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Abstract

We use a novel pricing model to filter times series of diffusive volatility and
jump intensity from S&P 500 index options. These two measures capture
the ex-ante risk assessed by investors. We find that both components of risk
vary substantially over time, are quite persistent, and correlate with each other
and with the stock index. Using a simple general equilibrium model with a
representative investor, we translate the filtered measures of ex-ante risk into an
ex-ante risk premium. We find that the average premium that compensates the
investor for the risks implicit in option prices, 10.1 percent, is about twice the
premium required to compensate the same investor for the realized volatility,
5.8 percent. Moreover, the ex-ante equity premium that we uncover is highly
volatile, with values between 2 and 32 percent. The component of the premium
that corresponds to the jump risk varies between 0 and 12 percent.
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1 Introduction

This paper uses option prices to estimate the risk of the stock market as it is perceived ex

ante by investors. We investigate several questions: What is the stock market risk perceived

by investors? Is there a difference between the perceived risks and the realized risks? What

premium would a “reasonable” investor require as compensation for the perceived risks?

And how does that premium compare with the required premium for the realized level of

risk?

We consider two types of risk in stock prices: diffusion risk and jump risk.1 As argued by

Merton (1980), diffusion risk can be accurately measured from the quadratic variation of the

price process. In contrast, since even very high probability jumps may fail to materialize in

sample, the ex-ante jump risk perceived by investors may be quite different from the ex-post

realized variation in prices. Therefore, studying measures of realized volatility and realized

jumps from the time series of stock prices, will give us a limited picture of the risks feared

by investors. Fortunately, since options are priced on the basis of the ex-ante risks, they can

give us a privileged view on the risks perceived by investors. Using option data solves the

“Peso problem” in measuring the jump risk from realized stock returns.

Our option pricing model allows the volatility of the diffusion risk and the intensity of the

jumps to both vary stochastically over time in a potentially interdependent way. When we

calibrate the model to a panel data set of S&P 500 index option prices from the beginning

of 1996 to the end of 2002, we obtain the time series of the filtered diffusive volatility

and jump intensity processes. We find that the innovations to the two risk processes are

highly correlated with each other and negatively correlated with the stock returns. Both

components of risk vary substantially over time and show a high degree of persistence. The

diffusive volatility process varies between 10 and 35 percent per year, which is in line with

the level of ex-post risk measured from the time series of stock returns. The jump intensity

process shows even wider variation. Some times the probability of a jump is zero, while

at other times it is more than 30 percent. The expected jump size is close to negative 30

percent. Interestingly, we do not observe any such large jumps in the time series of the S&P

500 index in our sample, not even around the times when the implied jump intensity is very

high. These were therefore cases in which the jumps that were feared did not materialize.

1There is ample empirical evidence for this kind of specification. See for example Jorion (1989), Bakshi,
Cao, and Chen (1997), and Bates (2000).
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However, these perceived risks are still likely to have impacted the expected return in the

stock market.

To investigate the impact of ex-ante risk on expected returns, we solve for the stock market

risk premium in a simple exchange economy with a CRRA representative investor. We find

that the equilibrium risk premium is a function of both the stochastic volatility and the jump

intensity. Given the filtered stochastic volatility and jump intensity processes, together with

an assumed coefficient of risk aversion for the representative investor that approximately

matches the historic average equity premium, we can estimate the time series of the ex-ante

equity premium. This is the expected excess return demanded by the investor to hold the

entire wealth in the stock market when facing the diffusion and jump risks implicit in option

prices. We can also decompose the ex-ante equity premium into compensation for diffusive

risk and compensation for jump risk. From the filtered risk series, we find the ex-ante equity

premium to be quite variable over time. In our sample, the equity premium demanded by

the representative investor varies between as low as 2 percent and as high as 32 percent

per year! The compensation for jump risk is on average one third of the total premium.

However, in times of crisis, the jump risk may command a premium near 12 percent per year

and can be close to two thirds of the total premium.

The ex-ante premium evaluated at the average levels of diffusive volatility and jump intensity

implied from the options in our sample is 10.1 percent. In contrast, the same investor would

require a premium of only 5.8 percent as compensation for the realized volatility during the

same sample period. Therefore, the required compensation for the ex-ante risks is almost

twice the compensation for the realized risks! This finding supports the Peso explanation

of the equity premium puzzle proposed by Rietz (1988) and Brown, Goetzmann, and Ross

(1985).

The option pricing model used in this paper belongs to the family of linear-quadratic jump-

diffusion models.2 It is the first estimated model that allows the jump intensity to follow

explicitly its own stochastic process. Most jump-diffusion models impose a constant jump

intensity (e.g., Merton (1976) and Bates (1988)) or make it a deterministic function of the

diffusive volatility (e.g., Bates (2000), Duffie, Pan, and Singleton (2000), and Pan (2002)).

The empirical analysis shows that the jump intensity varies a lot and that, although related

to the diffusive volatility, it has its own source of shocks. Our model is quadratic in the

state variables. This allows the covariance structure of the shocks to the state variables to

2Cheng and Scaillet (2002) also study linear-quadratic option pricing models.

2



be unrestricted, which proves to be important since there is substantial correlation in the

risk processes that we filter from the data. We are nevertheless still able to solve for the

European option prices in a manner similar to the affine case of Duffie, Pan, and Singleton

(2000).

The paper closest to ours is Pan (2002).3 She estimates a jump-diffusion model from both

the time series of the S&P 500 index and its options from 1989 to 1996. She uses the

pricing model proposed by Bates (2000) which has a square-root process for the diffusive

variance and jump intensity proportional to the diffusive variance. The jump risk premium

is specified to be linear in the variance. Pan finds a significant jump premium of roughly

3.5 percent, which is of the same order of magnitude of the volatility risk premium of 5.5

percent. The main difference between our paper and hers is that in Pan’s framework it is

hard to disentangle the diffusion and jump risks and risk premia since they are all driven

by the diffusive volatility. Our approach allows us to extract the jump intensity process

autonomously from the diffusive volatility process.

Finally, a word of caution. Our analysis relies on option prices and, of course, options

may be systematically mispriced. That would bias our ex-ante risk measures. Coval and

Shumway (2001) and Driessen and Maenhout (2003) report empirical evidence that some

option strategies have unusually high Sharpe ratios, which may indicate mispricing. However,

Santa-Clara and Saretto (2004) show that taking into account the Peso problem in the sample

of stock returns substantially diminishes the attractiveness of these strategies. In fact, the

existence of large (approximate) arbitrage opportunities in the option market does not seem

very likely. Even if the presence of jumps prevents the perfect replication of options by

dynamically trading in the underlying asset, options can still be approximately replicated

with static portfolios of other options, as Carr and Bowie (1994), Derman, Ergener, and

Kani (1995), and Carr and Wu (2002) show. Such static option hedges would be easy to

implement by investment banks and hedge funds. This cross-option arbitrage is likely to

limit the mispricing of options relative to each other. Since the risk components that we

extract from option prices are to a large extent driven by the cross section of options, by

this argument they should be relatively free from mispricing problems.

The paper proceeds as follows. In section 2, we present the dynamics of the stock market

index under the objective and the risk-adjusted probability measure, and we derive an option

3Other related work includes Ait-Sahalia, Wang, and Yared (2001), Bates (2001), Bliss and Panigirtzoglou
(2004), Chernov and Ghysels (2000), Engle and Rosenberg (2002), Eraker (2004), and Jackwerth (2000).
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pricing formula. In section 3, we discuss the data and the econometric approach. The model

estimates and its performance in pricing the options in the sample are covered in section

4. Section 5 contains the main results of the paper, the analysis of the risks implied from

option prices and what they imply for the equity premium. Section 6 concludes.

2 The Model

In this section we introduce a new model of the dynamics of the stock market return that

displays both stochastic diffusive volatility and jumps with stochastic intensity. We derive

the equilibrium stock market risk premium in a simple economy with a representative investor

with CRRA utility. This risk premium compensates the investor for both volatility and jump

risks. We also obtain the risk-adjusted dynamics of the stock, volatility, and jump intensity

processes and use them to price European options.

2.1 Stock Market Dynamics

We model the dynamics of the stock market index (referred to as stock) with two sources

of risk: diffusive risk, captured by a Brownian motion, and jump risk, modeled as a Poisson

process. The diffusive volatility and the intensity of the jump arrivals are also stochastic

and interdependent. We parameterize the processes as:

dS = (r + φ − λµQ)Sdt +
√

V SdWS + QSdN, (1)

dV =

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

)
dt + σV

√
V dWV , (2)

dλ =

(
1

4
σλ

2 + κλ

√
λ + κλλλ + κλV

√
V λ

)
dt + σλ

√
λdWλ, (3)

ln(1 + Q) ∼ N
(

ln(1 + µQ) − 1

2
σ2

Q, σ2
Q

)
, (4)

Prob(dN = 1) = λdt, (5)

Σ =




1 ρSV ρSλ

ρSV 1 ρV λ

ρSλ ρV λ 1


 . (6)
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WS, WV , and Wλ are Brownian motions with constant correlation matrix Σ, and N is a

Poisson process with arrival intensity λ. Q is the percentage jump size and is assumed to

follow a displaced lognormal distribution independently over time. This guarantees that the

jump size cannot be less than -1 and therefore that the stock price remains positive at all

times. We assume that N and Q are independent of each other and that Q is independent

of the Brownian motions. V is the instantaneous variance of stock returns. r is the risk-free

interest rate, assumed constant for convenience. We also assume that the stock pays no

dividends, although it would be trivial to accommodate them by adding a term in the drift

of the stock price. φ is the risk premium on the stock, which we show below to be a function

of V and λ. Finally, the term λµQ adjusts the drift for the average jump size.

In our model, the stock price, the stochastic volatility, and the jump intensity follow a joint

quadratic jump-diffusion process.4 In fact, without the jump component, our model collapses

to a stochastic volatility model very similar to that of Stein and Stein (1991).5 It can easily

be seen that the model does not belong to the affine family of Duffie, Pan, and Singleton

(2000), in that the drifts and the covariance terms are not linear in the state variables. For

instance, the covariance between dV and dλ is ρV λσV σλ

√
V λ.

Our model belongs to the family of linear-quadratic jump-diffusion models. It is the first

model in which the jump intensity λ follows explicitly its own stochastic process. In contrast,

existing jump-diffusion models either assume that the jump intensity is constant or make

it a deterministic function of other state variables such as the stochastic volatility.6 For

instance, Pan (2002) assumes that λ is a linear function of V . It is of course an empirical

issue whether the jump intensity is completely driven by volatility or whether it has its own

separate source of uncertainty. The empirical sections will shed some light on this matter.

A major advantage of our model is that it requires no constraints on the covariance matrix

of the underlying state variables. In contrast, affine models impose very strict constraints on

the covariance matrix. In affine models, the entries in the covariance matrix must be linear

in the state variables and, of course, it is required that the covariance matrix be positive

4For intuition, we can think of the stochastic processes of V and λ as the square of linear (Gaussian)
processes.

5In Stein and Stein (1991),
√

V follows an Ornstein-Unlenbeck process whereas, in our model, V =
√

X2

with X following an Ornstein-Unlenbeck process. Since the square-root function is not globally invertible,
the two are not the same.

6Some of these models can be transformed to allow the jump intensity to evolve separately from the
volatility. For example, the two-factor jump-diffusion model in Bates (2000) admits such a transform for
extreme values of one of the state variables and for some model parameters.
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definite. In particular, the variance terms need to be positive at all times and the implicit

correlations need to be less than one in absolute value. Other than the particular covariance

matrices of Duffie, Pan, and Singleton (2000) and Pan (2002), it is hard to satisfy these

positive definiteness constraints with a covariance matrix that has elements that are linear

in the state variables. The quadratic form of the entries in the covariance matrix in our

model automatically guarantees that the matrix is always positive definite.7

We now turn our attention to finding the risk premium φ. Consider a representative investor

that has wealth W and allocates it entirely to the stock market. For simplicity, we assume

that there is no intermediate consumption so the investor chooses an optimal portfolio to

maximize utility of terminal wealth:

max
w

Et [u(WT , T )] , (7)

where Et is the conditional expectation operator, w is the fraction of wealth invested in the

stock, T is the terminal date, and u is the utility function. Define the value function of the

investor as:

J(Wt, Vt, λt, t) ≡ max
w

Et [u(WT , T )] . (8)

Following Merton (1973) and using subscripts to denote the partial derivative of J , a solution

to (7) satisfies the Bellman equation:

0 = max
w

[Jt + L(J)] , (9)

with:

L(J) = WJW (r + wφ − wλµQ) + JV

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

)

+Jλ

(
1

4
σ2

λ + κλ

√
λ + κλλλ + κλV

√
V λ

)
+

1

2
w2W 2JWW V

+
1

2
JV V σV

2V +
1

2
Jλλσλ

2λ + wWJWV ρSV σV V

+wWJWλρSλσλ

√
V λ + JV λρV λσV σλ

√
V λ + λE [∆J ] . (10)

7A similar problem occurs in multi-factor affine term structure models. To ensure the positive-definiteness
of the covariance matrix, it is typically assumed that the state variables are uncorrelated. Unfortunately,
when the models are taken to the data, and the latent variables are filtered, they often turn out to be
significantly correlated, which contradicts the assumption.
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The term ∆J ≡ J(W (1 + wQ), V, λ, t) − J(W,V, λ, t) captures jumps in the value function.

In equilibrium, the risk-free asset is in zero net supply. Therefore, the representative investor

holds all the wealth in the stock market, that is, w = 1. Differentiating (9) with respect to

w and substituting in w = 1, we obtain the risk premium on the stock:

φ = −JWW

JW

WV − ρSV σV
JWV

JW

V − ρSλσλ
JWλ

JW

√
V λ − E

[
∆JW

JW

Q

]
, (11)

where ∆JW ≡ JW (W (1 + Q), V, λ, t) − JW (W,V, λ, t). The stock risk premium contains

four components: the variance of the marginal utility of wealth, and the covariances of the

marginal utility of wealth with the diffusive volatility, the jump intensity, and the jump size,

respectively.

For tractability, we concentrate our attention to the case of power utility:

u =
W 1−γ

T

1 − γ
, (12)

where γ > 1 is the constant relative risk aversion coefficient of the investor. In the Appendix

we show that the risk premium on the stock consistent with equilibrium in this economy is

a function of V and λ:

φ(V, λ, τ ) = γV − ρSV σV

(
1

2
BV

√
V + CV V V + CV λ

√
V λ

)

−ρSλσλ

(
1

2
Bλ

√
V + CV λV + Cλλ

√
V λ

)

−
[
e−γ ln(1+µQ)+ 1

2
γ(γ−1)σ2

Q

(
1 + µQ − eγσ2

Q

)
− µQ

]
λ (13)

= γV − 1

2

(
ρSV σV ρSλσλ

)
B
√

V −
(
ρSV σV ρSλσλ

)(CV V

CV λ

)
V

−
(
ρSV σV ρSλσλ

)(CV λ

Cλλ

)
√

V λ

−
[
e−γ ln(1+µQ)+ 1

2
γ(γ−1)σ2

Q

(
1 + µQ − eγσ2

Q

)
− µQ

]
λ, (14)

where we define τ ≡ T−t, and B(τ ) =
(

BV
Bλ

)
is a 2×1 matrix function and C(τ ) =

(
CV V CV λ
CV λ Cλλ

)

is a 2× 2 symmetric matrix function. B and C solve the following system of ODEs with the
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initial conditions B(0) = ( 0
0 ) and C(0) = ( 0 0

0 0 ):

B′ =
1

2

(
Λ> + CΓ

)
B + CΠ, (15)

C ′ = Θ +
1

2
CΛ +

1

2
Λ>C +

1

2
CΓC, (16)

where “>” denotes the transpose of a matrix (or the complex transpose in the case of a

complex matrix), and the constant matrices Θ, Π, Λ, and Γ are defined as:

Θ ≡
(
−1

2
γ(γ − 1) 0

0 e−γ ln(1+µQ)+ 1
2
γ(γ−1)σ2

Q

[
γ (1 + µQ) − (γ − 1)eγσ2

Q

]
− 1

)
, (17)

Π ≡
(

κV

κλ

)
, (18)

Λ ≡
(

κV V κV λ

κλV κλλ

)
, (19)

Γ ≡
(

σ2
V ρV λσV σλ

ρV λσV σλ σ2
λ

)
. (20)

For a given value of the risk aversion coefficient γ, the ODEs (15)-(16) can be quickly solved

numerically. In the special case where there is no stochastic volatility and jumps, the equity

premium (14) collapses to the first term, γV , as shown by Merton (1973). The first three

terms in (14) involve V only and thus correspond to compensation for stochastic volatility,

and the last term compensates the investor for jump risk as it involves λ only. The interaction

between the volatility and jump intensity risks is captured by the cross term involving V λ.

In a related work, Liu and Pan (2003) derive the optimal portfolio of a CRRA investor

who can hold the stock, an option on the stock, and a risk-free asset. In their model,

the stock market has stochastic diffusive volatility and jumps of deterministic size with the

jump intensity driven by the stochastic volatility. In contrast to our paper, theirs is a partial

equilibrium analysis that takes the price of risk as given.
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2.2 Option Pricing

We can also price European options in this economy. In the Appendix we show that the

risk-adjusted dynamics of the stock price can be written as:8

dS =
(
r − λ∗µ∗

Q

)
Sdt +

√
V SdW ∗

S + Q∗SdN∗, (21)

dV =

(
1

4
σ2

V + κ∗
V

√
V + κ∗

V V V + κ∗
V λ

√
V λ∗

)
dt + σV

√
V dW ∗

V , (22)

dλ∗ =

(
1

4
σ∗

λ
2 + κ∗

λ

√
λ∗ + κ∗

λλλ
∗ + κ∗

λV

√
V λ∗

)
dt + σ∗

λ

√
λ∗dW ∗

λ , (23)

ln(1 + Q∗) ∼ N
(

ln(1 + µ∗
Q) − 1

2
σ2

Q, σ2
Q

)
, (24)

Prob(dN∗ = 1) = λ∗dt, (25)

Σ =




1 ρSV ρSλ

ρSV 1 ρV λ

ρSλ ρV λ 1


 , (26)

with the following simple relations between the model parameters under the objective and

risk-adjusted probability measures:

(
κ∗

V

κ∗
λ

)
=

(
1 0

0
√

a

)(
Π +

1

2
ΓB

)
, (27)

(
κ∗

V V κ∗
V λ

κ∗
λV κ∗

λλ

)
=

(
1 1/

√
a

√
a 1

)
◦
[
Λ − γ

(
ρSV σV 0

ρSλσλ 0

)
+ ΓC

]
, (28)

σ∗
λ =

√
aσλ, (29)

λ∗ = aλ, (30)

µ∗
Q = (1 + µQ) e−γσ2

Q − 1, (31)

a = (1 + µQ)−γe
1
2
γ(γ+1)σ2

Q , (32)

where Π, Λ, and Γ are defined as before, and “◦” is the element-by-element product of

two matrices. The risk-adjusted coefficients on the left-hand sides of the equations above

are related to the coefficients under the objective probability measure by the risk aversion

8In general, all the parameters governing the jump process may change when the probability measure
changes. However, in the case of a representative investor with power utility function, the volatility of jump
size σQ does not change.
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coefficient γ. Note that the compensation for the jump risk is reflected in the changed jump

intensity as well as the changed distribution of the jump size. In contrast, the compensation

for the diffusive risk requires only a change in the drift of the processes. This is caused by

the need of compensating the jump risk.

In contrast to the complete market setting of Black and Scholes (1973), the additional

sources of uncertainty, in particular, the random jump sizes, introduced in our setting make

the market incomplete with respect to the risk-free asset, the underlying stock, and any

finite number of option contracts. Consequently, the change of probability measure is not

unique. We use the equilibrium with a CRRA representative investor to identify one change

of probability measure. It turns out that this particular change of probability measure

involves changing the jump size and intensity.

The price f of a European call option with strike price K and maturity date T is:9

f(S, V, λ∗, t;K,T ) = S − e−rτ

2π

∫ i
2
+∞

i
2
−∞

K ik+1

k2 − ik
e−ik(rτ+lnS)+A∗(τ)+B∗(τ)>U∗+U∗>C∗(τ)U∗

dk, (33)

where i =
√
−1, k is the integration variable, U∗ ≡

( √
V√
λ∗

)
, A∗(τ ) is a scalar function,

B∗(τ ) =
(

B∗
V

B∗
λ

)
is a 2 × 1 matrix function, and C∗(τ ) =

(
C∗

V V C∗
V λ

C∗
V λ C∗

λλ

)
is a 2 × 2 symmetric

matrix function. A∗, B∗, and C∗ solve the following system of ODEs with initial conditions

A∗(0) = 0, B∗(0) = ( 0
0 ), and C∗(0) = ( 0 0

0 0 ):

A∗′ =
1

2
Π∗>B∗ +

1

8
B∗>Γ∗B∗ +

1

4
tr(Γ∗C∗), (34)

B∗′ =
1

2

(
Λ∗> + C∗Γ∗

)
B∗ + C∗Π∗, (35)

C∗′ = Θ∗ +
1

2
C∗Λ∗ +

1

2
Λ∗>C∗ +

1

2
C∗Γ∗C∗, (36)

9Although it contains a complex integral, the result is real.
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where “tr” is the trace of a matrix, and the matrices Θ∗, Π∗, Λ∗ and Γ∗ are defined as:

Θ∗ ≡
(
−1

2
(k2 − ik) 0

0 ikµ∗
Q + e−ik ln(1+µ∗

Q)− 1
2
(k2−ik)σ2

Q − 1

)
, (37)

Π∗ ≡
(

κ∗
V

κ∗
λ

)
, (38)

Λ∗ ≡
(

κ∗
V V − ikρSV σV κ∗

V λ

κ∗
λV − ikρSλσλ κ∗

λλ

)
, (39)

Γ∗ ≡
(

σ2
V ρV λσV σ∗

λ

ρV λσV σ∗
λ σ∗

λ
2

)
. (40)

This formula involves the inverse Fourier transform of an exponential of a quadratic form

of the state variables,
√

V and
√

λ∗. The ODEs that define A∗, B∗, and C∗ can be easily

solved numerically. Again, the Appendix presents the gruesome algebra.

In the Appendix we also derive the density function ϕ(R;V, λ∗, τ ) of the stock return

distribution with horizon τ under the risk-adjusted probability measure:

ϕ(R;V, λ∗, τ ) =
e−rτ

2π

∫ i
2
+∞

i
2
−∞

e−ik(R−rτ)+A∗(τ)+B∗(τ)>U∗+U∗>C∗(τ)U∗
dk, (41)

where U∗, A∗, B∗, and C∗ are defined as before. This density function can be used to price

any European option on the stock. Furthermore, we can plot it to further our understanding

of the dynamics of the stock return implied by our model.

3 Estimation

In this section we discuss the data and the econometric method used to estimate the model

and filter the time series of diffusive volatility and jump intensity.

3.1 Data

For our calibration exercise, we use the European S&P 500 index options traded on the

Chicago Board Options Exchange (CBOE) in the period of January of 1996 to December of
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2002 obtained from RiskMetrics. The S&P 500 index and its dividends are obtained from

Datastream. The interest rates are LIBOR (middle) rates also obtained from Datastream.

Since the stocks within the S&P 500 index pay dividends whereas our model does not account

for payouts, we adjust the index level by the expected future dividends in order to compute

the option prices. Realized dividends are used as a proxy for the expected dividends. The

dividend-excluded stock price corresponding to the maturity of an option is derived by

subtracting the present value of the future realized dividends until maturity from the current

index level. Interest rates are interpolated to match the maturities of the options.

We estimate our model at monthly frequency. We collect the index level, interest rates, and

option prices on the first trading day of each month. To ensure that the options we use

are liquid enough, we choose contracts with maturity shorter than 210 days and moneyness

between 0.95 and 1.15. We also exclude options with no trading volume and options with

opening interest less than 100 contracts. We only use put options in our study as they are

more liquid than call options. For each contract, we use the average of the bid and ask prices

as the value of the option. We exclude options with prices less than $1/8 to mitigate market

microstructure problems. Finally, we check for no-arbitrage violations in option prices. We

end up with 84 trading days and 2,067 option prices in our sample, or roughly 25 options

per day.

Table 1 reports the average implied volatility of the options in the sample. Rather than

tabulating the option prices, we show the Black-Scholes implied volatilities since they are

easier to interpret.10 We divide all options into six buckets according to moneyness (stock

price divided by the strike price) and time to maturity: moneyness less than 1, between

1 and 1.03, and above 1.03; time to maturity less than 30 days, between 30 and 60 days,

and greater than 60 days. Note that when moneyness is greater than 1, the put options

are out of the money. The average implied volatility across all options in our sample was

22.07 percent. For a fixed maturity, we see that the implied volatilities decrease with the

strike price. This is the well-known “volatility smirk”. During our sample period, the term

structure of implied volatilities was on average flat. The first panel of Figure 1 plots the

time series of the implied volatilities of the short-term (maturity less than 30 days) options

with three different levels of moneyness. We can see that the implied volatility changes

10Here, we use the Black-Scholes model to invert option prices for implied volatilities. This does not mean
that the options are priced in the market according to that model and, indeed, we will use our model with
stochastic volatility and jumps to price the options in the empirical section below.
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substantially over time and that there are changes in the steepness of the smirk. The spike

in the implied volatilities observed in the Fall of 1998 corresponds to the Russian default

crisis and Long Term Capital Management debacle. The second panel of Figure 1 plots the

time series of the implied volatilities of the at-the-money options with short and long times

to maturity. It shows that there is variation in the slope of the term structure through time.

3.2 Econometric Method

We calibrate our model to the data using an approach similar to Bakshi, Cao, and Chen

(1997). Denote the vector of parameters under the risk-adjusted probability measure

by θ∗ ≡ (µ∗
Q, σQ, κ∗

V , κ∗
V V , κ∗

V λ, κ
∗
λ, κ

∗
λV , κ∗

λλ, σV , σ∗
λ, ρSV , ρSλ, ρV λ). Bakshi, Cao, and Chen

minimize the sum of squared pricing errors (for all strikes and maturities) by choosing the

model parameters and state variables in each day of their sample. This method is easy to

implement but it is inconsistent with the underlying assumption that the model parameters

are constant through time. Instead, we keep the model parameters fixed throughout the

sample and allow only the state variables to change. That is, we optimize with respect to a

different Vt and λ∗
t in each sample date and a single vector θ∗ through the sample.

Our estimation method also differs from Bakshi, Cao, and Chen (1997) in that we minimize

errors in implied volatilities, not option prices.11 We use implied volatilities to increase

the robustness of the estimation. Unlike option prices, implied volatilities have similar

magnitudes and standard deviations across moneyness and maturity. This ensures that we

give the same weight in the estimation to all the options. In contrast, using errors in option

prices tends to give more weight to errors in options with larger (and more volatile) prices.

To be specific, let IVn be the Black-Scholes volatility implied from the market price of the

n-th option, and ÎV n(Vt, λ
∗
t , θ

∗) be the Black-Scholes volatility of the same option implied

by the price given by the model with parameters θ∗, volatility Vt, and jump intensity λ∗
t . We

estimate the model parameters and the time series of the state variables by minimizing the

sum of squared errors in implied volatility:

min
θ∗,{Vt},{λ∗

t}

84∑

t=1

Nt∑

n=1

(
IVt,n − ÎV t,n(Vt, λ

∗
t , θ

∗)
)2

, (42)

11This method is also used by, for example, Broadie, Chernov, and Johannes (2004).
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where Nt is the number of options in the sample date t. The estimation is carried out

simultaneously in the entire panel data set. This is a nonlinear least square problem that

can be solved numerically. The standard errors of the parameter estimates are computed

from the Hessian matrix.

Note that the econometric method we use is not efficient in that it does not take into

account the transition density of the state variables between successive sample dates. Instead,

the variables are filtered each date to minimize the sum of squared pricing errors on that

date, irrespective of what values were filtered for the state variables in the previous date.

We could think of using more efficient estimation methods such as those in Bates (2000),

Broadie, Chernov, and Johannes (2004), Eraker (2004), and Pan (2002) to estimate the

model. Unfortunately, computational constraints prevent us from doing it.

4 Empirical Results

In this section we discuss the empirical results. We present the model estimates and discuss

the performance of the model in pricing options.

4.1 Model Estimates

We denote our model of stochastic volatility and stochastic jump intensity by SV-SJ. It

contains the pure stochastic volatility model and constant jump intensity model as special

cases. In the stochastic volatility model, SV, µ∗
Q = σQ = κ∗

V λ = κ∗
λ = κ∗

λV = κ∗
λλ = ρSλ =

ρV λ = 0. In the constant jump intensity model, SV-J, κ∗
V λ = κ∗

λ = κ∗
λV = κ∗

λλ = ρSλ = ρV λ =

0 and λ∗
t = λ̄∗ is a constant.

Table 2 reports the estimated parameters for the three models. We can compare the

parameter estimates for the SV model with the estimates reported by Bakshi, Cao, and

Chen (1997) and Bates (2000). However, notice that their SV model is the square-root

model of Heston (1993) whereas ours is the model of Stein and Stein (1991). Also, their

sample periods are different from ours. Bakshi, Cao, and Chen use S&P 500 index options

data from 1988 to 1991 and Bates uses S&P 500 index futures options data from 1988 to

1993.
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In Bakshi, Cao, and Chen (1997) and Bates (2000), the square-root of the long-run mean of

V is 18.7 percent and 25.9 percent, respectively. Our estimate of the long-run mean of
√

V ,

given by κV /κV V , is 25.9 percent, which is similar to Bates’ number. The mean-reversion

speed is 1.15 and 1.49 in Bakshi, Cao, and Chen (1997) and Bates (2000), whereas it is 0.874

in our paper, implying stronger volatility persistence. The volatility of volatility is 0.39 and

0.74 in Bakshi, Cao, and Chen (1997) and Bates (2000), and it is 0.564 in our paper which

is right in the middle of their estimates. The correlation between the stock and volatility

processes is -0.64 and -0.57 in Bakshi, Cao, and Chen (1997) and Bates (2000), and it is

-0.93 in our paper.

Bakshi, Cao, and Chen (1997) also estimate an SV-J model. In this case, the square-root

of their long-run mean of V is 18.7 percent, whereas our estimate of the long-run mean of√
V is 23.3 percent. The mean-reversion speed is 0.98 in Bakshi, Cao, and Chen (1997) and

1.007 in our paper. The volatility of volatility is 0.42 by Bakshi, Cao, and Chen (1997) and

0.54 by us. Correlation is -0.76 and -0.90 in their paper and ours respectively. The mean

jump size is -0.05 in Bakshi, Cao, and Chen (1997) and -0.185 in our paper. In summary, our

estimates for the restricted SV and SV-J models are compatible with the findings in other

studies despite the differences in the datasets and models.

Most importantly, models SV and SV-J are both rejected with p-values of zero under a

likelihood ratio test based on the sum of squared pricing errors. We therefore concentrate

most of our attention on the SV-SJ model. All the coefficients of the model are significant

at any conventional level of significance. Table 3 reports summary statistics for the filtered

time series of
√

Vt and λ∗
t which are plotted in Figure 2.

The average level of volatility is 18.3 percent and the average level of jump intensity, loosely

speaking the annualized probability of a jump in the next instant, is 16.5 percent. The

average jump size is -31.6 percent, which strikes us as quite large relative to the magnitude

of jumps observed in the time series of returns.

Both the volatility and jump intensity time series exhibit substantial variation through time.

The diffusive volatility varies between 10 and 35 percent. The jump intensity varies from

virtually zero at times to almost 67 percent during financial crisis. Interestingly the two risk

sources, although correlated, can display very different behavior: from times of high diffusive

and jump risks as in the Fall of 1998, to times when diffusive risk is high but jump risk is low

as in the beginning of 2001, to times when both risks are low as in the beginning of 1996.
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The filtered time series of volatility from the SV-SJ model is quite similar to those from the

other models. Of course, the filtered volatility tends to be lower in the SV-SJ model than in

the SV model since the stochastic volatility in the latter model needs to account for all the

risk, including the jump risk.

Given the coefficient estimates, the drift of the variance process is mean reverting at roughly

the same speed for all values of the jump intensity. The drift of the jump intensity is very

fast mean reverting when the variance is high but is close to zero for low levels of variance.

The filtered time series of stochastic volatility and jump intensity show auto-correlations of

0.537 and 0.721 respectively.

The standard deviation of the variance process estimated from the coefficient σV times the

square root of the mean of the variance is roughly 2.7 times that mean. This is a very high

volatility of volatility. Indeed, it is much too high relative to the standard deviation of the

filtered volatility process where the volatility of the increments is only 0.58 times the mean

of the variance. Similar puzzling findings are reported by Bakshi, Cao, and Chen (1997)

and Bates (2000). A similar calculation of the standard deviation of the jump intensity

process implied from the estimated coefficient σ∗
λ shows that the volatility of changes in

λ∗ is only 0.07 times the average level of λ∗. In contrast, the filtered time series of the

jump intensity displays considerably more variation, with a comparable statistic of 0.52.

These differences between the volatilities of the state variables implied from the parameter

estimates and the volatilities of the filtered time series of the state variables are undoubtedly

due to the inefficiency of our estimation method which does not take into account the time

series properties of the volatility and jump intensity processes.

The estimated correlation coefficients show that the increments of the diffusive volatility

and jump intensity are highly correlated at 0.76. In contrast, a similar correlation computed

from the filtered time series of V and λ∗ is only 0.11 percent. Increments of the diffusive

volatility are highly negatively correlated with stock returns, -0.80, and this is corroborated

in the filtered time series. Changes in jump intensity are also negatively correlated with

stock returns, albeit with a smaller absolute value, -0.23.

Overall, our results are also consistent with the recent literature on multi-factor variance

models (Alizadeh, Brandt, and Diebold (2002), Chacko and Viceira (2003), Chernov,

Gallant, Ghysels, and Tauchen (2002a), Engle and Lee (1999), and Ghysels, Santa-Clara,

and Valkanov (2004)) which finds reliable support for the existence of two factors driving
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the conditional variance. The first factor is found to have high persistence and low

volatility, whereas the second factor is transitory and highly volatile. The evidence from

estimating jump-diffusions with stochastic volatility points in a similar direction (Jorion

(1989), Anderson, Benzoni, and Lund (2002), Chernov, Gallant, Ghysels, and Tauchen

(2002a), Chernov, Gallant, Ghysels, and Tauchen (2002b), and Eraker, Johannes, and Polson

(2003)). For example, Chernov, Gallant, Ghysels, and Tauchen (2002a) show that the

diffusive component is highly persistent and has low variance, whereas the jump component

is by definition not persistent and is highly variable.

4.2 Option Pricing Performance

The RMSE (root mean squared error) of the SV-SJ model is 0.675 percent, or roughly two

thirds of one unit of the Black-Scholes implied volatility. This pricing error is well within

the average bid-ask spread in our sample which is 1.12 percent (with a standard deviation

of 0.67 percent), again in units of the Black-Scholes implied volatility. Moreover, allowing

the jump intensity to vary stochastically proves to be quite important for options pricing:

the RMSE of our model is roughly half the RMSEs of the SV and SV-J models.

Figure 3 plots the market implied volatilities of options with approximately one and a half

months to maturity together with the fitted implied volatilities of the three alternative pricing

models in four different dates of the sample. We find that the SV-SJ model does a much

better job at pricing the cross section of options than the other two. Figure 4 focuses on a

single day of the sample, December 1, 1997, and compares the market implied volatilities with

the model fitted implied volatilities for options of different maturities and strikes. Again,

the gains from having both stochastic volatility and jumps are apparent, especially in fitting

the smile of very short-term options.

Having established that our model can accurately capture the time series and cross section

properties of option prices, we now try to improve our understanding of the model. In

particular, we want to understand the relative roles of the diffusive volatility and jump

intensity in pricing options. Figure 5 shows the plots of implied volatility smiles at different

maturities produced by our model, using the estimated parameters and for different values

of volatility and jump intensity. In the first two cases, the diffusive volatility is fixed at

its sample average while the jump intensity is either at its sample average or one standard

deviation above and below it. In the next two cases, the jump intensity is fixed at its
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sample average while the diffusive volatility is either at its sample average or one standard

deviation above and below it. The time to maturity is either 30 days or 90 days. Both

volatility and jump intensity impact the level of implied volatilities. The persistence in both

risk components guarantees that their effects are felt at long horizons. Jump intensity has a

large impact on the prices of short-term out-of-the-money puts (high S/K), thereby affecting

the slope of the smile in the short term. The longer the maturity, the flatter of volatility

smiles, reflecting mean reversion in the volatility and jump intensity processes.

Figure 6 shows the estimated risk-adjusted probability density function for stock returns with

one month horizon. The figure shows how the risk-adjusted density function changes with

changes in the diffusive volatility and the jump intensity. The first panel keeps the diffusive

volatility at its sample average and displays the density functions for the jump intensity at its

sample average and that value plus or minus one standard deviation. The second panel keeps

the jump intensity at its sample average and displays the density functions for the diffusive

volatility at its sample average and that value plus or minus one standard deviation. Again,

we see that both the volatility and jump intensity impact the distribution of stock returns.

The higher values of V and λ∗ make the stock return distribution more volatile, putting

more mass in the tails. The effect of jump intensity is lower around the mean and stronger

in the left tail than that of volatility.

5 Option-Implied Risks and the Equity Premium

In this section we study the impact of the diffusive and jump risks on the distribution of stock

returns under the objective probability measure. We pay special attention to the equilibrium

equity premium implied by the parameter estimates and the filtered state variables.

5.1 From the Risk-Adjusted to the Objective Return Distribution

In order to obtain the distribution of stock returns under the objective probability measure,

we fix the risk aversion coefficient of the representative investor at γ = 2. In an economy

without jumps and with constant volatility, Merton (1973) shows that the equity premium

demanded by an investor who holds the stock market is equal to γ times the market’s

variance. Since the realized volatility in our sample was 17 percent, using a risk aversion
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coefficient of 2, we obtain an unconditional equity premium of 5.8 percent (2× 0.172). This

premium approximately matches the historic average excess stock market return of between

4 and 9 percent (depending on the sample period) reported by Mehra and Prescott (2003).

Note that we are studying the portfolio choice of an investor who derives utility from next

period’s wealth, not utility from lifetime consumption. In the latter case, it is well know

from Mehra and Prescott (2003) and much subsequent work that a much higher level of risk

aversion is needed to match the historic equity premium.

In what follows, we keep the horizon of the representative investor at 1 month, T = 1/12. The

choice of a short horizon abstracts away from hedging demands, making the interpretation of

the results simpler. We have tried horizons of up to one year with no significant qualitative

change in the results.

Consider our economy with the parameters estimated in Table 2 and the filtered risk

processes. In order to change from the risk-adjusted coefficients estimated from option prices

to the similar coefficients under the objective probability measure, we use the relations (27)

through (32). Table 4 reports the model parameters under both probability measures. The

most notable change is in the average jump intensity which is 0.165 under the risk-adjusted

probability measure and is half that under the objective probability measure, 0.078. This

makes intuitive sense as the risk-adjusted density function puts more mass on bad outcomes.

The last two rows of Table 3 show summary statistics of the filtered jump intensity process

under the two probability measures, confirming that the level of jump intensity changes by

a factor of approximately 2. Most other parameters are either unchanged or change little.

Figure 7 shows the risk-adjusted density function extracted from option prices and the

corresponding density function under the objective probability measure for our representative

investor. The densities are shown for a horizon of one month and evaluated at the average

levels of the volatility and the jump intensity. It can be seen that the risk-adjusted density

shifts mass to the tails, and especially to the left tail. Table 5 contains statistics of the

excess stock return distribution under the objective and risk-adjusted probability measures

for different values of volatility and jump intensity. We focus our attention on the results

for the objective probability measure. The risk-adjusted distribution is qualitatively similar,

with a mean equal to the risk-free rate and with a jump intensity that is roughly double

the intensity under the objective measure. In the base case (the second and fifth rows), the

volatility and jump intensity are at their sample averages of 0.183 and 0.078, respectively.

In the other cases, either the volatility or the jump intensity are fixed at the sample average
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while the other state variable is one standard deviation above or one standard deviation below

its sample average. The last row of the table presents the same statistics for the sample of

excess stock returns. For the base case, the distribution of excess stock returns under the

objective probability measure is more volatile, more left skewed, and more leptokurtic than

the sample distribution. In this sense, the distribution implicit in option prices together with

the equilibrium conditions is substantially riskier than what was realized in our sample.

Furthermore, it can be seen that the volatility and jump intensity have different impact on

the distribution of excess stock returns. The higher the value of volatility or jump intensity,

the higher the values of the mean and standard deviation of excess stock returns. The value-

at-risk is also higher for higher value of volatility or jump intensity. But higher values of

jump intensity lead to higher skewness and kurtosis than with volatility.

We have used the preferences of a “reasonable” representative investor to back out the stock

market dynamics under the objective probability measure from the corresponding dynamics

under the risk-adjusted probability measure estimated from option prices. Alternatively, we

could have estimated the objective dynamics directly from the time series of stock prices.

By comparing these objective dynamics with the risk-adjusted dynamics, we could extract

the risk premium components and the level of risk aversion of the representative investor.

This is essentially the approach taken by Pan (2002) and Bliss and Panigirtzoglou (2004).

Unfortunately, that approach requires estimating the expected return on the stock market,

which we cannot estimate with any precision given the short length of the time series we

have. Additionally, the focus of this paper is that the time series of realized returns may not

contain jumps that were nevertheless deemed possible by investors. We have therefore chosen

to only use the time series of stock market returns to calibrate the risk aversion coefficient

in the informal calculation done above.

5.2 The Equity Premium

Equation (14) gives us the equity premium as a function of the diffusive volatility and jump

intensity. With the estimated parameters of the model, we can evaluate the coefficients of

that function:

φ = 2V − 0.000
√

V − 0.028V + 0.007
√

V λ + 0.371λ (43)
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Given the filtered series of the diffusive volatility and jump intensity, we can compute the

average of the equity premium in our sample. This gives us an estimate of the unconditional

equity premium of 10.1 percent. Note that this is different from putting the average level

of the filtered series of the diffusive and jump risks in the above equation. That is the

conditional premium evaluated at the average level of the state variables and is reported in

Table 5 as 9.6 percent. The difference between the two numbers is due to the nonlinearity

of the equity premium in V and λ. Note that this calculation does not match the average

excess return of the S&P 500 index in our sample, which was actually negative, -2.2 percent.

The reason is that we did not use stock returns in the calculation but only the measures of

risk filtered from option prices together with the assumed level of risk aversion.

For comparison, we can calculate the equity premium demanded by an investor in an economy

without jumps and with constant volatility. Merton (1973) shows that the equity premium

demanded by an investor who holds the stock market in this economy is equal to γ times

the variance. Since the realized volatility in our sample was 17 percent, and using again

a risk aversion coefficient of 2, we obtain an unconditional equity premium of 5.8 percent

(2 × 0.172).

Remember that the premium demanded by an investor with the same preferences in an

economy without jumps and with constant volatility was 5.8 percent. This is slightly more

than half the unconditional equity premium we computed in our economy with the risk

inferred from option prices. Therefore the level of risk perceived by investors far exceeds the

realized volatility. The compensation for these perceived risks is correspondingly larger.

These findings have some bearings on the discussion of the equity premium puzzle first

investigated by Mehra and Prescott (1985) and recently surveyed in Mehra and Prescott

(2003). The equity premium puzzle is typically stated as the historic average stock market

return far exceeding the required compensation for its realized risk. It should be noted

that the literature on the equity premium puzzle usually measures risk by the covariance of

stock market returns with aggregate consumption growth. However, none of our calculations

involves consumption and there is no way we can obtain the implied covariances between

stock market returns and consumption growth from option prices. What we do show is that

the risk premium demanded by an investor with utility for wealth living in an economy with

the realized level of market volatility is half the premium demanded by the same investor

when we take into account the risks assessed by the option market.
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The equity premium puzzle is that the historic stock market premium of, say, 6 percent is

much higher than the approximately 1 percent excess return warranted by the covariance of

the stock market returns with consumption growth (for reasonable levels of risk aversion).

Our point is that the realized covariance of the stock market returns with consumption

growth is likely to understate the true risk of the market as much as the realized volatility

understates the risk implicit in option prices. In our simple calculation above, we found

that the ex-ante risk premium doubles when we use the option implied risks instead of the

realized risk. If the same factor were to apply to the consumption based risk measure, the

equity premium puzzle would be lessened.

These results indicate that there is a substantial Peso problem when assessing the riskiness

of the stock market from the realized volatility. The risks investors perceive ex ante and that

are therefore embedded in option prices far exceed the realized variation in stock market

returns. If investors price the stock market to deliver returns that compensate them for the

perceived level of risk, the equity premium can easily be double what is justified from the

realized risk. This is the fundamental idea of Brown, Goetzmann, and Ross (1985): ex-post

measured returns include a premium for some bad states of the world that investors deemed

probable but that did not materialize in the sample. Similarly, Rietz (1988) proposed a

solution for the equity premium puzzle based on a very small probability (about 1 percent)

of a very large drop in consumption (25 percent). That is not far from the risks perceived

by investors in the option market.

Of course, this discussion only shifts the equity premium puzzle to a puzzling large difference

between the level of perceived risk and the level of realized risk: the option market predicted

a lot more market crashes than what actually have occurred. For example, given the average

jump size and average intensity estimated in Table 4, the stock market should experience

market crashes in the magnitude of -29.5 percent once every 12.8 years. This is obviously very

different from the observed frequency and magnitude of stock market jumps. The interesting

finding is that the puzzlingly high risks implicit in option markets match the puzzlingly high

equity premium for very reasonable preferences.

5.3 Time Variation in the Equity Premium

The previous section discussed the unconditional equity premium. We now discuss the time

variation in the equity premium. The first panel of Figure 8 plots the filtered time series
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of the diffusive volatility and the jump intensity under the objective probability measure.

The second plot shows the time series of the risk premium demanded by the investor in our

economy, shown in equation (43).

We further decompose the premium in equation (43) into the compensation for the

diffusive volatility which encompasses the first three terms that depend only on V , and

the compensation for the jump risk involving the last term that depend only on λ. There is

a small term that depends on the product of V and λ which shows up in the total premium

but that we do not assign to the components.

It is interesting to find that there were periods of low volatility and low jump intensity

(1996), periods of high volatility and high jump intensity (Fall of 1998), and periods of high

volatility but low jump intensity (Spring of 2001). This clearly shows that each component

of risk is to some degree autonomous. Indeed the correlation between the increments of both

series is only 14.6 percent.

The plot of the time series of the equity premium shows high variability. Its standard

deviation in our sample is 5.3 percent, roughly half the unconditional premium of 10.1

percent. The premium ranges from 2.3 to 31.9 percent. Furthermore, the first-order serial

correlation (at monthly frequency) of the premium is 0.619 which shows some persistence but

is far from having a unit root. However, we should note that all the first 10 serial correlations

are positive and add up to 1.864. There is therefore memory in the equity premium that is

not easily captured by a simple auto-regression.

The jump component is on average 2.9 percent, or a bit less than one third of the total

premium. Its standard deviation is of the same order of magnitude, 2.1 percent. The jump

premium varies between zero and 11.7 percent and can represent at times as much as near

two thirds of the total premium. The jump component of the equity premium is also more

persistent than the volatility component, with first-order serial correlations of 0.730 and

0.523, respectively. The sum of the first ten serial correlations is also higher, 3.950 versus

1.702.
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6 Conclusion

We filter the times series of diffusive volatility and jump intensity from S&P 500 index

options. These are the ex-ante risks in the stock market assessed by option investors. We

find that both components of risk vary substantially over time, are quite persistent, and

correlate with each other and with the stock index. Using a simple general equilibrium

model with a representative investor, we translate the filtered measures of ex-ante risk into

an ex-ante risk premium.

We find that the average premium that compensates the investor for the risks implicit in

option prices, 10.1 percent, is about twice the premium required to compensate the same

investor for the realized volatility in stock market returns, 5.8 percent. These results support

the Peso explanation advanced by Brown, Goetzmann, and Ross (1985) and Rietz (1988)

for the equity premium puzzle of Mehra and Prescott (1985). We also find that the ex-

ante equity premium is highly volatile, taking values between 2 and 32 percent, with the

component of the premium that corresponds to the jump risk varying between 0 and 12

percent.

In summary, we are able to partially explain the equity premium puzzle by using measures

of risk implied from option prices which far exceed measures of realized risk. We are still

left with a puzzle: like Aesop’s boy, the option markets cry wolf a lot more often than the

wolf actually shows up! However, it is interesting that we can link, using reasonable levels of

risk aversion, the puzzlingly high equity premium observed historically with puzzlingly high

risks implicit in option markets.
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Appendix

Stock Market Risk Premium

First, substitute (11) into (9) and use the fact that in equilibrium w = 1 to get the following

PDE satisfied by the value function, J :

0 = Jt + rWJW − 1

2
W 2JWW V − λWEQ [JW (W (1 + Q), V, λ, t)Q]

+JV

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

)
+
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2
JV V σ2

V V

+Jλ

(
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√
λ + κλV

√
V λ + κλλλ

)
+

1

2
Jλλσ

2
λλ

+JV λρV λσV σλ

√
V λ + λEQ [∆J ] . (A.1)

In general there is no analytical solutions to this PDE. However, in the case of power utility

function we can find one. Next, guess a solution of the following form:

J(W,V, λ, t) = er(1−γ)τg(V, λ, τ )
W 1−γ

1 − γ
, (A.2)

where g(V, λ, τ ) is a function independent of W . Substituting (A.2) into (A.1) to get:

gτ =

(
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2
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[
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])
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with the initial condition g(V, λ, 0) = 1. (A.3) is a hyperbolic PDE whose coefficients are

quadratic functions of
√

V and
√

λ. Again we make a guess of g of the form:12

g(V, λ, τ ) = eA(τ)+B(τ)>U+U>C(τ)U , (A.4)

where we define U ≡
(√

V√
λ

)
, and A(τ ) is a function with initial condition A(0) = 0.

12This trick has been frequently used. See for example Ingersoll (1987) and Heston (1993).
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Substitute (A.4) into (A.3) and collect terms with the same powers of V and λ. Since

(A.3) holds for any values of V and λ, all the coefficients must equal zero. And this leads to

the system of ODEs (15)-(16) together with:

A′ =
1

2
Π>B +

1

8
B>ΓB +

1

4
tr(ΓC). (A.5)

Equation (14) is then obtained from (11), (A.2), and (A.4).

Option Pricing

Under the risk-adjusted probability measure the price, f , of a European call option with

strike price K and maturity date T is a function of the state variables and time, (S, V, λ∗, t).

Letting the subscripts of f represent partial derivatives, then f(S, V, λ∗, t) satisfies the

following PDE:13

−ft = −rf +
(
r − λ∗µ∗

Q

)
SfS +

1

2
V S2fSS +

(
1

4
σ2

V + κ∗
V

√
V + κ∗

V V V + κ∗
V λ

√
V λ∗

)
fV

+
1

2
σ2

V V fV V +

(
1

4
σ∗

λ
2 + κ∗

λ

√
λ∗ + κ∗

λV

√
V λ∗ + κ∗

λλλ
∗
)

fλ∗ +
1

2
σ∗

λ
2λ∗fλ∗λ∗

+ρSV σV V SfSV + ρSλσ
∗
λ

√
V λ∗SfSλ∗ + ρV λσV σ∗

λ

√
V λ∗fV λ∗

+λ∗EQ∗ [f(S(1 + Q∗), V, λ∗, t)− f(S, V, λ∗, t)] , (A.6)

where EQ∗ is the expectation with respect to the distribution of Q∗ and the boundary

condition is:

f(S, V, λ∗, T ) = (S −K)+. (A.7)

To simplify, define x ≡ lnS. Then f(x, V, λ∗, T ) satisfies:

−ft = −rf +

(
r − λ∗µ∗

Q − 1

2
V

)
fx +

1

2
V fxx +

(
1

4
σ2

V + κ∗
V

√
V + κ∗

V V V + κ∗
V λ

√
V λ∗

)
fV

+
1

2
σ2

V V fV V +

(
1

4
σ∗

λ
2 + κ∗

λ

√
λ∗ + κ∗

λV

√
V λ∗ + κ∗

λλλ
∗
)

fλ∗ +
1

2
σ∗

λ
2λ∗fλ∗λ∗

+ρSV σV V fxV + ρSλσ∗
λ

√
V
√

λ∗fxλ∗ + ρV λσV σ∗
λ

√
V λ∗fV λ∗

+λ∗EQ∗ [f(x + ln(1 + Q∗), V, λ∗, t) − f(x, V, λ∗, t)] . (A.8)

13A version of Ito’s lemma for jump-diffusions is used in deriving the PDE. See for example Protter (1990).
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We now use the Fourier transform of f to further simplify the above equation.14 Let

f̂(k, V, λ∗, t) be the Fourier transform of f with respect to x, that is:

f̂(k, V, λ∗, t) ≡
∫ ∞

−∞
eikxf(x, V, λ∗, t)dx. (A.9)

The boundary condition f(x, V, λ∗, T ) = (ex − K)+ changes to:

f̂(k, V, λ∗, T ) = − K ik+1

k2 − ik
.

If we write k = kr + iki where kr and ki are the real and imaginary parts of k respectively,

then f is recovered via the inverse Fourier transform:

f(x, V, λ∗, t) =
1

2π

∫ iki+∞

iki−∞
e−ikxf̂(k, V, λ∗, t)dk. (A.10)

Differentiating (A.9), integrating by parts, and changing the order of expectation and Fourier

transform in the last term, (A.8) becomes:

−f̂t = −(1 + ik)rf̂ + ikλ∗µ∗
Qf̂ − 1

2
V (k2 − ik)f̂ (A.11)

+

(
1

4
σ2

V + κ∗
V

√
V + κ∗

V V V − ikρSV σV V + κ∗
V λ

√
V λ∗

)
f̂V +

1

2
σ2

V V f̂V V

+

(
1

4
σ∗

λ
2 + κ∗

λ

√
λ∗ + κ∗

λV

√
V λ∗ − ikρSλσ

∗
λ

√
V λ∗ + κ∗

λλλ
∗
)

f̂λ∗ +
1

2
σ∗

λ
2λ∗f̂λ∗λ∗

+ρV λσV σ∗
λ

√
V λ∗f̂V λ∗ + λ∗EQ∗

[
(1 + Q∗)−ik − 1

]
f̂ . (A.12)

Notice that the jump variable Q∗ is now separated from f̂ . If we define:

h ≡ e(1+ik)rτ f̂ ,

14This technique is used in Heston (1993), Bates (1996), and Duffie, Pan, and Singleton (2000) among
others. The pricing formulas derived in these papers generally involve two integrals. Our approach here is
similar to Lewis (2000) in that we only need one integral.
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then (A.12) changes to:

−ht =

[
−1

2
V (k2 − ik) + ikλ∗µ∗

Q

]
h (A.13)

+

(
1

4
σ2

V + κ∗
V

√
V + κ∗

V V V − ikρSV σV V + κ∗
V λ

√
V λ∗

)
hV +

1

2
σ2

V V hV V

+

(
1

4
σ∗

λ
2 + κ∗

λ

√
λ∗ + κ∗

λV

√
V λ∗ − ikρSλσ

∗
λ

√
V λ∗ + κ∗

λλλ
∗
)

hλ∗ +
1

2
σ∗

λ
2λ∗hλ∗λ∗

+ρV λσV σ∗
λ

√
V λ∗hV λ∗ + λ∗EQ∗

[
(1 + Q∗)−ik − 1

]
h, (A.14)

with the initial condition:

h(k, V, λ∗, 0) = − K ik+1

k2 − ik
. (A.15)

To solve (A.14) with the initial condition (A.15), it is enough to solve the same equation

with the initial value equal to one and then scale the solution by the r.h.s. of (A.15). Given

the solution to (A.14) with the initial condition h(k, V, λ∗, 0) = 1, the option price is:15

f(S, V, λ∗, τ ) = S − e−rτ

2π

∫ i
2
+∞

i
2
−∞

e−ik(rτ+lnS) K ik+1

k2 − ik
h(k, V, λ∗, τ )dk. (A.16)

Now the problem is to find a solution to (A.14) with initial value of one. Recognizing the

similarity between (A.3) and (A.14), we use the same trick by guessing a solution as:

h(V, λ∗, τ ) = eA∗(τ)+B∗(τ)>U∗+U∗>C∗(τ)U∗
. (A.17)

Then by a similar calculation as before we can derive the system of ODEs (34)-(36).

Risk-Adjusted Return Density Function

To find the density function of stock returns under the risk-adjusted measure, it is enough

to find the corresponding probability function Φ = Prob(ST ≤ K). Note that Φ satisfies the

same PDE as the option price but with a different boundary condition: Φ|t=T = 1{ST ≤K}

where 1 is the indicator function. Under the Fourier transform, this boundary condition

15This can be shown by using the inverse Fourier transform and the Residue theorem as in Lewis (2000).
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becomes Kik

ik
. Solving the PDE under this new boundary condition, we have:

Φ =
e−rτ

2π

∫ i
2
+∞

i
2
−∞

eik(ln K
S
−rτ)

ik
hdk,

where h = eA∗(τ)+B∗>(τ)>U∗+U∗>C∗(τ)U∗
is defined as before. If we denote the stock return

between time t and T by R so that K = SeR, then we can differentiate Φ with respect to R

to get the density function (41).

Relation Between Probability Measures

Assume that, under the objective probability measure, the option price, f(S, V, λ, t), follows

the process:

df =
(
r + φf − λµQf

)
fdt + σfS

fdWS + σfV
fdWV + σfλ

fdWλ + QffdN, (A.18)

where Qf ≡ [f(S(1 + Q), V, λ) − f(S, V, λ)] /f is the percentage jump in the option price

and µQf
is the average jump size. φf is the risk premium on the option.

In the presence of the option market, the representative investor allocates his wealth

in the stock, the option, and the risk free asset with the portfolio weights denoted by

(w,wf , 1 − w − wf). Investor’s wealth, W , then follows the process:

dW = (r + wφ + wfφf − λµQW
)Wdt + wW

√
V dWS

+wfσfS
WdWS + wfσfV

WdWV + wfσfλ
WdWλ + QW WdN, (A.19)

where QW = wQ + wfQf is the percentage jump in wealth and µQW
= wµQ + wfµQf

is the

average jump size in wealth. The value function J now solves the Bellman equation:

0 = max
w,wf

[Jt + A(J)] , (A.20)
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with:

A(J) = WJW (r + wφ + wfφf − wλµQW
) + JV

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

)

+Jλ

(
1

4
σ2

λ + κλ

√
λ + κλV

√
V λ + κλλλ

)
+

1

2
w2W 2JWW

[
w2V

+2wwf

√
V (σfS

+ ρSV σfV
+ ρSλσfλ

) + w2
f

(
σ2

fS
+ σ2

fV
+ σ2

fλ

)

+2w2
f (ρSV σfS

σfV
+ ρSλσfS

σfλ
+ ρV λσfV

σfλ
)
]

+
1

2
JV V σV

2V +
1

2
Jλλσλ

2λ

+WJWV σV

√
V
[
wρSV

√
V + wf (ρSV σfS

+ σfV
+ ρSλσfλ

)
]

+WJWλσλ

√
λ
[
wρSλ

√
V + wf (ρSλσfS

+ ρV λσfV
+ σfλ

)
]

+JV λρV λσV σλ

√
V λ + λEQW

[J(W (1 + QW ), V, λ, t) − J(W,V, λ, t)] . (A.21)

Differentiating (A.20) with respect to wf and substitute in w = 1, wf = 0, we obtain the

risk premium on the option:

φf = −W
JWW

JW

√
V (σfS

+ ρSV σfV
+ ρSλσfλ

) − JWV

JW
σV

√
V (ρSV σfS

+ σfV
+ ρSλσfλ

)

−JWλ

JW
σλ

√
λ (ρSλσfS

+ ρV λσfV
+ σfλ

) − λEQ

[
∆JW

JW
Qf

]
. (A.22)

On the other hand, by Ito’s lemma the drift and the diffusion terms of df are:

φff = −rf + ft + (r + φ − λµQ)SfS +

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

)
fV

+

(
1

4
σ2

λ + κλ

√
λ + κλV

√
V λ + κλλλ

)
fλ +

1

2
V S2fSS +

1

2
σ2

V V fV V +
1

2
σ2

λλfλλ

+ρSV σV V SfSV + ρSλσλ

√
V λSfSλ + ρV λσV σλ

√
V λfV λ

+λEQ [f(S(1 + Q), V, λ, t) − f(S, V, λ, t)] , (A.23)

σfS
= S

√
V fS/f, (A.24)

σfV
= σV

√
V fV /f, (A.25)

σfλ
= σλ

√
λfλ/f. (A.26)
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Combining equations (A.22)-(A.26) leads to the following PDE satisfied by the option price:

−ft = −rf +

(
r − λEQ

[
J∗

W

JW
Q

])
SfS +

(
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

+W
JWW

JW
ρSV σV V +

JWV

JW
σ2

V V +
JWλ

JW
ρV λσV σλ

√
V λ

)
fV +

(
1

4
σ2

λ + κλ

√
λ

+κλV

√
V λ + κλλλ + W

JWW

JW

ρSλσλ

√
V λ +

JWV

JW

ρV λσV σλ

√
V λ +

JWλ

JW

σ2
λλ

)
fλ

+
1

2
V S2fSS +

1

2
σ2

V V fV V +
1

2
σ2

λλfλλ + ρSV σV V SfSV + ρSλσλ

√
V λSfSλ

+ρV λσV σλ

√
V λfV λ + λfEQ

[
J∗

W

JW
Qf

]
, (A.27)

where we define J∗
W ≡ JW (W (1+Q), V, λ, t). In the case of power utility function, the value

function J has an analytical solution given by (A.2) and (A.4). Substitute this solution into

(A.27) to get:

−ft = −rf +
(
r − λEQ

[
(1 + Q)−γQ

])
SfS +

[
1

4
σ2

V + κV

√
V + κV V V + κV λ

√
V λ

−γρSV σV V + σ2
V

√
V
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2
BV + CV V

√
V + CV λ

√
λ

)

+ρV λσV σλ

√
V

(
1

2
Bλ + Cλλ

√
λ + CV λ

√
V

)]
fV +

[
1

4
σ2

λ + κλ

√
λ + κλV

√
V λ

+κλλλ − γρSλσλ

√
V λ + ρV λσV σλ
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λ

(
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BV + CV V

√
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)
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λ

√
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(
1

2
Bλ + Cλλ

√
λ + CV λ

√
V

)]
fλ +

1

2
V S2fSS

+
1

2
σ2

V V fV V +
1

2
σ2

λλfλλ + ρSV σV V SfSV

+ρSλσλ

√
V λSfSλ + ρV λσV σλ

√
V λfV λ + λfEQ

[
(1 + Q)−γQf

]
. (A.28)

On the other hand, under the risk-adjusted probability measure, f(S, V, λ, t) satisfies

equation (A.6). Then relations (27)-(32) are verified by substituting them into (A.6) to

get (A.28).
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Table 1: Implied Volatilities of S&P 500 Index Options
This table reports the summary statistics of the Black-Scholes implied volatilities of the S&P
500 index options traded on CBOE that are used in the econometric analysis. The sample
consists of beginning-of-the-month put options with time to maturity less than 210 days and
moneyness between 0.95 and 1.15 in the period of January of 1996 to December of 2002. The
options are divided into six buckets according to moneyness (S/K) and time to maturity
(T ). We report average implied volatility, the standard deviation of implied volatilities
(in parentheses), and the number of options (in brackets) within each moneyness-maturity
bucket.

Days to Expiration

Moneyness T ≤ 30 30 < T ≤ 60 T > 60

S/K < 1 20.06 20.25 19.97
(4.66) (4.04) (4.36)
[340] [186] [57]

1 ≤ S/K < 1.03 21.83 21.26 21.57
(4.41) (4.42) (4.82)
[342] [209] [165]

S/K ≥ 1.03 24.30 23.86 23.93
(4.83) (5.00) (4.98)
[178] [206] [384]
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Table 2: Estimated Parameters
This table reports the estimated parameters and the standard errors (in parentheses) under
the risk-adjusted probability measure for the three models: stochastic volatility model (SV),
constant jump intensity model (SV-J), and stochastic jump intensity model (SV-SJ). The
parameters are estimated by minimizing the sum of squared implied volatility errors – the
difference between the market implied volatility and the model-determined implied volatility.

SV SV-J SV-SJ

κ∗
V 0.226 0.235 0.621

(0.026) (0.017) (0.007)

κ∗
V V -0.874 -1.007 -5.791

(0.08) (0.015) (0.018)

κ∗
V λ - - 1.614

- - (0.027)

σV 0.564 0.541 0.517
(0.007) (0.013) (0.007)

κ∗
λ - - 0.033

- - (0.007)

κ∗
λV - - -13.567

- - (0.133)

κ∗
λλ - - 2.097

- - (0.001)

σ∗
λ - - 0.027

- - (0.003)

µ∗
Q - -0.185 -0.316

- (0.014) (0.005)

σQ - 0.035 0.123
- (0.009) (0.007)

ρSV -0.929 -0.898 -0.801
(0.002) (0.001) (0.001)

ρSλ - - -0.226
- - (0.003)

ρV λ - - 0.760
- - (0.002)

RMSE 1.394% 1.390% 0.675%
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Table 3: Filtered Diffusive Volatility and Jump Intensity
This table reports the summary statistics of the filtered diffusive volatility (

√
Vt) and jump

intensity under the risk-adjusted and objective probability measures (λ∗
t and λt respectively).√

Vt and λ∗
t are obtained simultaneously with the model parameters from the optimization

described in Table 2. λt is derived from λ∗
t by using equations (30) and (32) for fixed risk

aversion coefficient γ = 2.

Model Mean Std. Skew. Kurt. Max. Min. Autocorr. Corr
(√

Vt, λt

)

SV
√

Vt 0.200 0.053 1.020 4.857 0.396 0.092 0.675 -
λ∗

t - - - - - - - -
λt - - - - - - - -

SV-J
√

Vt 0.198 0.053 0.973 4.781 0.393 0.085 0.677 -
λ∗

t 0.049 - - - - - - -
λt 0.032 - - - - - - -

SV-SJ
√

Vt 0.183 0.050 1.300 4.678 0.345 0.108 0.537 0.283
λ∗

t 0.165 0.119 1.382 6.127 0.666 0.000 0.721 -
λt 0.078 0.056 1.382 6.127 0.316 0.000 0.721 -
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Table 4: Estimated Parameters Under Both Probability Measures
This table reports the estimated parameters for the SV-SJ model under both risk-adjusted
and objective probability measures. The risk-adjusted estimated parameters are identical
to those reported in Table 2, and the estimated parameters under the objective probability
measure are derived from the risk-adjusted estimated parameters using equations (27)-(32)
for fixed risk aversion coefficient γ = 2. We also report the average filtered jump intensity
under both risk-adjusted and objective probability measures (λ̄∗ and λ̄ respectively).

Risk-Adjusted Objective
Probability Measure Probability Measure

κ∗
V 0.621 κV 0.622

κ∗
V V -5.791 κV V -6.603

κ∗
V λ 1.614 κV λ 2.342

σV 0.517 σV 0.517
κ∗

λ 0.033 κλ 0.023
κ∗

λV -13.567 κλV -9.356
κ∗

λλ 2.097 κλλ 2.097
σλ 0.027 σλ 0.019
µ∗

Q -0.316 µQ -0.295
σQ 0.123 σQ 0.123
ρSV -0.801 ρSV -0.801
ρSλ -0.226 ρSλ -0.226
ρV λ 0.760 ρV λ 0.760

λ̄∗ 0.165 λ̄ 0.078

39



Table 5: Distribution of Excess Stock Returns
This table reports the statistics of the one-month excess stock return distribution for different
values of volatility and jump intensity under the risk-adjusted and objective probability
measures. The estimated parameters under the two probability measures are those reported
in Table 4. The moments and Value-at-Risk (VaR) of the risk-adjusted distribution are
computed using the density function given by equation (41) while the corresponding statistics
of the objective distribution are computed using a similar formula. The last row reports the
corresponding statistics of the sample monthly excess returns of the S&P 500 index in the
period of January of 1996 to December of 2002.

Mean Std. Skew. Kurt. VaR99% VaR95%

√
V λ∗ Risk-Adjusted Probability Measure

0.183 0.046 0 0.190 -1.016 2.183 -0.145 -0.090
0.183 0.165 0 0.214 -1.828 5.856 -0.180 -0.095
0.183 0.284 0 0.236 -2.183 7.333 -0.270 -0.095
0.133 0.165 0 0.180 -2.928 13.06 -0.160 -0.075
0.183 0.165 0 0.214 -1.828 5.856 -0.180 -0.095
0.234 0.165 0 0.252 -1.165 2.777 -0.200 -0.110

√
V λ Objective Probability Measure

0.183 0.022 0.075 0.180 -0.663 1.125 -0.130 -0.080
0.183 0.078 0.096 0.193 -1.086 2.898 -0.140 -0.080
0.183 0.135 0.117 0.205 -1.359 4.228 -0.155 -0.080
0.133 0.078 0.064 0.156 -1.829 7.380 -0.120 -0.065
0.183 0.078 0.096 0.193 -1.086 2.898 -0.140 -0.080
0.234 0.078 0.137 0.233 -0.681 1.345 -0.160 -0.095

Sample -0.022 0.168 -0.196 2.556 -0.107 -0.081
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Figure 1: Time Series of Implied Volatilities
The first panel plots the time series of the Black-Scholes implied volatilities of the short-term
(time to maturity less than 30 days) options with three different levels of moneyness: in-
the-money (S/K = 0.975), at-the-money (S/K = 1), and out-of-the-money (S/K = 1.025).
The sample consists of beginning-of-the-month S&P 500 index put options in the period
of January of 1996 to December of 2002. In each sample date, three short-term options
are chosen so that their moneyness are closest to 0.975, 1, and 1.025 respectively. The
second panel plots the time series of the Black-Scholes implied volatilities of the at-the-
money options with two maturities: short term (time to maturity less than 30 days) and
long term (time to maturity more than but closest to 60 days).
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Figure 2: Filtered Diffusive Volatility and Jump Intensity under the Risk-
Adjusted Probability Measure
The first panel plots the time series of the filtered diffusive volatility (

√
Vt) for the three

models: SV, SV-J, and SV-SJ. The second panel plots the time series of the filtered jump
intensity under the risk-adjusted probability measure (λ∗

t ) for the SV-SJ model.
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Figure 3: Market and Fitted Implied Volatilities
The four panels show the plots of the market implied volatilities as a function of moneyness
for the S&P 500 index options with approximately one and a half months to maturity together
with the fitted implied volatilities of the three alternative pricing models in four different
dates of the sample: the first trading days in December of 1997, October of 1998, October
of 2001, and September of 2002, respectively. We use the estimated parameters of the three
models reported in Table 2 to compute the fitted implied volatilities. The plus signs “+”
represent the market implied volatilities. The fitted implied volatilities of the SV, SV-J, and
SV-SJ models are represented by the dotted, dashed, and solid lines respectively.
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Figure 4: Market and Fitted Implied Volatilities on December 1, 1997
The two panels show the plots of the market implied volatilities as a function of moneyness for
the S&P 500 index options with time to maturity less than a month and almost four months
respectively together with the fitted implied volatilities of the three alternative pricing models
on December 1, 1997. We use the estimated parameters of the three models reported in Table
2 to compute the fitted implied volatilities. The plus signs “+” represent the market implied
volatilities. The fitted implied volatilities of the SV, SV-J, and SV-SJ models are represented
by the dotted, dashed, and solid lines respectively.
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Figure 5: Volatility Smile of the SV-SJ Model
The four panels show the plots of the Black-Scholes implied volatility smiles at different
maturities produced by the SV-SJ model, using the estimated parameters reported in Table
2 and for different values of volatility (

√
Vt) and jump intensity (λ∗

t ). In the top two panels,√
Vt is fixed at its sample average of 0.183 while λ∗

t is at its sample average and that value
plus or minus one standard deviation. In the bottom two panels, λ∗

t is fixed at its sample
average of 0.165 while

√
Vt is at its sample average and that value plus or minus one standard

deviation. The maturities are 30 and 90 days for the left and right panels respectively.
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Figure 6: Risk-Adjusted Density Function of Stock Returns
The two panels show the plots of the estimated risk-adjusted density function of stock returns
with one month horizon under the SV-SJ model, using the estimated parameters reported in
Table 2 and for different values of volatility (

√
Vt) and jump intensity (λ∗

t ). The first panel
keeps

√
Vt at its sample average of 0.183 and displays the density functions for the jump

intensity at its sample average and that value plus or minus one standard deviation. The
second panel keeps λ∗

t at its sample average of 0.165 and displays the density functions for√
Vt at its sample average and that value plus or minus one standard deviation.
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Figure 7: Risk-Adjusted and Objective Density Functions of Stock Returns
This figure shows the plots of the estimated risk-adjusted density function of stock returns
with one month horizon under the SV-SJ model and the corresponding density function under
the objective probability measure for our representative investor with fixed risk aversion
coefficient γ = 2, using the estimated parameters under the two probability measures
reported in Table 4. The volatility and jump intensity are chosen at their sample averages,√

V = 0.183 and λ∗ = 0.165 (λ = 0.078).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6

7

8

9

10

 R

Risk−Adjusted
Objective

47



Figure 8: Equity Premium
The first panel shows the plots of the filtered time series of volatility (V ) and jump intensity
(λ) under the objective probability measure for our representative investor with fixed risk
aversion coefficient γ = 2. The second panel shows the plot of the time series of the total
risk premium demanded by the investor shown in equation (43) together with the plots of
the time series of the volatility and jump components of the risk premium. The volatility
component encompasses the first three terms in equation (43) that depend only on V , and
the jump component involves the last term in equation (43) that depends only on λ.
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