andxmax = 1; the domain is subdivided into 100
cells of sizeAx = .01; see the results in Figure 5. (An evaluation of the acquohthis
upwind scheme can be found in [23].)

The water surfackl forms a shock, or a bore, following the front of the water puls
down the hillslope. Note that the water depth shock is sona¢lelss sharp than before,
because deposition at the shock front tends to smear it out.

Upslope of the water pulse, another almost stationary sketiydraulic jump-—
forms as the rarefaction fan stretches out near the peak.

As the water pulse tracks down the surface, it loses soms béight and deposits
sediment along the way. As time progresses, the effect @t bplcomes apparent on
the lower reaches of the water surface. Attime 5.5, the Iscabout to exit the domain.

If we run this simulation to timé = 25, the water almost completely drains off the
domain, as depicted in Figure 6. Note that there is a sliglgebaf water above the

levelh, = .01.

4.1 Repeated Shocks

The previous example models the progress of stormwater ddvillslope. What is the
effect of repeated storms on this hillslope? At titne 25, we re-initialize the water

depthh and evolve the new system an additional 25 time units.

16
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Figure 5: Water depth (left) and change in water surfate (right) at timest = .5
(top),t = 3 (center), and = 5.5 (bottom). The initial (zero) change i is marked
in the right-hand graphs. The hydraulic jump forms in theevaurface ak = 0.1,
and the water surface bore follows the water depth shock &rend.2 (top) tox = 0.6
(middle) tox = 0.95 (bottom).
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0.01

Figure 6:h(x, 25)

If we repeat this process, say, nine more times (for a totebtorms), the water
depth and change in water surface can be seen in Figure 7.sehaf the subscriptin
hoq indicates that the next storm has not yet fallen.

At this point, the accumulated effect of the storms on theewatirface begins
to become apparent; see Figure 8. The water surface is begorsibly convex.
The mechanism creating this convexity appears to be a catibbmof the hydraulic
jump and the bore. Before the shock forms and as it forms, ttendigs into the
surface, leaving a hydraulic jump in the water surface. Tyardwlic jump continues
to dig up sediment and thus moves very slowly downstreanerAlfie shock has fully
formed, the bore redeposits this sediment. At the bottonhefslope, the bore has
become smaller, and deposits less and less sediment. Ceanbith uplift and the
lower boundary condition fold, we see a net gain in elevation through the middle of
the domain.

After a total of 300 storms, the water surface has become gaitvex. (See Figure

18
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Figure 7:hoia(x,250) andH (x,250) — H(x,0)

X

Figure 8:H(x,250) (curved) andH (x,0) (linear)

9.) Water will have drained quite completely at the end o thst storm. (See Figure

10.) The end of the domain is very steep, and thus able to tHedast traces of the

storm more quickly than the initial slope could.

19
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Figure 9:H(x, 7500 (curved) andH (x,0) (linear)

5 Shocks in the Water Surface Equation

If we resume a rainfall that is uniform in both space and tithe,convex water surface
profiles in the previous section become unstable. If unifoamfall begins at time
t = 7500, water depth moves quickly toward a steady-state ivghterflow with water
concentrated at the bottom of the domain. Erosion is acmeléhere, reversing the
curvature of the water surface, and forming a “knick-poiot’small concavity. As

mentioned earlier, this knick-point physically corresgsto rapids.

5.1 Creating the Water Surface Shock

Using the upwind schemes, we again evolve the water surfpeation (5) two steps
for every ten steps we evolve the water depth equation (Ipf&brateR is 0.02, and
uplift U is 0.00002. We evolve equation (3) with a timestef@bf= .01 and equation
(5) with a timestep o\t = .05.

20
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Figure 11:h(x,7501) andH (x, 7501) — H (x, 7500

At time t = 7501, water becomes thicker at the lower end of the domauh ttza

knick-pointbegins to become visible. Seand the differenckl (x, 7501) — H(x, 7500

in Figure 11. We see that the primary change in the surfacplif, but the accumu-

lating water on the lower end of the domain is beginning toadigick-point.

If we continue tat = 7510, more water accumulates at the low end of the domain

as the knick-point irH becomes dramatically larger; see Figure 12. The chandke in

can be seen (just barely) on the plot compatihgr, 7500 andH(x,7510 in Figure
13.H(x, 7510 is underneathi (x, 7500.

By timet = 7600, the knick-point is quite visible on the graphtbf It has formed

and is traveling upslope; see Figure 14. Itis also posside¢ the change in concavity
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Figure 13:H(x, 7510 andH (x, 7500

at the bottom of the domain. Note that water depth not changing greatly.
If we continue this evolution to time= 16 000, we see the entire water surface be-
coming concave, and singulanet 0. In Figure 15t = 7500; 7600;8500; 11000; and 16000

Notice that there is very little water towards the top of tiige k= 0).

5.2 Steady-States

In the short timescale, water degfis in steady-state wheR = 8y [h>/3|Hy|Y/?], or,

integrating,
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(RX)3/5

hss(x, t) = W . (22)

After time 7510, the transietitfollows this steady-state very closely. Instead of evolv-
ing equation (3) on a faster timescale, we will use equata®) {o substitute foh in

the water surface evolution equation (5), obtaining

Hy = U — 0y [R3%|Hx|?] . (23)

We will evolve this single equation past time 7510.

Note that this equation evolves to a steady-state of

Hss(X) = hp + %U [\/Xm—ax_ \/)_(} (24)

around timeg = 16000. This is precisely the steady-state predicted in [22]

5.3 Model for Coloring of the Noise

In transitioning to the steady, concave surface, it is wongRstigating the potential for
shock formation. If we use the substitutiSe= |Hx| = —Hy and differentiate both sides

of equation (23) with respect tqQ we get

23



0.1}
0
0.2
0.1}
0 L
0 0.2
0.1
0 L
0 0.2
0.1}
0 L
0 0.2
0.2 ‘
0.1}
0 0.2 0.4 0.6 0.8 10 02 0.4 06 08 1

X X

Figure 15:h(x,t) andH (x,t) for 7500< t < 16000

24



S = R[S

= 2RSS+ XS +4xS§+ 5], (25)

a form suggesting characteristX$s,t) obeying

‘Z—f = —2R%(X*S+ 4xS). (26)

Note theSx term in equation (25). Because this term has positive siglegsx = 0),
it will act like positive heat smoothing. Any shock 8will be diffusive.

If we track S(x,t) at various times, we see a shock-like jump traveling across t
domain from right to left. After running the fully transiestheme to time 7510, we
switch to the single evolution of equations (23). The rasglslope profiles are graphed
in Figure 16, wheré = 7500; 7510;7600;9000; 10000; 11 000; 16 000

The initial slope profile (at time 7500) is strictly increagj corresponding to a
convex water surfackl; a maximum quickly forms on the right and travels across the
domain until the slope-{Hy) is strictly decreasing, giving a concave water surface.

The slope profile by time 11000 may be only Holder continysirge it makes a
rapid turn neax = 0.05. The noise is colored because it is not uniform in space; in
distinction to white noise, it has long-range spatial clatiens, leading to solutions
that are Holder continuous, but not differentiable. Thed$mall initial concavity has
been magnified into a shock: a knick-point that travels @astr.

The final slope profile (at time 16 000) is graphed in Figuredaimst the predicted
steady-state slope found by differentiating equation.(bte that the predicted and
observed slope profiles are nearly indistinguishable; liseved is slightly higher than

the predicted.
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Figure 17: numericab(x, 16 000 superimposed 08;4X)

6 Conclusion

The three shocks discussed in this paper tell a completg ghomoisy input of water
gets magnified, forming a shock. The water depth shock makesefollowed by
a hydraulic jump. Together, these features create a yownyex hillslope. This
hillslope is unstable; a small concavity at the bottom of sfape is magnified and
colored, forming a diffusive shock in the water surface sltipat travels upslope and

carves out a mature, concave landscape.
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