
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Limited Neural Capacity and Hyper-Excitability Affect Quantity Processing: A Computational 
Account

Permalink
https://escholarship.org/uc/item/58c3839p

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 45(45)

Authors
Krossa, Lanni
Azimi, Tannaz
Lieberman, Julia
et al.

Publication Date
2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/58c3839p
https://escholarship.org/uc/item/58c3839p#author
https://escholarship.org
http://www.cdlib.org/


Limited Neural Capacity and Hyper-Excitability Affect Quantity Processing: A 
Computational Account 

Lani Krossa (LKrossa@scu.edu) 
Department of Computer Science and Engineering, Santa Clara University,  

500 El Camino Real, Santa Clara, CA 95053, USA 

Tannaz Azimi (tazimi@alumni.scu.edu) 
Neuroscience Program, Santa Clara University,  

500 El Camino Real, Santa Clara, CA 95053, USA 

Julia Lieberman (juliaglieberman@gmail.com) 
Department of Computer Science and Engineering, Santa Clara University,  

500 El Camino Real, Santa Clara, CA 95053, USA 

Lang Chen (lchen4@scu.edu) 
Department of Psychology, Neuroscience Program, Santa Clara University,  

500 El Camino Real, Santa Clara, CA 95053, USA 
 
 

Abstract 
Developmental dyscalculia (DD) is a neurodevelopmental 
disorder characterized by persistent poor math performance 
despite normal intelligence and education opportunities. Existing 
behavioral and neuroimaging studies have demonstrated that 
quantity processing deficits in DD are accompanied by aberrant 
brain functions and neurobiological alterations. Although theories 
have argued that the behavioral impairments observed in DD 
result from neurobiological deficiency and imbalance of 
excitatory and inhibitory signals in the brain, these hypotheses are 
difficult to test in human subjects. Therefore, in the current study, 
we implemented convolutional neural network models and tested 
the causal influence of neural capacity (i.e., number of units) and 
system excitability (i.e., the slope of activation) during the 
learning of quantity information. For both symbolic and non-
symbolic processing, we observed that reducing the number of 
units did not lead to changes in learning performance. In contrast, 
increased excitability largely impaired the accuracy of learning, 
especially for the non-symbolic representations. Therefore, our 
model simulations provided direct evidence that increased 
excitability in the brain could result in behavioral impairments in 
learning quantity information, potentially suggesting a 
neurobiological basis for DD. 
Keywords: developmental dyscalculia; quantity processing; 
convolutional neural network; neural capacity; system 
excitability 

Introduction 
 Math skills have been shown to be a predictor of success; 

math abilities are correlated with mental health (Ashcraft & 
Ridley, 2005), self-esteem (Kazemi et al., 2014), and 
pursuing higher education (Bynner, 1997). An estimated 3-
6% of children suffer from a neurodevelopmental disorder 
(Haberstroh & Schulte-Körne, 2019; Reigosa-Crespo et al., 
2012; Shalev et al., 2000) known as developmental 
dyscalculia (DD), characterized by persistent poor math 

performance despite normal intelligence and education 
opportunities (Geary, 2011). The behavioral basis of DD has 
been largely associated with the learning and processing of 
quantity information (Menon et al., 2021; Piazza et al., 
2010; Price et al., 2007), and other domain-general 
cognitive abilities, such as memory (Cowan et al., 2011; 
Geary et al., 1991; Murphy et al., 2007), attention (Blair & 
Razza, 2007; Menon, 2014; Wu et al., 2017), and 
visuospatial skills (Ashkenazi et al., 2013; Lambert & 
Spinath, 2018). However, the neurobiological basis of DD 
remains unclear (Kaufmann et al., 2011; Peters & De 
Smedt, 2018). Therefore, the current study aims to use 
computational models to provide insights into how 
neurobiological factors lead to the cognitive impairments in 
quantity processing observed in DD. 

Often, children with DD face a variety of arithmetic 
challenges, including difficulty estimating amounts, 
performing arithmetic operations, and processing quantity 
overall compared to the typically developing (TD) children 
(Bulthé et al., 2019; De Smedt et al., 2013; Mussolin et al., 
2010). Most critically, individuals with DD have been found 
to have quantity processing impairments in both non-
symbolic and symbolic formats (De Smedt et al., 2013; 
Gilmore et al., 2010; Kucian et al., 2011; Rousselle & Noël, 
2007). Non-symbolic quantity processing refers to the use 
of concrete objects, e.g., dot arrays, to represent and 
manipulate quantities, whereas symbolic quantity 
processing generally involves the use of abstract forms of 
number knowledge such as Arabic numerals. Mounting 
studies have shown that quantity processing abilities in both 
formats in early childhood could predict arithmetic skills in 
TD individuals (Kolkman et al., 2013; Price & Fuchs, 2016; 
Schneider et al., 2017). Studies have also shown that DD 
individuals demonstrate impairments in symbolic 
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processing (Piazza et al., 2010; Schwenk et al., 2017) and 
maybe non-symbolic processing (Lyons & Ansari, 2015; 
Salvador et al., 2019; Wong & Chan, 2019). Therefore, one 
prominent theory argues that the core deficit in DD resides 
in poor quantity skills (Butterworth, 2011; Dehaene & 
Wilson, 2007; Price et al., 2007).  

Neuroimaging studies have further suggested that the 
quantity processing deficits in DD are accompanied by 
reduced brain structures (Jolles et al., 2016; Rotzer et al., 
2008) or hypo-activations during math tasks in the 
intraparietal sulcus (IPS; Price et al., 2007). The anterior 
IPS is hypothesized to represent and process abstract 
quantity information (Dehaene et al., 2003; Rosenberg-Lee 
et al., 2011; Schel & Klingberg, 2016), and numerous 
studies have shown that it is activated during mental 
arithmetic, quantity comparison, and number line estimation 
(Chen et al., 2021; Kucian et al., 2006; Price et al., 2007; 
Rosenberg-Lee et al., 2015). Thus, the neurobiological 
deficiency in the IPS found in DD may suggest that DD 
may originate from a limited neural capacity (Butterworth, 
2011; Dehaene & Wilson, 2007; Price et al., 2007). 

The behavioral impairment in math processing in DD is 
also associated with aberrant activations and connectivity 
patterns, largely hyperactive, in various regions outside the 
IPS compared to their TD peers (Bulthé et al., 2019; Menon 
& Chang, 2021; Peters & De Smedt, 2018; Rosenberg-Lee 
et al., 2015). These observations are largely consistent with 
a prominent neurobiological theory for neurodevelopmental 
disorders such as DD, namely, the excitation/inhibition (E/I) 
imbalance theory (Foss-Feig et al., 2017; Padmanabhan et 
al., 2017). The E/I imbalance theory posits that various 
neurodevelopmental disorders such as autism spectrum 
disorder (ASD) and DD result from dysfunctions in the 
neural system’s ability to retain a reasonable balance 
between the activity of excitatory and inhibitory neurons. A 
recent meta-analysis of neuroimaging studies on individuals 
with math difficulties indeed suggests that DD can be 
characterized as both insufficient activations in the IPS and 
excessive activations in widely-distributed brain regions 
(Anonymous, under review). Therefore, besides the core 
deficit in the IPS, DD could also stem from the imbalance of 
the excitatory and inhibitory signals in the brain necessary 
for critical math knowledge and skills. 

Although neuroimaging studies have provided a rich 
understanding of the neurobiological basis of DD, the 
neuroimaging techniques are by and large correlational 
since direct manipulation of neurobiological dysfunctions is 
challenging. In addition, observations in human subjects are 
commonly influenced by various unobserved factors, so the 
causal link between manipulated variables and outcomes is 
commonly taken with caution. Therefore, these limitations 
compromise our ability to evaluate the predictions of the 
core deficit theory and E/I imbalance theory for DD with 
human subjects. Thus, the current study aims to use 
computational models to directly test the predictions of both 
theories. In the computational models, we could fully 
control the manipulated variables and observe the 

corresponding outcomes. Previous research has used 
computational models to characterize cognitive impairments 
(Farah & McClelland, 1991; Plaut et al., 1996; Seidenberg 
& McClelland, 1989), as well as variability in cognitive 
skills such as word reading (Dilkina et al., 2008, 2010; 
Zevin & Seidenberg, 2006), object recognition (Chen et al., 
2017; Lambon Ralph et al., 2007; Rogers et al., 2004), and 
sentence processing (MacDonald & Christiansen, 2002). 
Computational models have also suggested that aberrancies 
in internal model parameters may underlie reading 
disabilities (Woollams et al., 2007), memory deficits (Chen 
& Rogers, 2015; Ueno et al., 2011), and various forms of 
agnosia (Plaut, 2002).  

In sum, we aimed to implement computational models of 
quantity processing and to directly test the core deficit and 
E/I imbalance theories of DD. Specifically, following a 
previous attempt (Dilkina et al., 2008), we manipulated the 
number of units in each layer of the model to approximate 
the neural capacity. The underlying assumption is that with 
a limited number of units, the model would have reduced 
computational capacity to represent abstract knowledge 
from complex stimuli, resulting in behavioral impairments 
in learning quantity information. In addition, we 
manipulated the slope of the activation function in the 
model with the assumption that a steep slope would lead to 
excessive excitation in the processing system while keeping 
the input signals constant. These proposed simulations 
would show how changes in certain model parameters could 
lead to differences in model performance, providing insights 
into how changes in the neurobiological factors could result 
in behavioral impairments in DD. 

Study 1 
  In the first study, we implemented a convolutional neural 
network model trained on non-symbolic information. In this 
study, we planned to test the influence of two factors, namely, 
the number of units in each layer and the slope in the 
activation function. This allowed us to test their influence on 
the learning of abstract quantity information from the non-
symbolic inputs with dot arrays. We predicted that the 
reduced neural capacity (the number of units) and hyper-
excitability (a steeper slope in the activation function) would 
lead to impaired performance in the model in the form of a 
shallower learning curve. 

Methods 
 

Model architecture. A deep convolutional neural network 
model with the canonical structure (Maturana & Scherer, 
2015; Schroff et al., 2015; Yamins et al., 2014) was created 
and trained to learn the mapping between images of dots and 
abstract quantity representation. In the baseline model, there 
was a grid of 28*28 units in the input layer and three 
convolutional blocks, each with a sequence of convolution, 
pooling, and normalization layers. There were 64 units in the 
first convolutional layer, 128 units in the second 
convolutional layer, and 256 units in the third convolutional 
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layer. The output from the last convolutional layer was 
vectorized and projected into a flatten layer with 20 units. 
Then, all units from the latter layer were fully connected to 
the output layer with 10 units. Each unit in the output layer 
corresponded to an output quantity in a localist manner. In 
another word, each unit in the output layer represented one 
quantity value from 0 to 9.   
Training stimuli and procedures. The images of dots varied 
in quantity, size, and location, and were generated by an in-
house code (for a sample image, see Figure 1). In every 
single run, we generated 1,024 images randomly and 
vectorized the images as a 28-by-28 matrix for the input units. 
Then, the model was trained for 10 epochs with a batch size 
of 100. The model training was conducted with a learning rate 
of 0.001 with the Adam optimizer (Kingma & Ba, 2015) to 
adjust the weights based on the loss function of cross-
category entropy. For all variations of the simulation, the 
rectified linear unit (ReLU) function, σ(x) = max(0, 𝛼*x), 
was used to calculate the activations of each layer based on 
inputs, in which the 𝛼 was the slope.  In the baseline model, 
the slope 𝛼 was set to 1. 

 
Figure 1: Model architecture of the baseline DNN model 

for non-symbolic processing with dot arrays 
 

Design and testing. In order to test the effect of neural 
capacity, we manipulated the number of units proportionally 
across 3 convolutional layers. In the baseline model, there 
were 64, 128, and 256 units across the three layers. The 
number of units in the ½ condition was reduced to 32, 64, and 
128, and the number of units in the ⅛ condition was 8, 16, 
and 32 accordingly. This manipulation was designed to 
capture the limited neural capacity at the regional level, such 
as the reduced volume and function of the IPS in the brain. 
We manipulated another parameter, the slope of the ReLU 
function, 𝛼, to approximate the excitability in the model 
(Figure 2). We used 𝛼=0.5 for the hypo-excitability 
condition and 𝛼=2 for the hyper-excitability conditions when 
the 𝛼=1 was set in the balanced baseline model.  
  These parameters were manipulated in a factorial way (3*3 
design), but we were only interested in the main effects of 
each factor, and their implications to the core deficit and E/I 
imbalance theories. The learning performance was assessed 
using the model’s accuracy on the training set after each 
epoch. For each combination of the two factors (a total of 9 
combinations), 9 individual runs were conducted with a 
random set of initial weights. When examining whether each 
manipulation led to differences in learning, we first 
conducted a one-way ANOVA with the 3 levels of the 
parameters (either the number of units or slope) as the 
between-subject factor on the accuracy after 10 epochs of 

training. Then, we examined the influence of both parameters 
across 10 epochs in a mixed-effects ANOVA with each 
parameter (the number of units or slope) as a between-subject 
factor and the epoch as a within-subject factor. 

 

 
Figure 2: Demonstration of the impact of slope in the 

ReLU activation function. 

Results and Discussion 
  After 10 training epochs, most of the runs were able to 
correctly learn the mapping between the images of dot arrays 
and the corresponding quantity label (Table 1). The overall 
accuracy of all individual runs ranged from 0.82 to 0.96. 
When examining the main effect of the number of units after 
training (1, ½, or ⅛ to the baseline model), to our surprise, 
we observed no main effect of the number of units, F(2,24) = 
0.874, p = 0.43, partial h2 = 0.068. Similarly, we also failed 
to observe a significant main effect of the number of units, 
F(2,24) = 0.852, p = 0.439, partial h2 =0.066, or a significant 
interaction between the parameter and epoch, F(18,216) = 
1.674, p = 0.151 (Greenhouse-Geiser corrected), partial h2 = 
0.122. These results implied that models with different 
numbers of units in each layer showed similar learning 
trajectories over the training (Figure 3). 
 

Table 1: Accuracies after 10 epochs of training. 

# of Units Slope Mean SD 

8 1 0.93 0.028 

32 1  0.96  0.035 

64 1 0.92 0.115 

64 0.5 0.93 0.054 

64 1 0.92 0.115 

64 2 0.82 0.096 
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Figure 3: The effect of the number of units on the 

accuracy of non-symbolic learning. The three levels were ⅛, 
½, and 1 proportion of the units in the baseline model. 

 
  When examining the main effect of the slope of the 
activation function (0.5, 1, and 2), we observed a significant 
main effect after training, F(2,24) = 4.115, p = 0.029, partial  
h2 = 0.255. Post hoc tests with Tukey-HSD correction 
revealed that there was a significant difference between when 
the slope was 0.5 and 2, p = 0.040, and a marginally 
significant difference between when the slope was 1 and 2, p 
= 0.067. These results suggested that when the excitability of 
the model was excessively high, i.e., hyper-excitatory, the 
ability to learn quantity information was indeed 
compromised. When examining the effect of the slope across 
training epochs, we observed the main effect of the slope, 
F(2,24) = 4.049, p = 0.031, partial h2 = 0.252. However, there 
was only a marginally significant slope*epoch interaction, 
F(18,216) = 1.936, p = 0.099 (Greenhouse-Geiser corrected), 
partial h2 = 0.139 (Figure 4). Overall, the learning 
performance under the slope conditions of 0.5 and 1 showed 
little difference, but when the slope was set to 2 in the 
activation function, the learning was significantly affected 
compared to the other two conditions. 
 

 
Figure 4: The effect of slope on the accuracy of the non-

symbolic learning. 

Study 2 
  In the second study, we implemented a convolutional neural 
network model trained on symbolic information using images 
of hand-written digits from the MNIST dataset (LeCun & 
Cortes, 2010). We aimed to demonstrate the influence of the 
number of units and the slope in the activation function on 
the learning of symbolic representations of quantity 
knowledge. We would like to see if converging findings 
could be observed for both non-symbolic and symbolic 
representations of quantity information. 

Methods 
Model architecture. The same model architecture in Study 
1 was adapted here to take the images of hand-written digits 
as inputs (Figure 5).  

 
Figure 5: Model architecture of the baseline DNN model 

for symbolic processing with hand-written digits 
 

Training, design, and testing. The same training, design, 
and testing procedures as in Study 1 were used here except 
that the training was based on hand-written images of Arabic 
digits. In each individual run, we randomly sampled 1,024 
images depicting numbers 0 to 9 as the training set as well as 
the testing set.  

Results and Discussion 
Similar to the non-symbolic model, after 10 training 
epochs, most runs could achieve a decent level of learning 
(Table 2). Overall, the learning of the symbolic 
representations was fast and steep initially, and the final 
accuracy across different conditions ranged from 0.85 to 
0.97. 
 

Table 2: Accuracies after 10 epochs of training. 
Units Slope Mean SD 

8 1 0.92 0.011 

32 1 0.97 0.015 

64 1 0.94 0.083 

64 0.5 0.95 0.081 

64 1 0.94 0.083 

64 2 0.85 0.246 
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  The main effect of the number of units (1, ½, and ⅛ of the 
baseline model) was not significant on the accuracy after 10 
epochs, F(2,24) = 2.366, p = 0.115, partial h2 = 0.165. The 
mixed-effects ANOVA with units and epochs revealed very 
similar results that there was no significant main effect of the 
number of units, F(2,24) = 1.900, p = 0.171, partial h2  = 
0.137, or interaction between units and epoch, F(18,216) = 
0.519, p = 0.718 (Greenhouse-Geiser corrected), partial h2  = 
0.041. These results were consistent with the observations in 
Study 1 for non-symbolic representations (Figure 6). 
 

Figure 6: The effect of the number of units on the 
accuracy of non-symbolic learning. The three levels were ⅛, 
½, and 1 proportion of the units in the baseline model. 

 
  The results of the slope in the activation function were 
overall similar to what we observed in Study 1: The condition 
with a slope of 2 showed the lowest averaged accuracy over 
learning (Figure 7). However, there was a much larger 
variability across individual runs in this condition. As a 
result, we failed to observe a significant main effect of slope 
on the accuracy after training, F(2,24) = 1.077, p = 0.357, 
partial h2 = 0.082. When examining the effect of the slope 
across training epochs, we did not observe a significant main 
effect of the slope, F(2,24) = 1.242, p = 0.307, partial h2 = 
0.094, or a significant slope*epoch interaction, F(18,216) = 
0.333, p = 0.880 (Greenhouse-Geiser corrected), partial h2 = 
0.027. Therefore, we failed to replicate the effect of slope 
found in Study 1, but the insignificant results were very likely 
to result from the large variability across individual runs. 
 

General Discussion 
 
  Our study implemented a convolutional neural network 
model to investigate how neural capacity and system 
excitability may impact learning performance, aiming to 
provide insights into the neurobiological cause of 
developmental dyscalculia (DD). Our simulation results 
showed no evidence on neural capacity (in the form of the  

Figure 7: The effect of slope on the accuracy of the 
symbolic learning. 

 
number of units) impacting learning, but a possible role of 
over-excitability compromising the learning, especially for 
the non-symbolic form of quantity knowledge. Thus, our 
results supported the E/I imbalance theory, positing that the 
cognitive impairment in DD could result from the excessive 
excitatory signals in the brain of affected individuals. 
However, further studies are needed to test the hypothesis of 
the core deficit theory, arguing that DD results from the 
neural deficiency in core brain systems, such as the IPS, for 
quantity and math processing. 
  Ample neuroimaging studies have shown that individuals 
with DD are associated with reduced structure or activation 
in IPS during math processing (Jolles et al., 2016; Price et al., 
2007; Rotzer et al., 2008). Therefore, it was surprising to us 
that reducing the number of units in the models had little 
impact on learning the quantity information, regardless of the 
formats (i.e., non-symbolic or symbolic). Previous 
computational models have shown that limited neural 
capacity could lead to impaired performance for word 
reading (Dilkina et al., 2008; Woollams et al., 2007) and 
object recognition (Chen et al., 2017; Rogers et al., 2004). 
The reduced number of units in the processing layers could 
largely decrease the capacity of the models to capture 
complex and nonlinear mappings between the input and 
output patterns. Our results seemingly contradict the previous 
literature on the role of neural capacity in learning. There are 
a couple of possible reasons for this discrepancy. First, 
comparing the training materials in previous studies (Chen et 
al., 2017; Plaut et al., 1996; Rogers et al., 2004), our training 
stimuli were rather simpler. We only had 1,024 images to 
map onto 10 quantity labels (0-9). It is possible that the 
current model, even the one with the least capacity (with only 
⅛ of the units in the baseline model), could easily learn the 
mappings. In other words, learning to map the quantity 
information was not a challenging task in the 3-layer CNN 
model with just a few units in our study. Second, recent 
neuroimaging studies have suggested that the neurobiological 
deficits in DD may stem from a network of both IPS and 
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ventral visual pathway (such as the fusiform gyrus) for an 
integration of non-symbolic and symbolic forms of quantity 
information (Chen et al., 2021; Fias et al., 2013). Since our 
model only captured the image processing of quantity 
information in non-symbolic or symbolic representations 
separately, it failed to reveal any core deficits that originate 
from the interaction between multiple representations. Thus, 
our simulation did not establish the casual link between the 
core neural deficit (in the form of limited capacity) and 
cognitive impairments in DD. However, further examinations 
are needed to show whether the impaired performance on 
quantity learning could result from reduced neural capacity 
with more challenging training stimuli and in a more 
complicated model with multiple representations of different 
formats (e.g., symbolic and non-symbolic).   
  The E/I imbalance theory has been proposed to explain 
various neurodevelopmental disorders (Foss-Feig et al., 
2017; Padmanabhan et al., 2017), including DD. Consistent 
with the E/I imbalance theory, previous studies have indeed 
reported that individuals with DD showed increased brain 
activations or functional connectivity in a widely-distributed 
brain network (Chen et al., 2021; Rosenberg-Lee et al., 
2015). A recent meta-analysis revealed that DD is 
characterized by insufficient neural engagement in core 
regions for math processing and excessive engagement in 
other regions for domain-general cognitive skills 
(Anonymous, under review). Our results then provided direct 
evidence that over-excitability in the model resulted in 
impaired quantity learning, consistent with the E/I imbalance 
theory and previous findings. It is noteworthy that the 
averaged performance of the hyper-excitability model (i.e., 
when the slope was set to 2) was numerically lower than the 
models in the other two conditions with smaller slopes. A 
couple of reasons could explain the large variability. In our 
study, for example, we only provided 9 individual runs under 
each condition. This may be sufficient for the non-symbolic 
representations but not for the symbolic representations. 
Another reason is that we randomly selected 1,024 images of 
hand-written digits as inputs for the symbolic model. Our 
non-symbolic model was trained on dot arrays with variations 
in size, location, and quantity, possibly making the training 
set for each individual run well-matched on the difficulty. 
However, since the training set in the symbolic model was 
selected from 60,000 images in the MNIST database, it is 
very likely that the chosen 1,024 images for the training in 
each run were not well-matched in visual complexity so that 
some sets were easier to learn whereas other sets were more 
challenging. Therefore, more rigorously chosen training 
materials are needed for future studies to examine the impact 
of excitability in the model on learning symbolic information. 
Based on the converging evidence from previous 
neuroimaging studies and our simulation, we are inclined to 
suggest that hyper-excitability in the brain could lead to 
impaired cognitive abilities such as quantity and math skills 
observed in DD.   
  Our computational models provided an initial attempt to 
directly test predictions from the neurobiological theories of 

DD. However, there are some critical limitations in the 
current study, and future research should address these 
limitations to advance our understanding of the 
neurobiological basis of DD. First, we adopted the canonical 
architecture of imaging processing for the CNN model with 
3-layers. As we have discussed above, the model 
performance depends on the complexity of the training 
stimuli and model architecture. Therefore, future studies 
should run a few testing rounds and choose a model 
architecture that is optimal for testing the theories. Second, 
our task in the model was just quantity learning, which is 
different from what has been used in neuroimaging studies. 
Future studies should build more complex models that can 
capture tasks such as quantity comparison in both non-
symbolic and symbolic formats (Menon et al., 2021; Piazza 
et al., 2010; Schneider et al., 2017; Zebian & Ansari, 2012), 
and test whether similar findings could be observed. Third, 
future studies should also implement multi-representation or 
multi-modality structures such as previous models for word 
reading and object recognition (Chen et al., 2017; Plaut et al., 
1996; Ueno et al., 2011). Since DD has been shown to have 
aberrant functions in various brain regions beyond the IPS 
(Menon et al., 2021; Menon & Chang, 2021), it is critical for 
future models to capture the quantity and math processing 
within a single model that could process both non-symbolic 
and symbolic representations. 
  In conclusion, our computational models adopted a theory-
driven approach to test the causal effects of neural capacity 
and E/I imbalance in the model on quantity learning. Our 
results suggest that the impaired quantity processing 
observed in individuals with DD is likely to result from 
atypical patterns of excitatory and inhibitory signals in the 
brain. However, the role of neural capacity or core neural 
deficiency in the brain on cognitive impairments in DD 
awaits future investigation. 
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