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Elucidating the roles of chemistry, compositional complexity, and short-range
order in the dislocation energetics of body-centered-cubic concentrated solid

solutions

Wenqing Wang,1, 2 Flynn Walsh,1, 3, ∗ Robert O. Ritchie,1, 2 and Mark Asta1, 2, †

1Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Department of Materials Science and Engineering,

University of California, Berkeley, California 94720, USA
3Graduate Group in Applied Science and Technology,

University of California, Berkeley, California 94720, USA

Dislocation-mediated deformation mechanisms in body-centered cubic solid solutions are expected
to be influenced by spatial fluctuations in screw dislocation core energies. In refractory high-entropy
alloys, the formation of chemical short-range order has been demonstrated to decrease the hetere-
ogeneity of this energy landscape, narrowing the distribution of dislocation core energies. It is,
however, unclear if multicomponent compositionally complex systems display any unique effects, or
if these results are applicable more generally. To answer this question, this study computationally
investigates how system chemistry, compositional complexity, and the presence of various degrees of
chemical short-range order affect the distribution of screw dislocation energies in binary and ternary
subsystems of the NbMoTaW alloy. We report the calculated averages and variances for the diffuse
anti-phase boundary energy and the dislocation core energy with various degrees of chemical short
range order. While short-range order negligibly affects average core energies, their distributions are
notably narrowed in some, but not all, systems, primarily depending on chemistry rather than the
number of components.

I. INTRODUCTION

Body-centered cubic (bcc) refractory high-entropy
alloys (RHEAs) have attracted extensive interest
over the past decade for potential structural ma-
terials applications due to their retention of yield
strength at elevated temperatures. For high-
temperature applications, particular attention has
been given to alloys containing Nb, Mo, Ta, and
W as principal elements, as originally proposed by
Senkov et al. [1]. However, the application of many
of these materials may be limited by their lack of
ductility at ambient conditions [2], in addition to
concerns regarding oxidation resistance [3] and high-
temperature creep behavior [4, 5]. For this reason,
the room-temperature damage tolerance of alloys
such as NbMoTaW remains as important as their
intriguing strength in refractory conditions.
The mechanical properties of bcc metals are tra-

ditionally understood to be dictated by the mobil-
ity of 1

2 ⟨111⟩ screw dislocations [6], although recent
work has also highlighted a role of edge disloca-
tions in certain concentrated systems [7, 8], espe-
cially at elevated temperatures at which the barri-
ers to screw dislocation motion experience signifi-
cant thermal softening [7]. Deformation at ambient
conditions is nonetheless expected to be influenced
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by screw dislocation glide, which in pure bcc metals
involves the nucleation [9] and propagation of pairs
of kinks in the dislocation line [10–12]. In RHEAs,
screw dislocation motion may be particularly inhib-
ited by the large lattice distortion present in a mix-
ture of variously sized elements [13, 14].

The mobility of individual screw dislocations is in-
fluenced by the spatial distribution of effective core
energies, i.e. the Peierls energy landscape, with ad-
ditional strengthening expected to arise from lock-
ing of the dislocations by cross-kink formation [15].
Theoretical Peierls landscapes can be calculated by
considering pathways among distinct 1

2 ⟨111⟩ screw-
core configurations using density-functional theory
(DFT) or, computationally more efficient inter-
atomic potentials. For pure elements including Nb,
Mo, Ta, W, and V, DFT predicts a non-degenerate
compact core as the equilibrium structure [16–18],
and a Peierls landscape with local minima corre-
sponding to the high-symmetry core structures [19–
21]. While the pathways among locally stable core
structures provide important information about the
shape of the energy landscape [22], their rigorous
determination in many-component systems is chal-
lenging due to the computational cost of determining
transition barriers for even a representative sample
of highly variable local chemical environments. It
is nonetheless insightful to assess the distribution of
minima, or valleys, in the Peierls landscapes of com-
plex alloys. For example, Yin et al. [23] predicted
a highly heterogeneous distribution of equilibrium
1
2 ⟨111⟩ dislocation core DFT energies in NbMoTaW
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[23].

Although HEAs are traditionally approximated
as solid solutions with random compositional dis-
order (and hence ideal configurational entropy), a
certain amount of local chemical rearrangement will
inevitably occur in most systems, as determined by
the balance of thermodynamic driving forces and
diffusion kinetics. Real refractory alloys will be ex-
posed to a range of elevated temperatures for various
amounts of time, with the local ordering of a specific
sample likely dependent on its precise thermal his-
tory. The kinetics of forming SRO in NbMoTaW
alloys are estimated in Sec. IV in light of present
and previous [24] thermodynamic calculations.

The presence of SRO contributes to the strength-
ening of solid solutions in two ways. On one hand,
when a dislocation overcomes the Peierls energy bar-
rier and starts to glide, it disturbs any favorable lo-
cal ordering, creating a diffuse antiphase boundary
(DAPB) [25, 26]. This DAPB introduces extra en-
ergy into the crystal [27], which serves as an ather-
mal strengthening mechanism. On the other hand,
SRO alters the stress required for a kink pair to
propagate through the solute obstacles, which can
be captured by a modified Suzuki model for sub-
stitutional solid solution strengthening [28]. In this
model, the activation energy for kink propagation
is dependent on fluctuations of the local chemical
environment, where the prevalence of high-energy
regions is reduced by the formation of SRO, thus
softening of the material. The overall effect of SRO
is governed by the balance between these two com-
peting mechanisms, which depends precisely on the
chemical composition and degree of chemical order
[28].

While the effect of local chemical environments on
edge dislocation energies is dominated by volumet-
ric interactions that may be efficiently parameter-
ized by misfit volumes [7], for screw dislocations it
is generally necessary to consider explicit core-solute
interactions [28], which may be at least qualitatively
represented by the distribution of Peierls valley en-
ergies. In this manner, Yin et al. [23] investigated
the effects of SRO on NbMoTaW, finding that the
presence of SRO can notably decrease the spatial
heterogeneity of Peierls minima. It is not clear, how-
ever, how these “smoothing” effects depend on the
number or type of constituent species in the alloy
system. Therefore, the focus of the current paper is
to investigate the role of SRO on the dislocation core
structures, DAPB energetics, and the core energy
distribution in the ternary and binary subsystems
of the NbMoTaW RHEA. The construction of simu-
lations cells for the determination of these systems’
Peierls valley distributions and the calculations of
core energies are described in Sec. II and the effects

of chemistry, chemical complexity, and short-range
order are presented in Sec. III and Sec. IV. Our
results suggest that SRO decreases the spatial het-
erogeneity of Peierls valley energies, to a degree that
is affected primarily by chemistry rather than the
number of alloy components.

II. METHODS

A. Interatomic potential model

To investigate the effects of SRO on the Peierls
energy distributions in NbMoTaW and its sub-
systems, we employ the moment tensor potential
(MTP) for NbMoTaW described by Yin et al.
[15]. This potential, implemented in the Large-
scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) [29], was trained using the unary,
binary, ternary, and quaternary data of NbMoTaW
reported by Li et al. [30]. The MTP potential pro-
vides near ab initio accuracy while maintaining a
reasonable computation cost [31].

B. Estimating order-disorder transition
temperatures

To examine the effects of SRO on dislocation en-
ergy landscapes, it is important to first establish
the equilibrium ordering temperatures, below which
SRO gives way to long-range order. The intent is
then to produce states of SRO at various tempera-
tures above Ttr. Hence we perform simulations to
estimate the ordering transition temperature (Ttr)
from simulated heat-capacity calculations, as de-
scribed below. To estimate the order-disorder tran-
sition temperature of each subsystem, we calculated
the configurational contribution to the heat capacity
(Cv) at various temperatures using on-lattice canon-
ical MC sampling.

It has been shown that lattice relaxation signif-
icantly alters the order-disorder transition temper-
ature of NbMoTaW [24, 32] but has limited effects
on the ordering at temperatures above the order-
disorder transition [24]. To assess the potential ef-
fects from atomic displacements (lattice distortions)
and thermal expansion on the state of SRO, we con-
ducted additional hybrid MD/MC simulations for
each of the systems at a temperature of 1.1 × Ttr

(where Ttr is the critical temperature derived from
the on-lattice simulations). The magnitudes of the
WC parameters obtained from the hybrid MD/MC
simulations were found to differ from those derived
in the on-lattice MC simulations by less than 10%
(see SI for details). Additionally, the signs of these
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parameters for the different bond types were in
agreement for the two types of simulations. Thus, we
employ on-lattice MC simulations to generate repre-
sentative states of SRO for the current studies.

On-lattice MC simulations were performed with
supercells that are 5 × 5 × 5 repetitions of the con-
ventional bcc unit cell containing 250 atoms for
each composition. The equilibrium lattice constants
were determined for orthogonal supercells with ran-
dom compositional arrangements for each subsys-
tem employing zero-temperature energy relaxation
calculations in which the shape and dimension of
the simulation cell is optimized under zero exter-
nal pressure. From the equilibrium dimension and
shape of the resulting relaxed structure, the lat-
tice constant was calculated as a0 = (2v0)

1/3 where
v0 is the equilibirum atomic volume. The calcu-
lated equilibrium lattice constants so obtained are:
NbMoTaW: 3.2376Å, NbMoTa: 3.2634Å, NbMoW:
3.2159Å, MoTaW: 3.2128Å, NbMo: 3.2361Å, MoTa:
3.2323Å, TaW: 3.2384Å.

On-lattice MC simulations were used to equili-
brate the systems and calculate heat capacities at
temperatures between 2000K and 50K. In these MC
simulations the cell shape was constrained to re-
main cubic with the volume fixed at values corre-
sponding to the lattice constants given above. At-
tempted swaps of two atoms of different types, sam-
pled randomly, were accepted or rejected based on
the Metropolis algorithm. At each temperature the
total length of the simulation was 2000 MC passes,
where a pass consists of N attempted swaps, with N
the number of atoms. Simulations were performed
initially at 2000K starting from a random bcc con-
figuration, and subsequently at a consecutive set of
lower temperatures reduced in 50K intervals; the
ending configuration of the prior simulation was used
to seed the next at each subsequent lower tempera-
ture.

At all temperatures, the total energy of every
subsystem was judged to be equilibrated after 500
MC passes. After 500 MC passes, the heat capac-
ity (CV ) was calculated from the energy (E) fluc-
tuations: CV = [⟨E2⟩ − ⟨E⟩2]/kBT 2. The high-
est order-disorder temperature (Ttr) was then iden-
tified from peaks in CV versus temperature (see
Fig. S3). Neglecting atomic relaxations and vibra-
tions, seven systems were found to undergo an order-
disorder transition above 500K: NbMoTaW 850K,
NbMoTa 950K, NbMoW 550K, MoTaW 900K,
NbMo 1050K, MoTa 1750K, TaW 800K. SRO was
considered to be minimally relevant in other sys-
tems, which were not examined further.

C. Dislocation relaxation

To investigate the spatial distribution of screw dis-
location core energies, a simulation cell was con-
structed to contain a dislocation dipole, as illus-
trated in Fig. 1. In this setup, a quadrupolar cell
arrangement [34, 35] was used to maximize the dis-
tances between the dislocations and its periodic im-
ages while minimizing image stress. The simula-
tion supercell contained 7392 atoms, and was ori-
ented with the periodic directions along the vectors
of C1 = a0[1̄1̄2], C2=a0[11̄0], and C3=a0[111], where
a0 is the equilibrium lattice constant determined for
each subsystem. The periodic length of the C3 dis-
location line direction is two Burgers vectors. This
value is fixed for all systems considered in the text,
and it is important to note that the distributions
and their variances hold for this value of the dis-
location line length specifically. Five representative
states of SRO were then derived for each compo-
sition, from on-lattice MC simulations at tempera-
tures of: 1.1Ttr, 1.4Ttr, 1.7Ttr, 2.0Ttr, and 2.3Ttr.
For each temperature the SRO was derived from the
final state resulting from a MC simulation with 500
passes. With this procedure, the state resulting from
the simulation at 1.1Ttr corresponds to the maxi-
mum level of SRO, those at 2.3Ttr the least, and
those from the temperatures in between giving in-
termediate degrees of local order.

For each dislocation supercell the positions of
the atoms were initialized using displacements from
anisotropic elasticity theory for the dipole configu-
ration, using the Babel code [36]. The atomic posi-
tions were subsequently relaxed using a conjugate-
gradient algorithm in LAMMPS until the energy dif-
ference between two successive iterations divided by
the magnitude of total energy is less than 1× 10−9,
which corresponds approximately to an energy con-
vergence criteria of 1.2× 10−5 eV/atom .

The above procedure was repeated for a random
configuration, and five configurations with SRO, for
each composition. The SRO configurations were de-
rived from MC simulations using the approach and
temperatures based on the values of Ttr listed in the
previous section. To gather a statistical distribution
of dislocation core energies, the dislocation dipole
was initialized at each independent Peierls valley po-
sition for each of the configurations. Figure 2 shows
representative relaxed dislocation core structures in
the (a) random, (b) 1.4Ttr, and (c) 1.1Ttr configura-
tions of NbMoTa. Similar dislocation core structures
are also observed in other systems, indicating that
the non-degenerate compact core remained the equi-
librium structure for the configurations examined,
irrespective of the composition or degree of SRO.

To compute core energies for each relaxed super-
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FIG. 1. Supercell setup with a dislocation dipole, where the DAPB is marked by the light blue line and the dislocation
cores with opposite Burgers vectors are highlighted with yellow circles. The left panel is viewed along the C3 direction
(corresponding to the dislocation line direction), and the right panel is viewed from the perpendicular C1 direction,
where C1=[1̄1̄2], C2=[11̄0], and C3=[111]. The supercell is repeated along the C3 direction once, giving a thickness of
two Burgers vectors. This thickness is given for all systems considered in the text. The example shown in this figure
is for the NbMoTaW quaternary system containing only 1848 atoms for better illustration, and the chemical species
are indicated by the different colors. The supercell where the statistical analysis are made in this paper contains 7392
atoms.

(a) (b) (c)

FIG. 2. The differential displacement map [33], viewed along the dislocation line (i.e., [111]) direction, for the relaxed
dislocation core structures in the (a) random, (b) 1.4Ttr, and (c) 1.1Ttr configurations of NbMoTa. The black squares,
and the black and gray plus signs represent the different stacking layers along [111] direction. Note that only the
displacements larger than 0.1× 1

2
⟨111⟩ are shown.

cell, we followed the procedure described by Yin et
al. [23]. Specifically, we computed the excess energy
as the difference between the relaxed energy for a
given configuration with and without the dislocation
dipole. From this excess energy (Eexcess), the core
energy (Ecore) is derived from the following formula:

Eexcess = Ecore + Eelas + EDAPB (1)

where Eelas is the elastic energy contribution, and
EDAPB is the DAPB energy in configurations with
SRO.
The elastic energy is calculated using the method

described in Ref. [36], as implemented in the Ba-
bel code. In computing these quantities we assumed
that they varied negligibly with SRO. We computed
their values for systems with local order at each
composition for a configuration corresponding to the
equilibrium state of SRO at 1.1Ttr. The values
of the elastic constants required to compute elas-

tic energies were calculated for each refractory sub-
system with random and SRO configurations using
LAMMPS and the MTP potential. For each configu-
ration, uniaxial (εxx, εyy, εzz) and simple shear (εxy,
εxz, εyz,) deformation were applied with a strain
ε = 1×10−6, followed by atomic relaxation with the
same minimization criteria as described in the para-
graphs above. From the calculated stresses for each
simulation cell, the corresponding elastic moduli are
derived. Since the method in Ref. [36] requires elas-
tic constants of the single-crystal elastic constants
with cubic symmetry, we further reduced the cal-
culated elastic modulus tensor into three cubically
symetrized values(C̃11, C̃22, and C̃33):

C̃11 =
C11 + C22 + C33

3

C̃12 =
C12 + C13 + C23

3
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C̃44 =
C44 + C55 + C66

3

where the Cij denote elastic constant values in a
given random or SRO configuration. The sym-
metrized elastic constants are used also to generate
the initial displacement fields for inserting the dislo-
cation dipole into the supercell.
The DAPB energy results from the “cut” plane

between the dislocation cores, which results in a rel-
ative displacement of the lattice planes by a Burgers
vector, thus disrupting the SRO (see Fig. 1). The
DAPB energy was computed following the approach
described by Yin et al. [23], as illustrated in Fig.
S1. In this approach, one layer of atoms with the
same length as the planar cut is shifted by one Burg-
ers vector in a configuration without a dislocation
dipole (Fig. S1). From half the difference between
the relaxed energy of this configuration, and the cor-
responding reference bulk configuration, the value of
the the DAPB energy (EDAPB) is derived (the fac-
tor of a half accounts for the two DAPBs created by
the procedure). This calculation of EDAPB was per-
formed at every possible atomic layer to maximize
statistical sampling.
To quantify the effect of SRO on the roughness

of the Peierls energy landscape, we report values for
the variance (σ2

core) of the core energy. To compute
this value for a given configuration, it is necessary
to separate the variance of excess energy into the
variances from its contributing factors. By assump-
tion, the elastic energy is constant in a given atomic
configuration and hence does not contribute to the
variance (σ2

excess) of the excess energy. Assuming
that the core energy and DAPB energy are uncor-
related, their contributions to the variance of the
excess energy are additive:

σ2
excess = σ2

core + σ2
DAPB (2)

where σ2
DAPB is the variance of the DAPB energy.

In what follows, we will examine how the disloca-
tion core energy distribution is affected by the equi-
librium ordering, and chemical composition.

III. RESULTS

A. Short Range Order Parameters

The SRO derived from the on-lattice MC simula-
tions described in Sec. II B is plotted in Fig. 3 con-
sidering first and second nearest neighbor Warren-
Cowley (WC) SRO parameters [37, 38]. For a pair
of types i and j, the WC parameter is defined as:

αij = 1− P (j|i)/cj (3)

where the P (j|i) is the probability of finding the
species j as a neighbor to a site occupied by species
i, and cj is the relative concentration (mole fraction)
of species j. A negative WC parameter indicates an
enhancement of bonds of type i− j in the neighbor
shell relative to the random state, while a positive
value indicates a reduction in pairs of this type.

The WC parameters plotted in Fig. 3 are sig-
nificant in magnitude, and display values consis-
tent with tendencies to form long-range-ordered
phases. Within the nearest neighbor shell, the most
dominantly preferred bonding pairs are Mo-Ta (in
NbMoTaW, NbMoTa, MoTaW, and MoTa), Mo-Nb
(in NbMoTaW, NbMoW, and NbMo), and Ta-W
(in NbMoTaW and TaW), while the main unfavor-
able pairs are Mo-Mo (in every Mo containing sys-
tem), Ta-Ta (in every Ta containing system), and
Nb-Ta (in NbMoTaW and NbMoTa). The qualita-
tive trends in the SRO are preserved up to 2.3Ttr

(Fig. 3). At 300K, the equilibrium configurations
of the binaries (NbMo, MoTa, and TaW) and the
NbMoTaW system are consistent with an ordered
B2 structure, where in the quaternary alloy, Mo &
W occupy one sublattice while Nb & Ta occupy the
other. Though the ordering structure for the ternary
alloys is less obvious, the general bonding prefer-
ences, including B2 phase formation in the binaries
and the NbMoTaW system, agree qualitatively with
previous studies [23, 24, 39–41].

B. Average dislocation core and DAPB energy

Figure 4 plots the distributions of the excess en-
ergies of the dislocation dipole supercells for each
composition, and each of the six states of SRO: ran-
dom, 1.1Ttr, 1.4Ttr, 1.7Ttr, 2.0Ttr, and 2.3Ttr. The
histograms of the calculated excess energies are each
well fit to by a Gaussian distribution, and can be
characterized by the mean and variance (σ2

excess).
Both of these quantities vary based on the compo-
sition and state of SRO. To justify the assumption
of Gaussian distributions we have analyzed higher
order moments, namely the third and fourth order
moments defined through the skewness and Kurto-
sis, respectively. As shown in the SI, these analyses
support the assumption that the excess energies are
well modeled by Gaussian distributions.

We consider next the average values of the core
and DAPB energies derived from these Eexcess dis-
tributions. Their contributions to the average ex-
cess energies are plotted in Fig. 5, where it should
be emphasized that the core energies are averaged
over the two dislocations in the supercell. For the
average core energies for the NbMoTaW system, the
values derived in this study with the MTP potential
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FIG. 3. First- (solid) and second- (hatched) nearest neighbor Warren-Cowley SRO parameters for each atom pair
in NbMoTaW and its ternary and (some) binary subsystems. For each panel, and each pair type, the values from
left to right correspond to temperatures of 1.1Ttr, 1.4Ttr, 1.7Ttr, 2.0Ttr and 2.3Ttr, where the values of Ttr for each
system can be found in Sec. II.

agree to within 10% of the values derived in the ab
initio studies by Yin et al [23]. This level of dis-
crepancy likely arises due to the differences between
the descriptions of the potential energy used here
versus the DFT results, and/or the larger system
size used in the present study. It is important to
note that the values of the core energies presented
in this manuscript depend on the choice of core ra-
dius (rcore) used in the calculations of the elastic en-
ergy. The value chosen was the default value used in
Babel, namely rcore= a0, where a0 is the lattice con-
stant. If this value is changed the elastic energy will
change accordingly, as will the mean values of the
core energy for each system. For example, a change
from rcore= a0 to rcore= 1.3a0 leads to an increase in
the core energy by approximately 14-25% for the dif-
ferent systems considered in our study. Importantly,
however, the elastic energy, by definition, does not

vary with the position of the dislocations within the
supercells, so that changes in this quantity will not
influence the calculated variances of the core-energy,
and conclusions concerning the effect of SRO upon
them.

Average core energies are plotted in Fig. 5 and
listed in Table I. These values are found to dis-
play larger variations with composition than with
the state of SRO. Specifically, for each of the sub-
systems considered, the largest difference between
the core energies for the random configuration and
the state with the largest degree of SRO (i.e., at
1.1Ttr) is 9%(0.1 eV/b) for MoTa, with the state
with SRO having lower core energy. This trend of
smaller core energy for the state with largest degree
of SRO compared to the random configuration holds
for all of the systems considered, although the mag-
nitude of the change is smaller for all of the other
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FIG. 4. The supercell excess energy distributions for the NbMoTaW and its subsystems. In each panel the bars
indicate the calculated histogram data, and the solid lines indicate Gaussian fits. For each panel, results are plotted
for random configurations (grey bars and solid black lines), and configurations with different levels of SRO as indicated
in the legend according to the equilibration temperatures, where the values of Ttr for each system can be found in
Sec. II

systems. By contrast, the variation of average core
energy with composition is larger, as can be seen
from a comparison of the values for the random con-
figurations, which span a range of approximately 0.3
eV/b (about 20% of the maximum value). An inter-
esting feature of the calculated results for core ener-

gies is that there is no clear trend with the number
of components. The largest core energies are found
in the systems containing W atoms.

The contribution of the DAPBs to the average ex-
cess energies are plotted in Fig. 5, and in Table II the
average values of EDAPB are plotted in the natural
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FIG. 5. The average supercell excess energy decomposed into contributions (from bottom to top) corresponding to
the core energy (Ecore), the elastic energy (Eelas), and DAPB energy (EDAPB). For each system results are plotted
for random configurations (black and grey) and configurations with varying degrees of SRO as indicated in the legend
according to the different equilibration temperatures (the values of Ttr for each system can be found in Sec. II). The
average DAPB energy for the random cells is zero, thus, not shown in this figure.

TABLE I. Average dislocation core energy for different compositions and levels of SRO. The first column lists the
system composition, and the second through seventh the values of the core energies (in units of eV/b) for different
levels of SRO.

1.1Ttr 1.4Ttr 1.7Ttr 2.0Ttr 2.3Ttr random

NbMoTaW 1.3 1.3 1.3 1.3 1.3 1.3

NbMoTa 1.2 1.2 1.2 1.2 1.2 1.2

NbMoW 1.3 1.4 1.4 1.4 1.4 1.4

MoTaW 1.4 1.4 1.4 1.4 1.4 1.4

NbMo 1.1 1.2 1.2 1.2 1.2 1.2

MoTa 1.0 1.1 1.1 1.0 1.0 1.1

TaW 1.2 1.2 1.3 1.2 1.2 1.3

units of energy per unit area. For all of the random
systems considered the average value of EDAPB is
zero within statistical sampling errors, and the mag-
nitudes increase with increasing degree of SRO (i.e.,
decreasing temperature), as is apparent from Table
II. As with the average core energies, there is no
clear trend in the magnitudes of EDAPB with num-
ber of components. The largest values at 1.1 Ttr are
calculated for the MoTa binary, and the NbMoTa
and MoTaW ternaries, where the values are over 90
mJ/m2.

C. Dislocation core energy distribution

We consider next the effect of SRO on the dis-
tribution of core energies, i.e., the extent to which
local ordering flattens the landscape of Peierls val-
ley energies. Fig. 6 decomposes variances of the
excess energies into the contributions from core en-
ergies and DAPBs, for each composition and level of
SRO. Note that the non-zero variance for the DAPB
distribution for random cells is due to the finite size

of the sampled DAPB area, which was chosen to cor-
respond to that present in the dislocation supercells.
Before discussing these results, and the implication
of SRO effects, it is important to emphasize that the
values plotted in Fig. 6 are obtained from a single
supercell. Therefore, it is necessary to determine
the degree to which these results are converged with
respect to sampling statistics.

To check the statistical uncertainties associ-
ated with these results, we considered the four-
component NbMoTaW system, and investigated the
random sample, and the system with the highest
degree of SRO (1.1 Ttr). For each of these two sys-
tems we generated 10 configurations and computed
the distribution of core energies. The error bars in
Fig. 6 are centered on the average values and re-
flect the standard deviation in the variances of the
ten configurations. Assuming normal distribution of
the dislocation core variance, two 90% confidence in-
tervals, for random and 1.1 Ttr SRO configurations,
were constructed based on the above sampling. The
random and the 1.1 Ttr SRO confidence zones do not
overlap, indicating that the variances in the random
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TABLE II. Average DAPB energy (mJ/m2) for different compositions and levels of SRO. The average values of
EDAPB for the random simulation cells are zero within statistical sampling errors and thus are not shown in this
table.

1.1Ttr 1.4Ttr 1.7Ttr 2.0Ttr 2.3Ttr

NbMoTaW 84 55 40 36 32

NbMoTa 93 68 50 39 34

NbMoW 59 44 34 25 20

MoTaW 97 74 62 51 38

NbMo 87 57 44 34 28

MoTa 130 85 54 51 34

TaW 94 67 46 38 30

FIG. 6. The effect of SRO on the variances of core energy distributions in subsystems of NbMoTaW. The solid and
hatched bars indicate contributions to the variances of excess energies arising from core energies and DAPB energies,
respectively. The average DAPB energy for the random cells is zero, and the non-zero variance for the DAPB
distribution for random cells is due to the finite size of the sampled DAPB area. For each system results are plotted
for random configurations (black and grey) and configurations with varying degrees of SRO as indicated in the legend
according to the different equilibration temperatures (the values of Ttr for each system can be found in Sec. II). The
error bars plotted for NbMoTaW represent estimated uncertainties in the variances of core energies,estimated in the
manner described in Sec. III C.

and the 1.1 Ttr SRO configurations are statistically
different. For the other systems considered in this
work, we will assume that the statistical sampling er-
rors derived for the NbMoTaW system are represen-
tative across the different compositions and states of
SRO.
Based on the above assumptions, we interpret the

results presented in Fig. 6. For NbMoW and TaW,
we find statistically significant differences in the core
energy variances between the random configuration
and all of the samples with SRO (i.e., for all sam-
ples equilibrated at T below 2.3Ttr). By contrast,
the changes in core-energy variances with SRO for
NbMoTa and MoTa are sufficiently small that they
cannot be discerned with the level of sampling em-
ployed in this work. For NbMoTaW, NbMo, and
MoTaW, statistically significant differences in the
core-energy variances are found relative to the ran-
dom configuration, only for those systems where the
degree SRO is sufficiently large (i.e., for T/Ttr less

than approximately 2.0 for the first two composi-
tions, and approximately 1.7 for the third).

IV. DISCUSSION

Overall, the results in the current work suggest
that the effects of SRO on the variance of the dis-
tribution of core energies can be large (over 50%
for MoTaW and TaW). However, the degree of nar-
rowing of core energies shows no clear trend with
composition, or number of components.

Given the potentially significant effects of SRO
on core-energy distributions in the refractory con-
centrated alloys investigated here, it is interesting
to consider the conditions under which this local or-
der may form kinetically. For this purpose we esti-
mate SRO relaxation times, i.e., the time for SRO
to form from an initially random configuration, us-
ing concentration-wave kinetics theory [42]. A re-
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FIG. 7. The relaxation time, which approximates the
time required for the equilibration of SRO, calculated us-
ing the expressions from Cook [42], based on mean-field
concentration-wave theory. Results are plotted assuming
a representative ordering temperature of 850K, and the
interdiffusion coefficients measured for NbMo [43] and
TaW [44].

cent comparison between this mean-field theory and
kinetic Monte-Carlo simulations for model binary al-
loys demonstrated agreement at the level of an order
of magnitude [45]. For the present system, we con-
sider binary alloys and employ formulas presented
by Cook [42], who provides a simple method for as-
sessing the isothermal equilibration time of binary
regular solutions based on experimental interdiffu-
sion measurements.
The theoretical diffusivity of NbMoTaW lies be-

low that of Nb and Ta, but well above that of Mo
or W [46]. Thus, the behavior of this class of alloys
may be roughly gauged by considering interdiffusion
in the two distinct binary systems for which experi-
mental data are readily available, specifically NbMo
[43] and TaW [44]. While none of these systems can
be realistically considered regular solutions [47], the
approximation is nonetheless employed with some
frequency [48, 49] and is assumed to be adequate for
the purposes of these estimates.
The resulting expression for the relaxation time

(τ) is:

τ =
a2

32D̃

T + Tc

T − Tc
, (4)

where D̃ is the interdiffusion coefficient and Tc is
the critical temperature of ordering [42], which we
approximate here as the value of Ttr derived from the
on-lattice Monte-Carlo simulations presented above.
Figure 7 plots the resulting values of τ for binary

NbMo and TaW alloys. If the values are representa-

tive also for related HEA compositions, they suggest
that typically employed thermal histories realized in
the processing of these materials may lead to the for-
mation of SRO. Specifically, in Ref. [50] NbMoTaW
and NbMoTaWV alloys were annealed at 1673K (ap-
proximately 2Tc) for 19 hours (68,400 s), and in Ref.
[51] NbMoTaW samples were annealed at 2073K
(approximately 2.44Tc) for seven days (604,800 s).
For both systems, these annealing times are signif-
icantly longer than the relaxation times plotted at
the respective temperatures in Fig. 7, suggesting
that they may be sufficient to enable SRO to form
kinetically.

V. CONCLUSION

We present an analysis of the effects of chemical
SRO on 1

2 ⟨111⟩ screw dislocation core energy distri-
butions in bcc RHEA NbMoTaW and its equimolar
ternary and binary subsystems. In each of the sys-
tems considered, chemical SRO equilibriated at tem-
peratures lower than 2.3Ttr does not significantly
change the average value of the core energy, but its
presence decreases the variance of the core energy
significantly in some, but not all of these systems.
Whether SRO “narrows” the Peierls energy distribu-
tion depends on both the chemistry and the equilib-
riation temperature, rather than being determined
exclusively by the number of components. In other
words, the magnitude of the effect of SRO on the
variance of dislocation core energies depends on the
chemistry of the system rather than being dictated
simply by high configurational entropy. Based on
the estimation of ordering kinetics, certain exper-
imental homogenization and operating conditions
could enable the formation of appreciable SRO, such
that the results presented here become relevant for
modeling of mechanical behavior in these systems.
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