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Mapping forests with Lidar provides flexible, accurate data 
with many uses
by Maggi Kelly and Stefania Di Tommaso

The use of remote sensing for forest inventory, fire management and wildlife habitat 
conservation planning has a decades-long and productive history in California. In the 
1980s, mappers transitioned from aerial photography to digital remote sensing, in 
particular Landsat satellite imagery, which still plays a significant role in forest map-
ping, but today mappers increasingly rely on Lidar analysis. In California, where forests 
are complex and difficult to accurately map, numerous remote sensing scientists have 
pioneered development of methodologies for forest mapping with Lidar. Lidar has been 
used successfully here in a number of ways: to capture forest structure, to map individ-
ual trees in forests and critical wildlife habitat characteristics, to predict forest volume 
and biomass, to develop inputs for forest fire behavior modeling, and to map forest to-
pography and infrastructure. Lidar can be costly to acquire and difficult to analyze, but 
as costs decline and new data processing methods are developed, it is likely that forest 
managers who need detailed information on forest structure across large spatial scales 
will incorporate Lidar data into their mapping toolkits.

Mapping has always been criti-
cal for forest inventory, fire 
management planning and con-

servation planning. In California, these 
tasks are particularly challenging, as our 
forests exhibit tremendous variability 
in composition, volume, quality and to-
pography. Also, California is a fire-prone 
state, and our forests are used by a large 
number of important wildlife species. Per-
haps it is due to this natural complexity 
that researchers have focused on Califor-
nia forests to pioneer solutions to many of 
the difficult problems in remote sensing. 

Prior to about 1980, forest inventory 
and habitat mapping largely relied on 
manual interpretation of vertical-view 
aerial photography (Arvola 1978; Colwell 
1964, 1965), but the launch of Landsat-1 
and Landsat-2 satellites from Vandenberg 
Air Force Base in California in 1972 and 
1975 (Lauer et al. 1997) permanently 
changed the way forests were mapped. 
Digital mapping of canopy, phenol-
ogy and condition over large scales and 

through time became possible. The early 
excitement about Earth observation 
satellites in terms of forestry applica-
tions (Colwell 1973; Fritz 1996; Gregory 
1971; Strahler 1981) foreshadowed three 

decades of intense and increasing use of 
Landsat imagery by land managers, regu-
latory agencies, scientists and nongovern-
mental organizations in California to map 
forest vegetation and mortality, explore 
forest change detection, map fire severity 
and map wildlife habitat. Landsat was the 
workhorse of forest remote sensing before 
the turn of the century, but advances in 
sensor design, data processing and infor-
mation synthesis then revolutionized the 
field (Wulder et al. 2003). 

The MODIS satellite was launched in 
1999, making it possible to study forests at 
a global scale at a temporal resolution not 
available before (Lefsky 2010; Running et 
al. 2004). At the local scale, high-resolution 
stereo-matched optical imagery was used 
to map forest structure (Gong et al. 1999; 
Gong et al. 2000; Sheng et al. 2001; Sheng 
et al. 2003). Landsat-8, launched in 2013, 
and high-resolution optical sensors such 
as Worldview-2 and -3 continue to be use-
ful for forestry. But more recently, Lidar 
(light detection and ranging) has become 

Online: http://californiaagriculture.ucanr.edu/ 
landingpage.cfm?article=ca.v069n01p14&fulltext=yes

doi: 10.3733/ca.v069n01p14
Collections of Lidar points show trees in the Sierra National Forest, where much of the research on 
remote sensing has occurred. 
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an operational, accurate and reliable tool 
for detailed mapping of forests. 

Lidar technology

Lidar is an active remote sensing tech-
nology used to measure distances with 
high accuracy. This technology provides 
horizontal and vertical information at 
high spatial resolution and vertical ac-
curacies, offering opportunities for 
enhanced forest monitoring, manage-
ment and planning (Dubayah and Drake 
2000; Lim et al. 2003; Reutebuch et al. 
2005). Lidar systems for forestry are clas-
sified according to the platforms they 
are mounted on (airborne, spaceborne 
or ground based), on the way returned 
signals are recorded (discrete return or 
full waveform) and on the footprint size 
(i.e., the horizontal illuminated area) — a 
small footprint covers ~ 3 feet (~ 1 meter) 
or less, a large footprint covers tens of 
meters. The most common Lidar systems 
used today are small-footprint, discrete 
return laser scanners mounted on aircraft 
(although this is rapidly changing). The 
laser scanner measures distances to a tar-
get by emitting pulses at rapid frequency, 
up to 150 kilohertz (kHz), and recording 
the time it takes for each pulse to com-
plete the distance from the scanner to the 
object and back to the scanner. 

Airborne laser scanning systems have 
four major components: a laser scanning 
unit, a global positioning system (GPS), 
an inertial measurement unit (IMU) and 
a computer to store data. The first three 
components yield the precise time and the 
position of the laser unit when each pulse 
is emitted. With discrete return Lidar 
systems, multiple returns (up to five) from 
a single outgoing pulse can be recorded 
to produce vertical information about 
vegetation above the ground as well as at 
the ground surface. The result is a dense, 
three-dimensional point cloud represent-
ing the vegetation and ground surface 
topography of the surveyed landscape.

Full waveform Lidar systems record 
the entire waveform of the reflected laser 
pulse, not only the peaks as produced by 
the discrete multiple return Lidar sys-
tems. The reflected signal of each emitted 
pulse is sampled in fixed time intervals, 
typically 1 nanosecond (ns), equal to a 
sampling distance of 6 inches (15 centi-
meters) at a typical flying height. This 
provides a quasi-continuous, extremely 
high-resolution profile of the vegetation 

canopy structure, making it suitable for 
wildlife habitat mapping and the analysis 
of vegetation density, vertical structure 
and fuels analysis. The downside of the 
waveform technology is the huge amount 
of data that needs to be stored and pro-
cessed; full waveform data sets drastically 
increase processing time and complexity 
compared with discrete data, and there 
are fewer commercial software packages 
designed to process full waveform data 
over large project areas.

Lidar use in California forests

Since about 2000, Lidar has been in-
creasingly used by researchers to map 
California forests. Lidar has been used 
successfully to capture forest structure, to 
map individual trees in forests and critical 
wildlife habitat characteristics, to predict 
forest volume and biomass, to develop 
inputs for forest fire behavior modeling 
and to map forest topography and infra-
structure. We reviewed 24 peer-reviewed 
papers covering this research (table 1). 
Some papers focus on oak woodlands 
and savannas (Chen et al. 2006; Chen et 
al. 2007) and coast redwood (Chen 2010; 
Gonzalez et al. 2010), but the majority 
focus on the conifer and mixed-conifer 
forests in the Sierra Nevada. The Sierra 
National Forest is the forest that has been 
most often remotely sensed in California; 
nine of the papers we reviewed focused 
on this forest; it has been mapped with 
large- and small-footprint, discrete and 
waveform Lidar, as well as with Landsat, 
Quickbird and other sensors. 

Forest structure. Understanding the 
structure of forests — the tree density, 
volume and height characteristics — is 
critical for management, fire prediction 

and wildlife assessment. Optical remote 
sensors such as Landsat do not provide 
detailed depictions of forest structure. 
Several Lidar studies of California forests 
focus on using Lidar to develop forest 
structure parameters, such as tree height 
and trees per acre. There are typically 
two methods to perform large-scale forest 
inventory with small-footprint Lidar data: 
(1) at the scale of individual trees and (2) 
at the stand or plot scale. 

The ability to delineate individual 
trees from a Lidar point cloud has been 
proven for heterogeneous and complex 
forests such as oak savanna (Chen et al. 
2006; Chen et al. 2007) and mixed-conifer 
stands (Li et al. 2012). Delineating the 
individual trees is done by segmenting 
the Lidar-derived canopy height model — 
the raster image interpolated from Lidar 
points depicting the top of the vegetation 
canopy (e.g., Chen et al. 2006) — by delin-
eating the trees directly from the point 
cloud (Li et al. 2012) or by a combination 
of these methods (Jakubowski, Li et al. 
2013). After accurate segmentation, rela-
tionships can be derived between Lidar- 
and field-measured structural attributes 
such as tree height, crown diameter and 
canopy base height, which are directly 
measured, and basal area, diameter at 
breast height, wood volume, biomass and 
species type, which are derived by corre-
lations (Chen et al. 2006; Chen et al. 2007).

 The development of plot- or stand-
scale predictions of forest structure with 
Lidar requires regression between field 
data and Lidar metrics derived from 
the point cloud (e.g., height and height 
profiles and percentages) that reports 
overall goodness-of-fit measures (e.g., 
correlation coefficient R2) and measures 
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Each Lidar point represents a pulse return, encoding 
its location and its height above sea level by color. 
The technology can delineate individual trees in oak 
savanna and mixed-conifer stands.

http://californiaagriculture.ucanr.edu
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of uncertainty (e.g., root-mean-squared 
error, RMSE). Jakubowski, Guo, Collins et 
al. (2013) found that many forest canopy 
structure metrics resolved at the plot scale 
(e.g., canopy height, canopy base height, 
canopy cover, basal area) were estimated 
well with discrete Lidar data (R2 = 0.87 for 
canopy height). 

There is a trade-off between detail, 
coverage and cost with Lidar. The ac-
curate identification and quantification 
of individual trees from discrete Lidar 
pulses typically require high-density 
data. Jakubowski, Guo and Kelly (2013) 
investigated the relationship between 
Lidar pulse density and the ability to pre-
dict commonly used forest metrics at the 
plot scale in Sierra Nevada mixed-conifer 

forests. Results show that the accuracy 
of predicted plot-scale metrics remains 
relatively high until about 0.1 pulse per 
square foot (1 pulse per square meter). 
However, higher-density (up to 1 pulse 
per square foot, or 10 pulses per square 
meter) data are necessary for metrics re-
lated to coverage (e.g., tree density, canopy 
base height and shrub cover) and for the 
delineation of individual trees.

Studies using large-footprint, full 
waveform data for forest inventory in the 
Sierra Nevada forests have demonstrated 
the ability of full waveform Lidar to re-
trieve accurate canopy fuel maps needed 
for fire behavior modeling (Peterson et 
al. 2005) and to provide an accurate esti-
mate of leaf area index at multiple spatial 

scales (Tang et al. 2014). Zhao et al. (2013) 
compared the abilities of an airborne and 
a ground-based full waveform system 
to retrieve foliage profiles in the Sierra 
National Forest and showed the benefits 
of integrating terrestrial and airborne 
Lidar data for a detailed description of 
forest canopy structure. 

Hyde et al. (2006) explored the po-
tential of retrieving accurate canopy 
height from large-footprint satellite Lidar 
waveform data over forests in the Sierra 
National Forest. They focused on the 
synergic use of Lidar with other sensors, 
in particular Landsat ETM+, to increase 
canopy height prediction accuracy. Chen 
(2010) also used large-footprint satellite 
Lidar waveform data over forests but 

Table 1. Key papers discussing Lidar for forest mapping in California

Reference Lidar type Location, forest type
Scale (e.g., hectare, stand, 
individual tree) Topic

Hyde et al. 2005 Full waveform, large footprint Sierra Nevada Forest, mixed conifer Lidar footprint and stand Wildlife habitat: spotted owls

Hyde et al. 2006 Full waveform, large footprint Sierra Nevada Forest, mixed conifer Lidar footprint and stand Canopy height and biomass

Peterson et al. 2005 Full waveform, large footprint Sierra National Forest, mixed conifer Lidar footprint CBD, CBH

Chen et al. 2006 Small footprint, discrete Ameriflux site at Ione, oak savanna Individual tree Individual tree isolation

Chen et al. 2007 Small footprint, discrete Ameriflux site at Ione, oak savanna Individual tree Basal area, stem volume

Chen 2010 Spaceborne: full waveform, large 
footprint; airborne: small footprint, 
discrete 

Mendocino County, conifer; Santa 
Clara County, broadleaf woodland

Lidar footprint Canopy height

Gonzalez et al. 2010 Small footprint, discrete Mailliard Redwoods State Natural 
Reserve, coast redwood forest; Tahoe 
National Forest, mixed conifer 

Stand Forest carbon 

Guo et al. 2010 Small footprint, discrete Tahoe National Forest, mixed conifer NA DEM

White et al. 2010 Small footprint, discrete Santa Cruz Mountains, coast redwood NA Forest road mapping

Garcia-Feced et al. 2011 Small footprint, discrete Tahoe National Forest, mixed conifer Individual tree Wildlife habitat: spotted owls

Swatantran et al. 2011 Full waveform, large footprint Sierra National Forest, mixed conifer Stand Biomass

Blanchard et al. 2011 Small footprint, discrete Tahoe National Forest, mixed conifer NA Downed logs

Chen et al. 2012 Small footprint, discrete Sagehen Creek Experimental Forest, 
mixed conifer

Stand Biomass

Lu et al. 2012 Small footprint, discrete Sagehen Creek Experimental Forest, 
mixed conifer

Stand Biomass

Li et al. 2012 Small footprint, discrete Sierra National Forest, mixed conifer Individual tree Individual tree segmentation

Zhao, Guo, Kelly 2012 Small footprint, discrete Sierra National Forest, mixed conifer Plot and individual tree Biomass

Zhao, Sweitzer et al. 2012 Small footprint, discrete Sierra National Forest, mixed conifer Plot and individual tree Wildlife habitat: Pacific fisher

Jakubowksi, Li et al. 2013 Small footprint, discrete Tahoe National Forest, mixed conifer Individual tree Individual tree segmentation

Jakubowksi, Guo, Collins 
et al. 2013

Small footprint, discrete Tahoe National Forest, mixed conifer Stand Surface fuel model and 
metrics

Jakubowksi, Guo, Kelly 
2013

Small footprint, discrete Tahoe National Forest, mixed conifer Plot Lidar pulse density vs. metrics 
accuracy

Zhao et al. 2013 Full waveform, large footprint Sierra National Forest, conifer Plot Foliage profile

Kane, Lutz et al. 2013 Small footprint, discrete Yosemite National Park, mixed conifer 
forest and red fir forest

90-meter (0.81-hectare) 
grid cell

Fire effects on forest spatial 
structure

Kane, North et al. 2013 Small footprint, discrete Yosemite National Park, mixed conifer 
forest and red fir forest

30-meter grid cell Fire severity effects on forest 
structure

Tang et al. 2014 Airborne and spaceborne: full 
waveform, large footprint 

Sierra National Forest, mixed conifer Plot LAI
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concentrated on coastal California forests 
in Mendocino County (dominated by 
coast redwood and Douglas fir) and Santa 
Clara County (coast live oak forest and 
blue oak woodland, with some mixed- 
evergreen forest). Chen studied the effect 
of footprint size on canopy height estima-
tion and showed the need to reduce foot-
print size to 32 feet (10 meters) or less if 
meter-level accuracy is to be achieved.

Wildlife. Several studies of California 
forests have used Lidar to capture im-
portant habitat characteristics relevant to 
forest-dwelling wildlife, such as nesting 
or denning structures. Hyde et al. (2005) 
examined the ability of large-footprint 
Lidar to retrieve forest structural attri-
butes (slope, elevation, aspect, canopy 
cover, crown shape and the spatial ar-
rangement of canopy-forming trees) that 
are important for California spotted owl 
(Strix occidentalis occidentalis) in the Sierra 
National Forest. They found good agree-
ment between field and Lidar measure-
ments of height, cover and biomass at the 
footprint level and canopy height and 
biomass at the stand level. Garcia-Feced et 
al. (2011) performed a similar assessment 
with small-footprint discrete data in the 
Tahoe National Forest. They mapped the 
canopy cover and the number, density 
and pattern of all the large residual trees 
within 656 feet (200 meters) of four nest 
sites for spotted owls. 

Resting and denning structures are 
considered to be the most important habi-
tat elements required for maintenance of 
Pacific fisher (Martes pennant) populations, 
and literature has shown strong associa-
tions between fisher denning activity and 
its surrounding forested environment. 
Zhao, Sweitzer et al. (2012) compared trees 
used by fishers for denning with trees 
not used by fishers and found that den-
ning structures were associated with high 
canopy cover, large trees and high levels 
of vertical structural diversity, and that 
the denning structures were located on 
steeper slopes, potentially associated with 
drainage areas with streams or access to 
water.

Fire. To mitigate the possibility of large 
areas of high-severity fire, managers use 
wildfire behavior modeling for planning 
fuel reduction treatments such as thin-
ning and prescribed fire across public 
forests. Forest fire behavior models need a 
variety of spatial data layers to accurately 
predict forest fire behavior, including 
elevation, slope, aspect, canopy height, 
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Right, UC Berkeley Ph.D. student Marek 
Jakubowski uses a laser range finder (on 

tripod) in Tahoe National Forest to measure the 
distance and direction to trees. Researchers 

have found good agreement between Lidar and 
field measurements.

Below, a Pacific fisher on a den tree. Several 
studies have used Lidar to identify habitat 

characteristics that are important for wildlife.
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canopy cover, crown base height and 
crown bulk density, as well as a layer de-
scribing the types of fuel found in the for-
est (called the fuel model). These spatial 
data layers are not often developed using 
Lidar data. Jakubowski, Guo, Collins 
et al. (2013) examined how well Lidar 
data could estimate them in the Tahoe 
National Forest. They found that tree 
height, canopy base height, canopy cover 
and general fuel types were predicted ac-
curately using Lidar with multispectral 
images, but specific fuels were difficult to 
predict in dense forest (Jakubowski, Guo, 
Collins et al. 2013). 

Downed logs on the forest floor, which 
provide fuel for forest fires, are a con-
siderable challenge to map accurately. 
Blanchard et al. (2011) presented an object-

based image analysis (OBIA) approach 
to delineate and classify downed logs 
using Lidar-derived metrics. Despite its 
success in identifying downed logs, the 
OBIA method requires significant analyst 
interpretation for classification, and so it 
can be considered a complement to field-
based methods but not a replacement for 
them. 

Kane, North et al. (2013) used Lidar 
combined with Landsat data to examine 
the ecological relationships between dif-
ferences in fire severity and the spatial 
structures of forests, defined as tree 
clumps and openings, for three forest 
types (ponderosa pine, white fir and 
sugar pine, and red fir). A complementary 

analysis was performed by Kane, Lutz et 
al. (2013), focusing on changes in canopy 
profiles after fires.

Biomass. Accurate measures and 
predictions of biomass are critical for 
estimating carbon storage on a stand 
and forest scale and also a global scale. 
Vegetation height metrics derived from 
Lidar are often used to predict biomass 
and have been found to provide accurate 
estimates of biomass even when forest 
density is high, because Lidar is not af-
fected by the saturation problem associ-
ated with optical sensors, which can make 
moderate-density forests appear similar 
to high-density forests (Lu et al. 2012). 

Hyde et al. (2006) compared the 
biomass estimation from Lidar, SAR/
InSAR (a radar satellite), and ETM+ and 

Quickbird (optical sensors of moderate 
and high spatial resolution, respectively) 
and found that Lidar was the best single 
sensor for estimating biomass. Its higher 
accuracy in estimating biomass compared 
with Landsat TM and high-resolution 
Quickbird is also supported by Lu et al. 
(2012) and Gonzalez et al. (2010). Other 
studies focused on identifying methods 
to integrate Lidar with optical remote 
sensing (aerial and satellite images) to 
improve biomass estimation, given that 
biomass is related not only to tree struc-
ture, but also to factors strictly dependent 
on vegetation type (Chen et al. 2012), and 
optical remote sensing can provide infor-
mation on vegetation type. 

One way to incorporate vegetation-
type information into biomass estimation 
is to stratify forest plots according to veg-
etation type and develop a separate statis-
tical model for each type. This approach 
was taken by Swatantran et al. (2011), who 
used AVIRIS hyperspectral data to refine 
biomass prediction and showed that pre-
diction by Lidar after species stratification 
from field data reduced errors by 12% 
compared with using Lidar metrics alone. 

A different approach to biomass map-
ping was adopted by Chen et al. (2012), 
who used mixed-effects modeling to inte-
grate airborne Lidar data and vegetation-
type data derived from aerial imagery. 
Incorporating vegetation type improved 
biomass estimation (R2 improved from 
0.77 to 0.83) and decreased RMSE by 10% 
from 199.6 to 178.4 megagrams (Mg) per 
acre (80.8 to 72.2 Mg per hectare).

In contrast to Swatantran et al. (2011) 
and Chen et al. (2012), other studies sug-
gest that integrating Lidar data and opti-
cal or radar imagery does not produce 
better biomass predictions. For example, 
Hyde et al. (2006) found that adding 
Quickbird and SAR/InSAR forest struc-
ture metrics to Lidar resulted in no im-
provement for estimating biomass across 
120 circular 0.40-acre (1-hectare) plots 
in the Sierra National Forest; this was 
explained by the fact that the structure 
metrics from SAR/InSAR and Quickbird 
were very similar to those of Lidar.

All the studies reviewed here strongly 
agree that airborne Lidar data provides 
the most accurate estimates of forest 
biomass, but rigorous procedures should 
be taken in selecting appropriate al-
lometric equations to use as reference 
biomass estimates (Zhao, Guo, Kelly 2012). 
Reference biomass is typically calculated 
using published allometric equations, 
such as national-scale equations (Jenkins 
et al. 2003) or equations from the Forest 
Inventory Analysis program (fia.fs.fed.us). 
Zhao, Guo, Kelly (2012) examined how the 
use of one or the other strongly influenced 
Lidar regression modeling results, and 
they suggest that in the mixed-conifer for-
ests of the Sierra Nevada regional biomass 

Downed logs on the forest floor, which provide fuel for forest 
fires, are a considerable challenge to map accurately.

Si
er

ra
 N

ev
ad

a 
Ad

ap
tiv

e 
M

an
ag

em
en

t P
ro

je
ct

Public workshops showing Lidar mapping 
capabilities have engaged members of the 
public, resource managers and staff from 
resource agencies. The adoption of Lidar in 
forest management is likely as the costs of the 
technology continue to drop. 
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equations should be preferred over na-
tional equations.

Terrain and infrastructure. Identifying 
road infrastructure is essential for 
wildland fire planning and suppres-
sion measures, and current geographic 
information system (GIS) data sets do 
not provide adequate and complete road 
inventories in many forests. Lidar data 
can be used to produce highly detailed 
digital terrain models (DTM) at fine (e.g., 
3.3-feet, or 1-meter) resolutions (Guo et 
al. 2010), which can also provide detailed 
and accurate road inventories. White et al. 
(2010) showed the suitability of Lidar for 
mapping forest roads in the dense forest 
canopy and steep, complex terrain of the 
Santa Cruz Mountains. The study high-
lighted forest road features that are not 
visible through traditional remote sensing 
data such as satellite imagery and aerial 
photography because passive sensors are 
unable to penetrate dense canopy.

Future of Lidar 

The future of Lidar for forest applica-
tions depends on a number of consider-
ations, including costs, which have been 
declining; new developments to address 
limitations with discrete Lidar; and new 
methods to deal with increasing data size. 

Costs. Adoption of Lidar in forest man-
agement has not been complete. Wynne 
(2006) says “small-footprint imaging Lidar 
systems now dominate much of forest re-
mote sensing research, but have yet to be 
integrated into operational inventory and 
monitoring at the scale of management.” 
Although this is changing, large-area 
forest monitoring and mapping activi-
ties with Lidar remain challenging due 
to costs, logistics and the data volumes 
involved (Wulder et al. 2012). While the 
cost of acquiring Lidar is still higher than 
for aerial or satellite imagery, a few stud-
ies suggest that Lidar data can be more 
cost effective than intensive fieldwork. 
Hummel et al. (2011) say: “We found that 
the accuracy and cost of a Lidar-based 

inventory summarized at the stand level 
were comparable to traditional stand ex-
ams for structural attributes. However, 
the Lidar data were able to provide infor-
mation across a much larger area than the 
stand exams alone.” 

Two published studies present actual 
costs: Wulder et al. (2008) estimated a 
cost of ~ $1 per acre ($3 per hectare) for 
mapping with low-density (0.1 pulse per 
square foot, or 1 pulse per square meter) 
discrete Lidar data. Renslow et al. (2000) 
outlined a forest management scenario 
for a typical even-aged, managed forest of 
500,000 acres in which 2% of 10,000 acres 
(200 acres, or 81 hectares) are sampled 
annually to determine what management 
steps are needed. Renslow et al. estimated 
that 14 weeks of traditional fieldwork 
would cost $32,000, or $160 per acre 
(~ $395 per hectare). In contrast, field data 
collection and collection and analysis of 
Lidar data would cost $16,600, or $83 per 
acre ($205 per hectare). However, these 
Lidar cost estimates are far higher than 
estimates of forest mapping with Landsat 
data, particularly since Landsat data is 
now free. Franklin et al. (2000) estimated 
~ $0.15 per acre ($0.30 to $0.40 per hectare) 
in 2000 for mapping with Landsat imag-
ery, drastically down from the costs in the 
1980s, of ~ $1 per acre ($2 to $3 per hect-
are) (adjusted to 2000 dollars). 

Lidar costs are declining, and there are 
potential savings for forest managers who 
wish to use Lidar data as long as they 
can focus on plot-level measurements 
(Jakubowski, Guo, Kelly 2013). With plot-
level measurements, a forest manager can 
cover more of the forest for less cost than 
required for measurements of individual 
trees. 

Limitations. There are known limita-
tions to the use of discrete Lidar for forest 
mapping — in particular, smaller trees 
and understory are difficult to map reli-
ably. In Washington state, Richardson and 
Moskal (2011) found unbiased density 
estimates for trees taller than 65 feet (20 

meters) but underestimation of density 
in trees less tall than that. Similarly, 
Jakubowski, Guo, Collins et al. (2013) 
found that the accuracy of stand structure 
metric predictions generally decreased 
with increased canopy penetration; mea-
sures at the top of the canopy (e.g., canopy 
cover, height) were more accurate than 
those near the forest floor (e.g., shrub 
height, fuel loads). This limitation is re-
ported elsewhere, but in the next 5 years, 
it will become less relevant as waveform 
data becomes more common than discrete 
data and researchers have a chance to 
evaluate waveform data with information 
from the field. 

Data size. The benefits of forest map-
ping with moderate-scale satellite im-
agery such as Landsat are immense: 
inexpensive cost, with large and repeat 
views, and detailed depictions of forest 
cover and type. But there are drawbacks 
to Landsat that Lidar does not have. With 
Lidar, the effective scale and resolution 
are not chosen a priori for the analyst, 
as is the case with satellite imagery. The 
pixel as a sample has been called prob-
lematic since the 1990s (Cracknell 1998; 
Fisher 1997); pixels can be too large to 
capture detail and their placement de-
pends on the satellite’s orbit. In contrast, 
a Lidar point cloud can be resolved into 
any number of operational resolutions for 
integration with other mapped products 
or field data. 

Representation is critical: A 12-acre 
(5-hectare) forest stand, for example, can 
be represented by 55 data points (e.g., 
Landsat, 98.4 feet, or 30 meters) and likely 
undersampled for many purposes or by 
2 million data points (e.g., a Lidar point 
cloud) (table 2), which can then be re-
solved into a collection of height profiles, 
structural metrics, individual trees or 
products of any spatial resolution (e.g., 1 
to 100 feet). This flexibility in representa-
tion can be both a benefit and a challenge, 
as increased data points and multiple 
scales of representation require more 

TABLE 2. Data collection details and approximate data size of a 12.35-acre (5-hectare) forest stand by various remote sensing systems

Landsat TM  
(30 m pixel)

Landsat ETM  
(15 m pixel)*

SPOT  
(10 m pixel)

IKONOS  
(1 m pixel)

Lidar  
(1 pulse/m, 4 returns)

Lidar  
(10 pulses/m, 4 returns)

~ 55 pixels
(330 bytes)

~ 222 pixels
(1.3 Kb)

500 pixels
(2 Kb)

50,000 pixels
(390 Kb)

200,000 points 
(5 Mb)†

2,000,000 points
(50 Mb)

Source: Modified from Wulder et al. 2012.
* Panchromatic or pan sharpened.
† Lidar file sizes are approximate and vary with compression format.
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complex software and data storage op-
tions (Wulder et al. 2012). 

Our review of Lidar research il-
lustrates a preponderance of studies of 
conifer forests in California; in the future 
we will likely see more use of Lidar in 
oaks and redwood forests as managers 
continue to expand their use of these data 
and focus on more ecosystems. As Lidar 

costs continue to decline and new and 
easier methods are developed to process 
the data, it is possible that managers will 
incorporate Lidar data in forest manage-
ment, particularly where detailed infor-
mation on forest structure is required 
across large spatial scales. ca

M. Kelly is UC Cooperative Extension Specialist and 
Professor in the Environmental Sciences, Policy and 
Management Department, and Faculty Director of the 
Geospatial Innovation Facility in the College of Natural 
Resources at UC Berkeley; and S. Di Tommaso is Staff 
Researcher in the Environmental Sciences, Policy and 
Management Department at UC Berkeley.
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