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Abstract

Analysis of an evolution model for a river channel shows how three types of

shocks determine the profile of the channel. This model showsthat in a young

river channel, evolution is driven by white noise magnifying into a bore followed

by a hydraulic jump. This mechanism produces a convex profiletypical of young

landscapes. A small knick-point then develops at the bottomof the unstable convex

profile. This knick-point is magnified and colored into a diffusive shock which

travels upslope, digging into the convex profile until the profile becomes concave,

typical of mature landscapes.

1 Introduction

The evolution of a one-dimensional river channel on an eroding landsurface is a chal-

lenging problem with many potential applications. Firstlyone would like to understand

the general topography of a river profile as the river digs itself into an eroding land-

surface that may be eroding at a slower rate than the riverbed. Secondly the evolution

of such a one-dimensional profile gives information about the evolution of the surface

∗Corresponding author.E-mail address:ewelsh@wsc.ma.edu
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itself since both water and sediment flow down the direction of the maximal (negative)

gradient of the water surface. The water surface is the waterwe imagine covers the

surface at least during big rainstorms and these one dimensional paths to some extent

carve out the whole surface. It is interesting to note that the maximal gradient of the

water surface does not coincide with the maximal gradient ofthe landsurface due to

water’s confluence. Thirdly landsurface evolution is a veryunstable and noisy process.

The instabilities magnify the (white) noise that is always present in nature and give it a

characteristic coloring. One dimensional channels allow us to study the details of this

coloring process. The end result is large noise that is characteristic of the system and

drives its evolution.

The paper that laid the foundation for all subsequent work inlandsurface evolution

was written by Smith and Bretherton in 1972 [20] and many subsequent papers [18, 4,

7, 5] are essentially attempts to make small modification of the Smith and Bretherton

(SB) model. The problem that Smith and Bretherton ran into was that all reasonable

hillslopes were unstable in their model. This instability was similar to the backward

heat equation, where the smallest frequencies grow the fastest and this precluded any

numerical analysis of the nonlinear SB model.

However, in the mid nineties the advance of modern computers, in particular par-

allel computers towards the end of the century, made it possible to solve the SB model

numerically with the instabilities present. It was found that the nonlinear term in the

equations saturated the growth of the instabilities and it was possible to evolve rea-

sonable landsurfaces numerically, using physically basedmodels. These results were

published in two papers by Smith, Birnir and Merchant [21, 19].

It quickly became clear with the appearance of the new numerical results that noise

plays a large role in the evolution of the solutions of the SB model. This may be sur-

prising, because the SB model is deterministic, but the explanation is the effect of the

instabilities on the noise that is always present in the environment–in particular on any
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realistic landsurfaces. The white noise is magnified by the instabilities and saturated

by the nonlinearities into large colored noise that drives the equations. Thus effectively

the numerical solution of the SB model is a stochastic process, solving a nonlinear

stochastic partial differential equation driven by large colored noise. This stochastic

process can be characterized by the scaling properties of its associated statistical quan-

tities (the variogram) and this was done by Birnir et al. [2].The numerical methods are

very sensitive to the magnification of the noise by the instabilities. It was shown in the

thesis of G. Merchant [14] that whereas implicit numerical methods produce correct

scaling of statistical quantities, explicit methods do not. However, the latter capture

the large-scale features of the evolving surface. More recently the stochastic processes

determining the evolution of the landsurfaces have been found and proven that they do

have the correct scaling properties: see Birnir et al. [1], [10], and [9].

In a 2000 paper Smith et al. [22] found all one-dimensional stationary solutions

and classified them. These can be thought of as particular geographic formations where

perturbations in the transverse direction are suppressed.More usefully these solutions

are the profiles of river channels that have already formed and are evolving. Smith and

his collaborators did not connect the various profiles by a dynamic evolution but that

was done in the thesis of E. Welsh [23] and is carried further in this paper. It will be

shown that an initially linear profile will develop a shock inthe water flow when a small

perturbation is inserted at the top. This shock is a bore thatpropagates downstream; in

the wake of the shock is another shock in the water surface: a hydraulic jump that digs

up sediment. In the increased water volume between the stationary hydraulic jump and

the traveling bore sediment is deposited. If this process isrepeated in several storms

it results in a convex hillslope. Once the convexity meets the lower boundary, a small

concavity is created. This creates a shock in the gradient ofthe sediment flow; its

profile in the riverbed is called a knick point. The shock travels upstream. Once it gets

all the way to the top of the hillslope, it will have carved outa concave profile. This
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is the evolution of the transport limited river profile and proves the conjecture made by

Birnir, Smith and Merchant in [2]. Bores and hydraulic jumpsare widely observed and

it is well known that knick points (rapids) travel upstream in time.

Our analysis holds in a two-dimensional landscape because water and sediment

flow down the gradient of the water surface. It uses the moderntheory of shock for-

mation and propagation, see P. Lax [11], using the fact that the equations are one-

dimensional in the direction of the gradient, to do both analysis and numerics and

compare the two. It also shows how the noise gets magnified andcolored, namely

small noise generates shocks that are (colored) characteristic for the system. The for-

mation of shocks in the forms of flood bores and hydraulic jumps is well-known [13].

In the hydrology literature, see for example [6] and [3]. Theinteraction of these shocks

with sediment erosion and deposition is new. The formation of a diffusive shock in the

sediment flow, and its subsequent carving out of a concave river profile, is also new.

How rivers are formed is a harder problem and is still open. Partial results have been

obtained recently Mertens, Putkaradze and Vorobieff [15],investigating the formation

of a river and its meandering on a non-erodible surface. Whatis clear is that surface

tension plays a role, but it remains to show how the river digsitself down into an

erodible surface. Surface tension terms are absent in the SBmodel and the formation

of river channels requires a nontrivial modification of the model. The existence of

channels on the surface will also play a role, but the generaldirection of the river is

a random walk among the channels already existing on the surface. In this paper we

have assumed that the river has already formed and study its evolution.

In the present paper, we will show how the SB model creates a bore and a hydraulic

jump through the magnification of white noise. We then use themodel to show how

these mechanisms create a young, convex hillslope after repeated application. Because

this hillslope is unstable, the SB model forms a knick-pointat the lower reaches of the

slope. This knick-point represents colored noise, and as itproceeds upslope, it creates
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a mature, concave profile. These processes tell the whole story of the evolution of the

river profile after the river channel itself has formed.

2 The Model

As presented in [19], the SB model begins with continuous landsurface elevationz=

z(x,y,t), water depthh = h(x,y,t), and the free water surfaceH = z+h. If we assume

water flux per unit width (qw) and sediment flux per unit width (qs) both flow downhill

according to the free surface (that is, in the direction− ∇H
|∇H ), then conservation of

water mass and conservation of landmass give us the coupled pair of partial differential

equations

∂h
∂t

= R+ ∇ ·
(

∇H
|∇H|qw

)

(1)

∂z
∂t

= U + ∇ ·
(

∇H
|∇H|qs

)

(2)

whereR is rainfall rate, andU is tectonic uplift rate (generally uniform in both space

and time). The initial hillslopez will be approximately an inclined plane on which

a river channel has already formed. We will use periodic boundary conditions in the

transverse direction (corresponding to a long ridge), and an absorbing body of water

at the bottom of the slope. No water or sediment will flow in at the top of the domain

(ridgeline).

Because both water and sediment flow in the direction of the unit vector ∇H
|∇H| , we

will reduce our equations to a single spatial dimension, as in the analysis in Appendix

A of [2]. In one spatial dimension, letH slope down from its maximum atx = 0 to

heighthb at x = xmax. In this case,|∇H| = |Hx| = −Hx over the entire domain (as

long as the water surface slopes down from left to right). Because most of the erosion

occurs during big storms (that is, under turbulent conditions), we will use turbulent
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flow velocity v = h2/3|∇H|1/2, giving us water fluxqw = h5/3|∇H|1/2. Equation (1)

becomes

∂h
∂t

= R− ∂x

[

h5/3|Hx|1/2
]

. (3)

If we assume we have transport-limited erosion, we will use sediment fluxqs =

h10/3|∇H|3 (corresponding to [17]), so equation (2) becomes

∂H
∂t

−η
∂h
∂t

= U − ∂x

[

h10/3|Hx|3
]

; (4)

when we use a scaling such as in [2]. The parameterη is small.

These equations will evolve forward from timet = 0 on a spatial domain 0≤ x≤

xmax. Initial conditionsh(x,0) andH(x,0) will be given. Boundary conditions are zero

water depth, water flux, and sediment flux (h = h5/3|∂xH|1/2 = h10/3|∂xH|3 = 0) at the

top of the ridgeline (x = 0). We also assume zero elevation and prescribed water depth

and water surface (h = H = hb) at the bottom of the domain (x = xmax).

Using the scaling arguments discussed in [2], we may evolve equation (3) on a

short timescale on which∂H
∂t is small. If we then evolve equation (4) on an intermediate

timescale, we may eliminate the∂h
∂t term from equation (4), obtaining

∂H
∂t

= U − ∂x

[

h10/3|Hx|3
]

. (5)

We may couple equations (3) and (5); it is also possible to usewater depth steady-

state information

0 = R− ∂x

[

h5/3|∂xH|1/2
]

(6)

in equation (5) and evolve the resulting single equation. Both schemes are useful.

We solve the water depth equation (3) following the classical theory of scalar con-
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servation laws. Continuous solutions can be found using themethod of characteristics

[11] as we show below. Characteristics are the lines along which initial data is carried.

In addition, we consider solutions with shocks, which are jump discontinuities in the

water thickness, occurring at a particular spatial position Xs(t). The shock position

moves with speedσ satisfying the Rankine-Hugoniot jump condition. For a conserva-

tion law of the formht +(F(h))x = 0, the condition is that the jump inF divided by

the jump inh must equal the shock speed. We view equation (3) as having this form,

with the addition of a source term, R, the rainfall amount. The presence of the source

term does not affect the Rankine-Hugoniot condition [11].

Below we present a special solution that is comprised of botha rarefaction fan

(which we find using the method of characteristics) and a shock, satisfying the Rankine-

Hugoniot condition. Such rarefaction-shock solutions occur in other shallow water

models for liquid flow on surfaces (see e.g. the solution of Huppert for viscous flow

down an incline [8] and more recent rarefaction-shocks in thermally driven films [16]).

We will examine three types of shocks that develop in this system. The first shock

occurs in the water depthh when a large volume of water is suddenly introduced, for

example by heavy rainfall. This behavior physically corresponds to a flood pulse or a

bore in a riverbed. The second type occurs as a dramatic change in the water surfaceH

behind the bore caused by a drop in water velocity and corresponds to a hydraulic jump.

The third type of shock occurs when a young, unstable convex water surface develops a

small concavity or “knick-point.” This type of shock physically corresponds to rapids.

See the numerical illustration in Figures 13 and 14.

3 Bore Formation in the Water Depth

We now show how shocks can form in the water depth equation (3):
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∂h
∂t

= R− ∂x

[

h5/3|Hx|1/2
]

.

= R− 5
3

h2/3|Hx|1/2hx +
h5/3

2|Hx|1/2
Hxx.

Let us examine how water depthh evolves along currentsX with speed5
3h2/3|Hx|1/2.

We can formally define these trajectories, or characteristics, by

X(s,0) = s (7)

and

dX
dt

∣

∣

∣

∣

(X(s,t),t)
=

5
3

h2/3|Hx|1/2

∣

∣

∣

∣

(X(s,t),t)
, (8)

equation (3) may be represented in Lagrangian form as

d
dt

h = R+
h5/3

2|Hx|1/2
Hxx

∣

∣

∣

∣

∣

(X(s,t),t)

, (9)

which integrates to give the solution

h(X(s,t),t) = h(s,0)+Rt+
Z t

0

h5/3

2|Hx|1/2
Hxx

∣

∣

∣

∣

∣

(X(s,τ),τ)

dτ. (10)

Along a characteristic, or trajectory, water depth evolvesaccording to equation (9);

see several characteristics graphed in Figure 1. If rainfall Rand water surface curvature

Hxx are zero (or very small), equation (10) tells us that along characteristics, the water

depthh is equal to (or very close to) the initial water depth. Whenever two or more

characteristics intersect, as at timetshock in the figure, a shock may form. Because these

trajectories always travel to the right, any shocks that form will travel downslope.
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shockb

shock

t

t

x x x

Figure 1: An example of characteristics (or trajectories) for water flowing down a
constant slope. At timetshock, characteristics originating betweenx= 0 andxb intersect
and form ashock(depicted inbold). Note the rarefaction fan to the left of the shock.
The shock proceeds downslope; characteristics continue toenter the shock from both
the left and the right.

3.1 A Special Solution for the Water Depth Equation

In the demonstrations to follow,k, hM > hb, andxb are all positive constants, and

rainfall R is 0. A more thorough treatment of the computations can be found on pp.

62-70 of [23].

Using the constant-slopeH(x) = k2(xmax−x)+hb, we will examine the convenient

initial water depthh:

h(x,0) =























































0 x = 0

(

h2/3
M − h2/3

M −h2/3
b

xb
x

)3/2

0 < x≤ xb

hb xb < x≤ xmax

(11)

Because the characteristics resolve very nicely for this particular initial condition, we

can find an exact solutionh(x,t). Solving the characteristic equation (8), we find that,
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in the absence of a shock,

s=
xb(X(s,t)− 5

3kh2/3
M t)

xb− 5
3k(h2/3

M −h2/3
b )t

=
xb(X(s,t)−vMt)
xb− (vM −vb)t

(12)

with the constant velocitiesvM = 5
3kh2/3

M andvb = 5
3kh2/3

b .

Note that several characteristics emanate froms= 0. Each value ofh between 0

andhM is carried on a characteristic with speed5
3kh2/3; these different characteristics

spread out, forming a rarefaction fan, appearing along thet-axis in Figure 1. In this

rarefaction fan,

h(x,t) =

(

3x
5kt

)3/2

. (13)

Outside the rarefaction fan,

h(x,t) =

(

h2/3
M xb−x(h2/3

M −h2/3
b )

xb− (vM −vb)t

)3/2

(14)

since water depthh is preserved along characteristics.

These formulas hold until a shock forms. At time

tshock=
xb

vM −vb
(15)

(shown in Figure 1) all characteristics originating from the region 0< s≤ xb intersect

at a single point

xshock=
h2/3

M xb

h2/3
M −h2/3

b

(16)

(shown in Figure 1) and the entire shock forms at this point.

After the shock forms, it travels on a special characteristic Xs(t) according to the

condition
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Xs(tshock) = xshock (17)

and the Rankine-Hugoniot condition

dXs

dt
= σ =

(

3Xs
5kt

)5/3
k−vb

3Xs
5kt −hb

. (18)

This special characteristic is the bold curve in Figure 1. Note that a (messy) closed-

form equation relatingXs andt exists, but it cannot be explicitly solved forXs. Charac-

teristics continue to enter the shock from both sides, so this shock is physical.

Collecting all of the information, we have

h(x,t) =



















































(

3x
5kt

)3/2
x < vMt andx < Xs(t)

(

h
2/3
M xb−x(h

2/3
M −h

2/3
b )

xb−(vM−vb)t

)3/2

vMt ≤ x < vbt +xb

hb vbt +xb ≤ x≤ xmax andx > Xs(t)

(19)

whereXs(t) obeys equations (17) and (18). We can see the three portions of this solu-

tion in Figure 1: the first portion is the rarefaction on the left of the graph, the second

is the small triangle with base 0≤ x ≤ 0.2, and the third is the collection of parallel

characteristics on the right.

The exact solution (19) is indistinguishable from an approximation generated by

a numerical scheme. Setk =
√

.2, hM = 0.4, hb = 0.01, xb = 0.2, andxmax = 1. We

use an upwind scheme, see LeVeque [12], subdividing the domain into 1000 cells of

size∆x = .001; a timestep of∆t = .001 is short enough to accommodate the fastest

characteristic with speedvM = 5
3h2/3

M k≈ .4046. See the results in Figure 2.

To further test the numerical scheme, we record the height and speed of the shock
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Figure 2: Water depthh at timest = 0 (top), t = .54 (center), andt = 5.7 (bottom).
Note the rarefaction wave on the left. After the shock forms,it travels downslope and
decreases in height.

in the numerical solution at each time step. We can compare this height to the value

predicted by characteristic information. We can also trackthe speed of the shock in the

numerical solution and compare it to that predicted by the Rankine-Hugoniot condition

(18). Observed shock height gives a second prediction of shock speed. Height and

speed comparisons are graphed over time in Figure 3.

The predicted values are very close to the observed values, demonstrating that the

upwind scheme respects shock behavior. Shock formation is not specific to this one

example. Let us use these numerical tools to examine a more generic perturbation of

initial water depth.

3.2 Model for Magnification of White Noise

In nature, small bumps may appear uniformly distributed in the water thickness. (Think

of raindrops.) To understand what happens to this white noise, we will examine small,

generic perturbations in water depth and see if they form shocks under the SB model.
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Figure 3: Shock height (left) and speed (right) over time. Note that the exact solu-
tion predicts a larger and faster shock initially; the prediction and numerics agree very
closely after timet = 1.

Consider the small Gaussian initial condition

h(x,0) =
1
4

hbexp

[

−
(

x−0.1
0.05

)2
]

(20)

We will again use the fixedH of constant slopeH(x) = k2(xmax−x)+hb; as before,k

andhb are positive constants, and rainfallR is 0.

It is not possible to do a complete characteristic analysis as with the previous ex-

ample, but we can extract some useful information. The characteristicX(0.1,t) carries

5
4 as much water as the (essentially) base-level characteristic X(0.2,t), so it will travel

about 16% faster, and overtake the slower characteristic ataboutx = 0.8. We expect a

shock to form here.

Using an upwind scheme, we will model the evolution of the Gaussian initial water

depth according to equation (3):

ht = R− ∂x

[

h5/3|Hx|1/2
]

with h(0,t) = 0. We will again examine the formation of the shock and track its

progress. The water surfaceH is still held fixed with constant slope:|Hx|1/2 = k,

and rainfallR is zero. We use initial water depth (20). As before,k =
√

.2, hb = .01,
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Figure 4:h(x,0), h(x,8.8), h(x,17.6), andh(x,21). The typical rarefaction wave forms,
while the initial Gaussian magnifies into a shock traveling downslope.
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andxmax = 1; the domain is subdivided into 1000 cells of size∆x = .001. A timestep

of ∆t = .02 is short enough to accommodate the fastest characteristic with speedv =

5
3

(

5
4h2/3

b

)

k≈ 0.0401. See the results in Figure 4.

Here we see the magnification of a Gaussian initial condition: the portion downs-

lope of the water depth maximum (s= 0.1) sharpens into a shock nearx = 0.8, while

the upslope portion joins the rarefaction wave. So we see that even small perturbations

form shocks, regardless of their initial shape.

4 The Effect of Water Depth Shocks on the Water Sur-

face

Up to this point, we have held the water surface (H) fixed in time. If we allow the water

surface to evolve, what effect does the water depth shock have on the water surface?

What effect does the changing water surface have on the watershock? We will examine

these questions numerically.

Recall the water surface equation (5):

Ht = U − ∂x

[

h10/3|Hx|3
]

.

We use a constant slope initial water surfaceH(x,0) = k2(xmax−x)+hb, and maintain

zero sediment fluxh10/3|Hx|3 = 0 for x = 0 and all timet ≥ 0, and fixH(xmax,t) = hb.

We will evolve equation (5) using an upwind scheme.

At the same time, we will use an upwind scheme to evolve the water depth equation

(3):

ht = R− ∂x

[

h5/3|Hx|1/2
]

with h(0,t) = 0 and the piecewise linear initial water depth (21):
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h(x,0) =























0 x = 0

hM − hM −hb
xb

x 0 < x≤ xb

hb xb < x≤ xmax

(21)

As before,k, hM > hb, andxb are all positive constants, and rainfallR is 0.

Because equation (5) evolves on a timescale longer than equation (3), we evolve

the water surface equation (5) two steps of size∆t = .001 for every ten steps of size

∆t = .005 we evolve the water depth equation (3). The parameters are U = .00002,

k =
√

.2, hM = .4, hb = .01, xb = .2, andxmax = 1; the domain is subdivided into 100

cells of size∆x= .01; see the results in Figure 5. (An evaluation of the accuracy of this

upwind scheme can be found in [23].)

The water surfaceH forms a shock, or a bore, following the front of the water pulse

down the hillslope. Note that the water depth shock is somewhat less sharp than before,

because deposition at the shock front tends to smear it out.

Upslope of the water pulse, another almost stationary shock–a hydraulic jump–

forms as the rarefaction fan stretches out near the peak.

As the water pulse tracks down the surface, it loses some of its height and deposits

sediment along the way. As time progresses, the effect of uplift becomes apparent on

the lower reaches of the water surface. At time 5.5, the bore is about to exit the domain.

If we run this simulation to timet = 25, the water almost completely drains off the

domain, as depicted in Figure 6. Note that there is a slight bulge of water above the

levelhb = .01.

4.1 Repeated Shocks

The previous example models the progress of stormwater downa hillslope. What is the

effect of repeated storms on this hillslope? At timet = 25, we re-initialize the water

depthh and evolve the new system an additional 25 time units.
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Figure 5: Water depthh (left) and change in water surfaceH (right) at timest = .5
(top), t = 3 (center), andt = 5.5 (bottom). The initial (zero) change inH is marked
in the right-hand graphs. The hydraulic jump forms in the water surface atx = 0.1,
and the water surface bore follows the water depth shock fromx = 0.2 (top) tox = 0.6
(middle) tox = 0.95 (bottom).
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Figure 6:h(x,25)

If we repeat this process, say, nine more times (for a total often storms), the water

depth and change in water surface can be seen in Figure 7. The use of the subscript in

hold indicates that the next storm has not yet fallen.

At this point, the accumulated effect of the storms on the water surface begins

to become apparent; see Figure 8. The water surface is becoming visibly convex.

The mechanism creating this convexity appears to be a combination of the hydraulic

jump and the bore. Before the shock forms and as it forms, the water digs into the

surface, leaving a hydraulic jump in the water surface. The hydraulic jump continues

to dig up sediment and thus moves very slowly downstream. After the shock has fully

formed, the bore redeposits this sediment. At the bottom of the slope, the bore has

become smaller, and deposits less and less sediment. Combined with uplift and the

lower boundary condition forH, we see a net gain in elevation through the middle of

the domain.

After a total of 300 storms, the water surface has become quite convex. (See Figure
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Figure 7:hold(x,250) andH(x,250)−H(x,0)
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Figure 8:H(x,250) (curved) andH(x,0) (linear)

9.) Water will have drained quite completely at the end of this last storm. (See Figure

10.) The end of the domain is very steep, and thus able to clearthe last traces of the

storm more quickly than the initial slope could.
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Figure 9:H(x,7500) (curved) andH(x,0) (linear)

5 Shocks in the Water Surface Equation

If we resume a rainfall that is uniform in both space and time,the convex water surface

profiles in the previous section become unstable. If uniformrainfall begins at time

t = 7500, water depth moves quickly toward a steady-state in thewaterflow with water

concentrated at the bottom of the domain. Erosion is accelerated here, reversing the

curvature of the water surface, and forming a “knick-point”or small concavity. As

mentioned earlier, this knick-point physically corresponds to rapids.

5.1 Creating the Water Surface Shock

Using the upwind schemes, we again evolve the water surface equation (5) two steps

for every ten steps we evolve the water depth equation (3). Rainfall rateR is 0.02, and

uplift U is 0.00002. We evolve equation (3) with a timestep of∆t = .01 and equation

(5) with a timestep of∆t = .05.
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Figure 11:h(x,7501) andH(x,7501)−H(x,7500)

At time t = 7501, water becomes thicker at the lower end of the domain, and the

knick-point begins to become visible. Seehand the differenceH(x,7501)−H(x,7500)

in Figure 11. We see that the primary change in the surface is uplift, but the accumu-

lating water on the lower end of the domain is beginning to diga knick-point.

If we continue tot = 7510, more water accumulates at the low end of the domain

as the knick-point inH becomes dramatically larger; see Figure 12. The change inH

can be seen (just barely) on the plot comparingH(x,7500) andH(x,7510) in Figure

13. H(x,7510) is underneathH(x,7500).

By time t = 7600, the knick-point is quite visible on the graph ofH. It has formed

and is traveling upslope; see Figure 14. It is also possible to see the change in concavity
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Figure 12:h(x,7510) andH(x,7510)−H(x,7500)
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Figure 13:H(x,7510) andH(x,7500)

at the bottom of the domain. Note that water depthh is not changing greatly.

If we continue this evolution to timet = 16000, we see the entire water surface be-

coming concave, and singular atx= 0. In Figure 15,t = 7500;7600;8500;11000; and 16000.

Notice that there is very little water towards the top of the ridge (x = 0).

5.2 Steady-States

In the short timescale, water depthh is in steady-state whenR= ∂x
[

h5/3|Hx|1/2
]

, or,

integrating,
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Figure 14:h(x,7600); andH(x,7600) with H(x,7500)

hss(x,t) =
(Rx)3/5

|Hx|3/10
. (22)

After time 7510, the transienth follows this steady-state very closely. Instead of evolv-

ing equation (3) on a faster timescale, we will use equation (22) to substitute forh in

the water surface evolution equation (5), obtaining

Ht = U − ∂x
[

R2x2|Hx|2
]

. (23)

We will evolve this single equation past time 7510.

Note that this equation evolves to a steady-state of

Hss(x) = hb +
2
√

U
R

[√
xmax−

√
x
]

(24)

around timet = 16000. This is precisely the steady-state predicted in [22].

5.3 Model for Coloring of the Noise

In transitioning to the steady, concave surface, it is worthinvestigating the potential for

shock formation. If we use the substitutionS= |Hx|=−Hx and differentiate both sides

of equation (23) with respect tox, we get
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Figure 15:h(x,t) andH(x,t) for 7500≤ t ≤ 16000
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St = R2∂xx
[

x2S2]

= 2R2[x2SSxx+x2S2
x +4xSSx+S2] , (25)

a form suggesting characteristicsX(s,t) obeying

dX
dt

= −2R2(x2Sx +4xS). (26)

Note theSxx term in equation (25). Because this term has positive sign (unlessx = 0),

it will act like positive heat smoothing. Any shock inSwill be diffusive.

If we trackS(x,t) at various times, we see a shock-like jump traveling across the

domain from right to left. After running the fully transientscheme to time 7510, we

switch to the single evolution of equations (23). The resulting slope profiles are graphed

in Figure 16, wheret = 7500;7510;7600;9000;10000;11000;16000.

The initial slope profile (at time 7500) is strictly increasing, corresponding to a

convex water surfaceH; a maximum quickly forms on the right and travels across the

domain until the slope (−Hx) is strictly decreasing, giving a concave water surface.

The slope profile by time 11000 may be only Hölder continuous, since it makes a

rapid turn nearx = 0.05. The noise is colored because it is not uniform in space; in

distinction to white noise, it has long-range spatial correlations, leading to solutions

that are Hölder continuous, but not differentiable. Thus the small initial concavity has

been magnified into a shock: a knick-point that travels upstream.

The final slope profile (at time 16000) is graphed in Figure 17 against the predicted

steady-state slope found by differentiating equation (24). Note that the predicted and

observed slope profiles are nearly indistinguishable; the observed is slightly higher than

the predicted.
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Figure 16:S(x,t) = −Hx for 7500≤ t ≤ 16000
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Figure 17: numericalS(x,16000) superimposed onSss(x)

6 Conclusion

The three shocks discussed in this paper tell a complete story. A noisy input of water

gets magnified, forming a shock. The water depth shock makes abore followed by

a hydraulic jump. Together, these features create a young, convex hillslope. This

hillslope is unstable; a small concavity at the bottom of theslope is magnified and

colored, forming a diffusive shock in the water surface slope that travels upslope and

carves out a mature, concave landscape.
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