
UC Santa Barbara
Ted Bergstrom Papers

Title
Efficient Ethical Rules for Volunteer's Dilemmas

Permalink
https://escholarship.org/uc/item/5m85z473

Author
Bergstrom, Ted

Publication Date
2017-11-27

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5m85z473
https://escholarship.org
http://www.cdlib.org/


Abstract

This paper extends the classic Volunteers Dilemma game to envi-
ronments in which individuals have differing costs and private informa-
tion about their own costs. It explores the nature of symmetric ethical
optimum strategies for Volunteer’s Dilemma games with and without
differing costs. Where costs differ, ethical optima are constructed by
symmetrizing the game with a Rawlsian Veil of Ignorance.
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Efficient Ethical Rules for Volunteer’s

Dilemmas

Ted Bergstrom

September 20, 2017

As you stroll along a well-traveled path, you observe water rushing

from a broken water main. If you believe that nobody else will do

so, you will certainly take the trouble to find a telephone and call the

water department. But since the path is busy, many others will see

the problem. If someone else calls, your effort will be wasted. But

if everybody believes that someone else will call, the problem will go

unreported.

1 The Volunteer’s Dilemma

Andreas Diekmann [10] modeled situations like this with a symmet-

ric n-player, simultaneous-move game that he called the Volunteer’s

Dilemma. In the Volunteer’s Dilemma game, each player can choose

to take action or not. If at least one player acts, then all n players will

receive a benefit b. Those who act must pay a cost c, where 0 < c < b

and hence receive a net benefit of b − c. If no player acts, then all

players receive a net benefit of 0.
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1.1 Symmetric Nash Equilibrium

In the Volunteer’s Dilemma with two or more players, there cannot be a

symmetric Nash equilibrium in which all take action, since if everybody

else acts, one’s own best response is not to act. Nor can there be a

symmetric Nash equilibrium in which none take action, since if nobody

else acts, one’s own best response is to act. In the only symmetric Nash

equilibrium for this game, each player uses a mixed strategy; taking

action with a positive probability less than 1. These results are stated

formally in Proposition 1, a proof of which is found in the Appendix.

Proposition 1. (Diekmann) The n-player Volunteer’s Dilemma has

a unique symmetric Nash equilibrium. With n players, the Nash equi-

librium probability that an individual player takes action is

pN (n) = 1−
(c
b

) 1
n−1

, (1)

which decreases as n increases and asymptotically approaches 0. The

probability that at least one player takes action is

PN (n) = 1−
(c
b

) n
n−1

, (2)

which also decreases with n and asymptotically approaches 1− c
b . The

expected utility of each player is constant with respect to n and equal

to b− c.

Proposition 1 leaves us with a vexing conundrum. The technology

of the Volunteer’s Dilemma game offers the potential for significant

benefits from the formation of larger groups; an action taken by a

single person is sufficient to benefit the entire group, no matter how

large the group. Yet, in the symmetric Nash equilibrium for this game,
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as the number of players increases, the probability that nobody takes

action increases in such a way that none of these potential gains are re-

alized. As group size grows, the expected payoff to each player remains

constant at b− c.

1.2 Optimal Symmetric Mixed Strategies

In the Volunteer’s Dilemma game, inefficiency of symmetric Nash equi-

librium arises from two sources. One is the standard problem of ne-

glected externalities. Individuals do not account for the fact that an

increase in their own probability of taking action benefits all other

players. The second source of inefficiency is a coordination problem.

Players do not know the actions that have been taken by others. Thus,

in equilibrium, there is a positive probability that more than one player

takes costly action, although the action of only one is needed to pro-

duce benefits for all.

Sometimes it is possible to coordinate the actions of players so that

if there is more than one volunteer, only a single volunteer will be

selected to perform the task. For example, potential donors of stem

cells from bone marrow or blood aphoresis join a registry of persons

who have declared their willingness to donate if their contributions are

needed. When a patient is in need of a transplant, if one or more

potential donors of this patient’s immunity type have volunteered, the

registry selects exactly one of these volunteers to make the donation.

[4]. Jeroen Weesie [13] and Ted Bergstrom and Greg Leo [5] analyze

the comparative statics of Nash equilibrium for versions of Volunteer’s

Dilemma in which at most one of the volunteers is required to pay.

Sometimes duplication of effort can be avoided because potential

volunteers can see immediately whether someone else has “beat them
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to it.” Bergstrom [3] studies the case of passers-by on a more or less

crowded highway, who are presented sequentially with the opportunity

to help a distressed traveler. Christopher Bliss and Barry Nalebuff [9],

Marc Bilodeau and Al Slivinski [8] and Weesie [12] analyze a war-of-

attrition game in which the first person to take action is observed by

all and where benefits diminish as time passes. In deciding when to

act, players face a trade-off between the costs of postponement and the

possibility that if one waits a little longer, action will be unnecessary

because someone else will have done it.

This paper studies situations where such coordination is technically

infeasible. In the example at the beginning of this paper, the cost of

informing authorities would be minimized if only one passer-by took

action. But how can this be accomplished? It would not be cost-

effective for everyone who has seen the problem to assemble and choose

one of their number to contact the authorities.

1.3 An Appeal to Ethics

If players could be persuaded to abide by a self-enforced ethical rule

that accounts for the well-being of others, they would all be better

off than in symmetric Nash equilibrium. We will show that in the

absence of coordination, there is an optimal symmetric ethical rule that

mandates each player takes action with a probability that exceeds the

Nash equilibrium probability but is less than 1. Notice that an ethic

that demanded that all players take action would not be efficient. If all

followed this rule, each would have an expected payoff of b− c, which

is no better than the Nash equilibrium payoff.

An optimal symmetric ethical rule for the symmetric Volunteer’s

dilemma game is a strategy that satisfies the Kantian principle: “Use
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the strategy that you would wish that everyone would use”. This rule

is characterized by Proposition 2, which is proved in the Appendix.

Proposition 2. In an n-player Volunteer’s Dilemma, there is an op-

timal symmetric rule that requires each player to use a mixed strategy

in which the the probability of taking action is

pO(n) = 1−
( c

bn

) 1
n−1

, (3)

and the probability that at least one player takes action is

PO(n) = 1−
( c

bn

) n
n−1

. (4)

Tables 1 and 2 illustrate the results of Proposition 2 by showing

the probabilities of taking action in Nash equilibrium and in the ethical

optimal solution. This is done for two special cases, with cost benefit

ratios, c/b = .5 and c/b = .9.

Table 1: Symmetric Nash equilibrium and
Ethical Optimum with c/b = .5

Nash equilibrium Ethical Optimum
n pN (n) PN (n) pO(n) PO(n)

2 0.50 0.75 0.75 0.94
3 0.29 0.65 0.59 0.93
4 0.21 0.60 0.50 0.94
5 0.16 0.58 0.44 0.94
25 0.03 0.51 0.15 0.98
100 0.01 0.50 0.05 1.00
∞ 0.00 0.50 0.00 1.00

The tables show that when the number of players is small, the ethi-

cal optimum strategy requires players to take action with much higher
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Table 2: Symmetric Nash equilibrium and
Ethical Optimum with c/b = .9

Nash equilibrium Ethical Optimum
n pN (n) PN (n) pO(n) PO(n)

2 0.10 0.19 0.55 0.80
3 0.05 0.15 0.45 0.84
4 0.04 0.13 0.39 0.86
5 0.03 0.12 0.35 0.88
25 0.00 0.10 0.14 0.85
100 0.00 0.10 0.05 0.95
∞ 0.00 0.10 0.00 1.00

probability than in Nash equilibrium. They also show, as predicted

by Proposition 1 that in Nash equilibrium, as the number of players

increases, the probability that any individual acts declines asymptoti-

cally toward zero, while the probability that at least one player takes

action declines asymptotically toward 1− c/b.

In these tables, it appears that if all players use the ethical opti-

mal strategy, the probability that any individual takes action declines

asymptotically toward zero and the probability that at least one takes

action approaches 1. This turns out to be true in general. We state

this formally in Proposition 3, which is proved in the Appendix.

Proposition 3. If all players use the optimal ethical rule, then in the

limit as the number of players approaches infinity, the probability that

any single individual takes action approaches zero, but the probability

that at least one player takes action approaches one.

If all players use the optimal symmetric strategy, they will all be

better off than in Nash equilibrium, but in the absence of a coordinat-

ing device, there will still be some probability of duplicated effort. If a

7



coordinating device were available to select a single randomly-chosen

player to take action, then the expected payoff of each player would

be b− c/n, which is higher than expected payoffs in the uncoordinated

ethical outcome.

In Table 3, we show the expected utility, û(n), of each player in

Nash equilibrium, expected utility, ū(n), when all players use the op-

timal ethical strategy, and expected utility, uc(n), of each player in

a coordinated equilibrium where one randomly selected player is as-

signed to take action. We show this for two special cases, where c = .5

and b = 1 and where c = .9 and b = 1,

Table 3: Utility Comparison: Nash Equilibrium û(n);
Ethical Optimum ū(n); and Coordinated Solution uC(n)

c = 0.5, b = 1 c = 0.9, b = 1
n û(n) ū(n) ūc(n) û(n) ū(n) uc(n)

2 0.50 0.56 0.75 0.10 0.30 0.55
3 0.50 0.64 0.83 0.10 0.43 0.70
4 0.50 0.69 0.88 0.10 0.95 0.99
5 0.50 0.73 0.90 0.10 0.57 0.82
25 0.50 0.91 0.98 0.10 0.85 0.96
100 0.50 0.97 0.995 0.10 0.95 0.99

2 Nash Equilibrium when Costs Differ

It is common practice to “simplify” game theoretic models like the

Volunteer’s Dilemma by assuming that all players have identical ben-

efits and costs. While this simplification makes it easy to calculate a

symmetric Nash equilibrium, the resulting mixed-strategy Nash equi-

librium has an air of implausibility. In the symmetric mixed strategy
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equilibrium of the Volunteer’s Dilemma game, all players are indiffer-

ent between the equilibrium mixed strategy and any other probability

mix of the strategies “act” and “don’t act.” Given that this is the case,

why should any player take the trouble to determine the equilibrium

mixed strategy proportions and act accordingly?1 If we allow the re-

alistic possibility that different players have different costs of taking

action, we avoid this conundrum and we can construct a manageable

model in which players use pure strategies in a symmetric Nash equi-

librium. In this case, we find that the optimal symmetric ethical rule

recommends to each player a pure strategy that is determined by that

player’s realized cost of taking action.

Let us assume that the costs, c, of taking action differ among players

and that if at least one player takes action, all players receive the same

benefit, b. Players cannot communicate before deciding whether to

act. Individuals know their own costs, but do not know the costs of

the other players in the game.2 Players costs are chosen by independent

draws from a distribution that is common knowledge. The distribution

from which players’ costs are drawn is assumed to satisfy the following:

Assumption 1. Players’ costs are drawn randomly from a population

with a cumulative distribution of costs, F (·) that is continuously dif-

ferentiable on the interval [`, h] where 0 ≤ ` < b ≤ h. We assume that

F (`) = 0, F (h) = 1, and F ′(c) > 0 for all c ∈ [`, h].

If F (b) < 1, then with positive probability, a player’s costs will

1Herbert Gintis [11] describes this quandry as “the mixing problem”.
2The assumption of incomplete information seems appropriate for games in which play-

ers are thrown together by chance for a single interaction. Situations where the same
players are engaged in repeated encounters and know each other well might better be
treated as games of complete information. Weesie [12] characterizes asymmetric equilibria
for Volunteer’s Dilemma games with differing payoffs, but complete information in which
players know each other’s payoffs.
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exceed individual benefits. In Nash equilibrium, such a player would

not act even if nobody else takes action.

The game that begins before individuals learn their costs can be

modelled as a symmetric game. For each player, a strategy is a function

that maps costs, once revealed, to actions. This game has a symmetric

Nash equilibrium in which every player uses a threshold strategy of

the form: “Act if and only if your costs, c, are no larger than the

threshold level ĉ.” The threshold strategy with threshold ĉ will be a

Nash equilibrium if and only if, when all other players follow this rule,

a player with realized cost c < ĉ will have a higher expected payoff

from acting than not and a player with realized cost c > ĉ will have a

higher payoff from not acting.

Let us define G(c) = 1 − F (c). If the n − 1 other players all use

the threshold strategy with threshold ĉ(n), then a player whose cost

is ĉ(n) must be indifferent between acting and not acting. For this

player, the expected payoff from not acting is b
(

1−G (ĉ(n))
n−1
)

and

the expected payoff from acting is b− ĉ(n). This implies that

b
(
1−G(ĉ(n))n−1

)
= b− ĉ(n), (5)

or equivalently,

bG(ĉ(n))n−1 = ĉ(n). (6)

We have the following result, which is proved in the Appendix.

Proposition 4. In an n-player Volunteer’s Dilemma game, where the

distribution of costs is common knowledge and satisfies Assumption

1, there is a unique Nash equilibrium threshold strategy, with threshold

ĉ(n) ∈ (`, b) such that ĉ(n) decreases as n increases and limn→∞ ĉ(n) =
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`.

The equilibrium probability that nobody takes action when there

are n players is G (ĉ(n))
n
. From Equation 6, it follows that

G (ĉ(n))
n

= G (ĉ(n))
n−1

G (ĉ(n)) =
1

b
ĉ(n)G (ĉ(n)) (7)

The function G(·) is assumed to be continuous and G(`) = 1. Ac-

cording to Proposition 4, limn→∞ ĉ(n) = `. It follows from Equation

7 that

lim
n→∞

G (ĉ(n))
n

= lim
n→∞

1

b
ĉ(n) lim

n→∞
G (ĉ(n))

=
`

b
G(`)

=
`

b
(8)

Let us define F ∗(c, n) to be the the probability that at least one

player takes action when there are n players, each of whom uses a

threshold strategy with threshold c. Then

F ∗(c, n) = 1−G (c)
n
. (9)

Therefore Equation 8 implies the following:

Proposition 5. In symmetric Nash equilibrium for an n−player Vol-

unteer’s Dilemma where the distribution of costs satisfies Assumption

1, the limiting probability that at least one player takes action is

lim
n→∞

F ∗(ĉ(n), n) = 1− `

b
. (10)
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Proposition 5 has the following corollary.

Corollary 1. If ` = 0, then in symmetric Nash equilibrium, the prob-

ability that someone takes action approaches one as n gets large.

Where ` > 0, the limiting value of the probability that someone

takes action is less than one. It is of some interest to explore whether

this probability increases or decreases with the number of players.

Proposition 4 informs us that ĉ(n) is a decreasing function of n.

Therefore the probability that in equilibrium, nobody takes action in-

creases (decreases) as n increases if cG(c) is a decreasing (increasing)

function of c over the interval (0, 1). Differentiating, we find that

d

dc
(cG(c)) = G(c) + cG′(c) = G(c)

(
1 +

cG′(c)

G(c)

)
. (11)

The ratio cG′(c)/G(c) in Equation 11 could be written as c
G
dG
dc ,

which is recognizable as the elasticity of the function G with respect

to c. It is useful to give this expression a name of its own.

Definition 1. The cost elasticity of refusals is the ratio ηr(c) = cG′(c)
G(c) .

Refusals are cost-elastic at c if ηr(c) < −1 and cost-inelastic if ηr(c) >

−1.

An immediate consequence of Equation 11 and Definition 1 is the

following:

Lemma 1. The function cG(c) is increasing in c over the interval

(0, 1) if refusals are cost-inelastic and decreasing over this interval if

refusals are cost-elastic.

According to Proposition 4, ĉ(n) is a decreasing function of n. With

n players, the Nash equilibrium probability that nobody takes action

is ĉ(n)G (ĉ(n)). It follows from Lemma 1 that ĉ(n)G (ĉ(n)) increases
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with n if refusals are cost-elastic, and decreases with n if refusals are

cost-inelastic. Since the probability that someone takes action is one

minus the probability that nobody takes action, we have the following:

Proposition 6. If Assumption 1 is satisfied, then in Nash equilib-

rium, the probability F ∗ (ĉ(n), n) that at least one player takes action

decreases with n if refusals are cost-elastic and increases with n if re-

fusals are cost-inelastic. In either case, as n approaches infinity, this

probability approaches 1− `
b .

3 Optimal Ethical Strategies when Costs

Differ

In order to formulate an optimal ethical rule, we impose a “veil of ig-

norance” on differences in costs and benefits in such a way that before

the veil is removed, all players seek to maximize the same objective

function. We imagine an initial position in which players do not yet

know their own costs, but expect them to be drawn at random from

a probability distribution that is common knowledge. In the initial

position, players have identical prospects. We assume that it is com-

mon knowledge that the distribution F (·) from which individual costs

are drawn satisfies Assumption 1 of the previous section. We consider

symmetric strategies that take the form of a threshold cost level c̄ and

a mandate that any player should take action if and only if this player

has costs c ≤ c̄.

For every n > 1, there is an ethical optimum threshold strategy,

with threshold c̄(n). Viewed from the initial position, this strategy, if

followed by all players yields a higher expected utility for each than
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would any other strategy used by all players.

Proposition 7. If the distribution of costs satisfies Assumption 1, and

if nb > `, then there is a unique ethical optimum strategy c̄(n). The

threshold c̄(n) satisfies the equation

bG (c̄(n))
n−1

=
c̄(n)

n
. (12)

Not surprisingly, the ethical optimal threshold c̄(n) exceeds the

Nash equilibrium threshold ĉ(n). We show this as follows:

Corollary 2. For all n > 1, c̄(n) > ĉ(n) where ĉ(n) is the symmetric

Nash equilibrium threshold.

Proof. Where ĉ(n) is the symmetric Nash equilibrium threshold, for n

players, it follows from Equations 6 and 12 that for all n > 1

b
G (c̄(n))

n−1

c̄(n)
=

1

n
< 1 = b

G (ĉ(n))
n−1

ĉ(n)
. (13)

Since G(c) > 0 and G′(c) < 0 it must be that that G(c)n−1

c is a

strictly decreasing function of c for c > 0. Therefore the inequality in

Expression 13 implies that c̄(n) > ĉ(n).

Proposition 8 informs us that in the limit, for large n, the ethi-

cal optimal threshold, c̄(n), like the Nash equilibrium threshold, ĉ(n),

approaches `, the lower bound of the support of the distribution of

costs. However, c̄(n) approaches ` more slowly than does ĉ(n), so that

the limiting probability that at least one player takes action is 1 if all

players use the ethical optimal threshold and 1− `
b in symmetric Nash

equilibriium.
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This result is stated formally in Proposition 8, which is proved in

the Appendix.

Proposition 8. If the distribution of costs satisfies Assumption 1,

then limn→∞ c̄(n) = ` and limn→∞ F ∗ (c̄(n), n) = 1.

4 Examples

We illustrate our general results with examples from two special distri-

bution families, the Pareto distributions and the uniform distributions.

4.1 Pareto Distribution

The Pareto distribution with parameters ` > 0 and λ > 0 has a cumu-

lative distribution function of the form

F (c) = 1−
(
`

c

)λ
(14)

with support (`,∞). For the Pareto distribution,

G(c) =

(
`

c

)λ
(15)

and thus the cost elasticity of refusal is ηr(c) = −λ.

Nash Equilibrium

From Proposition 6, it is immediate that:

Remark 1. If the distribution of costs is a Pareto distribution with

parameters ` and λ, then the symmetric Nash equilibrium probability,

F ∗ (ĉ(n), n), that at least one player takes action decreases with group

size if λ > 1 and increases with group size if λ < 1.
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If costs are Pareto distributed with parameters ` and λ, we can

solve directly for ĉ(n) and c̄(n). According to Equation 6, it must be

that bG (ĉ(n))
n−1

= ĉ(n). For the Pareto distribution, this implies that

b

(
`

ĉ(n)

)λ(n−1)
= ĉ(n) (16)

Rearranging terms of 16, we have

ĉ(n) = b
1

1+λ(n−1) `
λ(n−1)

1+λ(n−1) (17)

and hence the probability that any individual takes action is

1−G (ĉ(n)) = 1−
(

`

ĉ(n)

)λ
= 1−

(
`

b

) λ
1+λ(n−1)

. (18)

The probability that at least one player takes action is then

F ∗ (ĉ(n), n) = 1−G (ĉ(n))
n

= 1−
(
`

b

) λn
1+λ(n−1)

(19)

Ethical Optimum Strategies

From Equation 12 of Proposition 7 it follows that

b

(
`

c̄(n)

)λ(n−1)
=
c̄(n)

n
(20)

From Equations 16 and 20, it follows that

c̄(n)

ĉ(n)
= n

1
1+λ(n−1) . (21)
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Equations 15 and 21 imply that

G (c̄(n))

G (ĉ(n))
=

(
ĉ(n)

c̄(n)

)λ(n−1)
= n

−λ(n−1)
1+λ(n−1) . (22)

Numerical Examples

Tables 4 and 5 show outcome probabilities for special cases where b = 2,

` = 1 and with λ = .5 and λ = 2, respectively. Table 4 shows that

if λ = .5, the Nash equilibrium probability, F ∗ (ĉ(n), n), that at least

one player takes action diminishes as n increases. Table 5 shows that

if λ = 2, this probability increases with n. In both cases, F ∗ (ĉ(n), n)

approaches `/b = .5. The tables also show that for small n, the ethical

optimum recommends a much higher probability of acting than the

Nash equilibrium probability.
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Table 4: Pareto Distribution with
λ = .5, ` = 1, and b = 2

Nash equilibrium Ethical Optimum
n F (ĉ(n)) F ∗ (ĉ(n), n) û(n) F (c̄(n)) F ∗ (c̄(n)) ū(n)

2 .21 .37 .48 .37 .60 0.62
3 .16 .41 .62 .36 .74 0.91
4 .13 .43 .70 .34 .81 1.11
5 .11 .44 .76 .32 .85 1.24
25 .03 .49 .95 .14 .98 1.79
100 .01 .50 .99 .05 .99 1.94
∞ .00 .50 1.00 0 1.00 2.00

Table 5: Pareto Distribution with
λ = 2, ` = 1 and b = 2

Nash equilibrium Ethical Optimum
n F (ĉ(n)) F ∗ (ĉ(n), n) û(n) F (c̄(n)) F ∗ (c̄(n), n) ū(n)

2 .37 .60 .79 .60 .84 0.95
3 .24 .56 .87 .51 .88 1.17
4 .18 .55 .91 .45 .91 1.30
5 .14 .54 .93 .40 ..92 1.39
25 .03 .51 .99 .15 .98 1.81
100 .01 .50 1.00 .05 1.00 1.94
∞ .00 .50 1.00 .00 1.00 2.00

4.1.1 Uniform Distribution

Consider the uniform distributed on an interval [`, h] where 0 ≤ ` <

b ≤ h. Then F (c) = c−`
h−` and G(c) = 1− F (c) = h−c

h−` .

With the uniform distribution, the cost elasticity of refusal is

ηr(c) =
cG′(c)

G(c)
=
−c
h− c

. (23)
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In this case, the cost elasticity of refusal is not constant but depends

on c. From Equation 23, it follows that if c < h/2, refusals are cost-

inelastic, with ηr(c) > −1 and if c > h/2, refusals are cost-elastic, with

ηr(c) < −1.

Although the cost-elasticity of refusals at the threshold ĉ(n) de-

pends on the value of c(n), some simple conditions on the parame-

ters of the distribution can confine ĉ(n) to either the cost-inelastic or

the cost-elastic region. According to Proposition 4, it must be that

` < ĉ(n) < b for all n ≥ 2. Therefore if b < h/2, it must be that

ĉ(n) < h/2 and hence refusals are cost-inelastic at ĉ(n). If, on the

other hand, h/2 < `, then since ĉ(n) > `, it must be that if ĉ(n) > h/2

and therefore refusals are cost-elastic at ĉ(n). From these facts and

Proposition 6 we conclude that

Remark 2. If the distribution of costs is uniform on the interval [`, h]

and if b < h/2, the Nash equilibrium probability that at least one player

takes action decreases with the number of players. If h/2 < `, this

probability increases with the number of players.

Tables 6 and 7 illustrate the general result of Remark 2. In the

example of Table 6, b < h/2 and hence refusals are cost-inelastic at

ĉ(n) for n ≥ 2.. In the example of Table 7, h/2 < ` and refusals are

cost-elastic at ĉ(n) for n ≥ 2. In the former case, the Nash equilibrium

probability that at least one person acts increases and in the latter

case this probability decreases with n.
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Table 6: Uniform Distribution on the interval [1, 5] with b = 2

Nash equilibrium Ethical Optimum
n ĉ(n) ηr(ĉ(n)) F (ĉ(n)) F ∗ (ĉ(n), n) c̄(n) F (c̄(n)) F ∗ (c̄(n), n)

2 1.67 -0.50 0.17 0.31 2.50 0.38 0.61
3 1.52 -0.44 0.13 0.34 2.45 0.36 0.74
4 1.43 -0.40 0.11 0.36 2.34 0.34 0.81
5 1.36 -0.37 0.09 0.38 2.08 0.27 0.79
10 1.20 -0.31 0.05 0.43 1.92 0.23 0.93
25 1.10 -0.28 0.03 0.46 1.52 0.13 0.97
100 1.00 -0.25 0.00 0.50 1.20 0.05 0.99
∞ 1.00 -0.25 0.00 0.50 1.00 0.00 1.00

Table 7: Uniform Distribution on the interval [3, 5] with b = 4

Nash equilibrium Ethical Optimum
n ĉ(n) ηr(ĉ(n)) F (ĉ(n)) F ∗ (ĉ(n), n) c̄(n) F (c̄(n)) F ∗ (c̄(n), n)

2 3.33 -2.00 0.17 0.31 4.00 0.50 0.75
3 3.21 -1.79 0.10 0.28 3.86 0.43 0.82
4 3.15 -1.71 0.08 0.27 3.77 0.38 0.85
5 3.12 -1.66 0.06 0.27 3.69 0.34 0.90
10 3.00 -1.58 0.03 0.26 3.48 0.24 0.93
25 3.02 -1.53 0.01 0.25 3.25 0.13 0.96
100 3.01 -1.51 0.00 0.25 3.10 0.05 0.99
∞ 3.00 -1.50 0.00 0.25 3.00 0.00 1.00

Remark 2 does not apply when ` < h/2 < b. In this case, examples

can be found in which refusals are cost-elastic for small n and cost-

inelastic for large n. Hence the probability that at least one person

acts decreases with n for small n and increases with n for large n.

Table 8 shows an example in which ` < h/2 < b. In this example, the

Nash equilibrium probability that at least one player decreases with n

for n = 2 and n = 3 and increases with n for n > 3.
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Table 8: Uniform Distribution on the interval [2, 5] with b = 4

Nash equilibrium Ethical Optimum
n ĉ(n) ηr(ĉ(n)) F (ĉ(n)) F ∗ (ĉ(n), n) c̄(n) F (c̄(n)) F ∗ (c̄(n), n)

2 2.86 -1.33 0.29 0.4898 3.63 0.54 0.79
3 2,59 -1.07 0.20 0.4798 3.48 0.49 0.87
4 2.45 -0.96 0.15 0.4796 3.24 0.41 0.88
5 2.39 -0.90 0.12 0.4802 3.12 0.37 0.90
10 2.19 -0.78 0.07 0.4875 2.77 0.26 0.95
25 2.08 -0.71 0.03 0.4938 2.43 0.14 0.98
100 2.02 -0.68 0.01 0.4979 2.15 0.05 0.99
∞ 2.00 -0.67 0.00 0.5000 2.00 0.00 1.00

Tables 6-8 illustrate the general result that in Nash equilibrium

and also in the ethical optimum, the probability that any single indi-

vidual takes action approaches zero as n becomes large. However, as

n becomes large, the Nash equilibrium probability that at least one

takes action approaches `/b, while if all players use the ethical opti-

mum strategy, the probability that at least one takes action approaches

unity.

5 Conclusion

Diekmann’s model of a Volunteer’s Dilemma with identical players

yields a surprising and somewhat distressing conclusion. This game

displays strong technical returns to scale for large groups—if at least

one player takes a costly action, all will benefit. But the potential gains

from group size are entirely dissipated by the “free-rider problem.” As

group size increases, the Nash equilibrium probability that at least one

player takes action is reduced, and the equilibrium expected utility of

each player remains constant.
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The dissipation of returns to scale is, in general, less severe in a

Volunteer’s Dilemma if benefits and/or costs of action differ among

players. We consider a model in which if at least one player takes

action, all group members receive the same benefit, but costs of acting

differ between individuals. Nash equilibrium strategies take the form

of threshold strategies, where players will take costly action if and

only if their costs are below the threshold. In this model, although the

equilibrium threshold and hence the probability that any individual

takes action decreases, the probability that at least one player takes

action may either increase or decrease, depending on the elasticity of

the distribution of costs.

We show examples in which the probability that someone takes ac-

tion increases with group size and decreases with group size. In the

limit, as group size approaches infinity, the Nash equilibrium proba-

bility that any individual acts approaches zero, while the probability

that at least one player takes action approaches 1− `/b where b is the

benefit received by all if someone takes action and ` is the lower bound

of the support of the distribution of costs.

Achieving efficient outcomes in the Volunteer’s Dilemma game re-

quires a balance between two competing forces, the externality that

arises when the action of one player can benefit all, and the wasted

resources that arise when more than one player takes costly action. If

full coordination were possible, in an efficient outcome, only the player

with lowest cost would take action. But in many situations it would be

time-consuming and expensive to coordinate the actions of all players.

Furthermore, a player’s costs of acting are often private information,

known only by the potential actor.

In this environment, we explore the nature of an “optimal ethical
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strategy.” Suppose that players have common priors about the dis-

tribution of costs. Before their own costs are revealed to them, they

consider alternative cost thresholds, where players are mandated to

take action if and only if their costs are below this threshold. Under

our assumptions, there is some threshold c̄ that gives all players the

highest expected payoff before they learn their type. The threshold

strategy with threshold c̄ is the optimal ethical strategy for this group

of players.

For any group of players the optimal ethical strategy prescribes a

higher threshold than the Nash-equilibrium threshold value and hence

leads to a higher probability of acting. If all players use the ethical

optimal threshold strategy, then as n gets large, the probability that

any individual acts approaches 0, while the probability that at least

one acts approaches 1.

This discussion of optimal ethical strategies takes a fully Kantian

approach in which the chosen threshold strategy is the one that would

be best for all if all were to use the same strategy. An alternative

approach, taken by Bergstrom [6, 7] and by Alger and Weibull [1, 2]

is to consider “partially” Kantian rules that ask players to use the

strategy that would be best for them if they believed that each of the

other group members would, with some probability between 0 and 1,

use the same strategy that they use. It would be interesting to explore

the implications of such rules for Volunteer’s Dilemma games in which

costs of helping differ between individuals.

In the Volunteer’s Dilemma model, a costly effort by a single player

results in a benefit b for every group member, regardless of the size of

the group. In many realistic scenarios of mutual aid, as the group gets

larger, there are likely to be more group members in need, so the cost
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of helping the needy increases with group size. In such situations it is

often the case that the efforts of more than one donor can be pooled.

There remains interesting work to be done in studying the effects of

group size on Nash equilibrium and on ethical rules.

Appendix-Proofs of Propositions

5.1 Proof of Proposition 1

Proof. In a mixed strategy equilibrium, each player is indifferent be-

tween taking action and not doing so. Anyone who takes action is

certain to have a net payoff of b − c. In equilibrium, all players must

be indifferent between taking action and not taking action. Therefore,

regardless of the number of players, the expected utility of each player

in a symmetric Nash equilibrium must be b− c.

In a mixed strategy equilibrium for n players who each take action

with independent probability p, a player who chooses the strategy “do

not act” will not pay any cost and will enjoy the benefit b if at least

one other player takes action. Let q = 1 − p. If all other players take

action with probability p then the probability that at least one of the

others takes action is 1−qn−1. Therefore the expected payoff from the

strategy “do not act” is b
(
1− qn−1

)
.

Let us define pN (n) = 1− qN (n) and qN (n) to be the probabilities

respectively that a player acts and does not act in a symmetric mixed-

strategy Nash equilibrium. In this mixed strategy equilibrium, it must

be that the expected payoff is the same from taking action and not

taking action. Therefore it must be that

b
(
1− qN (n)n−1

)
= b− c. (24)
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Rearranging terms in Equation 24, we see that in symmetric equilib-

rium each player takes action with probability pN (n) = 1 − qN (n)

where

qN (n) =
(c
b

) 1
n−1

. (25)

Let us define QN (n) = qN (n) to be the symmetric Nash equilibrium

probability that no player takes action and PN (n) = 1 − QN (n) the

probability that at least one player takes action. Equation 25 implies

that

PN (n) = 1−QN (n) = 1− qN (n)n = 1−
(c
b

) n
n−1

(26)

A simple calculation shows that the equilibrium probability PN (n)

that someone takes action is a decreasing function of n, which asymp-

totically approaches 1− c/b.

5.2 Proof of Proposition 2

Proof. Where the mandated strategy is of the form: take action with

probability 1− x, the probability that at least one player takes action

is 1−xn, and the expected cost to each player of following this strategy

is c(1− x). The expected utility of every player is

b(1− xn)− c(1− x). (27)

Taking the derivative of expression 27, and arranging terms, we see

that expected utility is maximized at x = xn, when

xn = n
−1
n−1

(c
b

) 1
n−1

. (28)

From Equation 28, it follows that xn−1n = 1
n
c
b , which is a decreasing
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function of n. This implies that for n ≥ 2, xn is also a decreasing

function of n,

From Equations 28 and Equation 25, it follows that

xn = n
−1
n−1 qn. (29)

Since n
−1
n−1 < 1 for all n > 1, it must be that 0 < xn < qn and

hence the 1 > 1− xn > 1− qn, which means that the probability that

an individual takes action under the optimal symmetric rule is less

than one, but greater than the probability of taking action in Nash

equilibrium.

5.3 Proof of Proposition 3

Proof. Equation 28 implies that

lim
n→∞

lnxn = lim
n→∞

(
−1

n− 1

)
lnn+ lim

n→∞

(
1

n− 1

)
c

b

= lim
n→∞

(
− lnn

n− 1

)
= 0. (30)

It also follows form Equation 28 that

lim
n→∞

lnxnn = lim
n→∞

(
−n
n− 1

)
lnn+ lim

n→∞

(
n

n− 1

)
c

b

= lim
n→∞

(
−n lnn

n− 1

)
+
c

b

= −∞, (31)

where the final equalities in Equations 30 and 31 are direct conse-

quences of application of L’Hospital’s rule. Since limn→∞ lnxn = 0,
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it must be that limn→∞ xn = 1, and since limn→∞ lnxnn = −∞, it

must be that limn→∞ xnn = 0. Therefore as n→∞, the limiting prob-

ability that any single individual acts is 1 − limn→∞ xn = 0 and the

probability that at least one individual acts is 1− limn→∞ xnn = 1.

5.4 Proof of Proposition 4

Proof. Assumption 1 implies that G(·) = 1−F (·) is a decreasing func-

tion and that G(`) = 1 and G(b) < 1. Let H(c, n) = bG(c)n−1 − c.

Then H is a continuous, strictly decreasing function with H(`, n) =

b − ` > 0 and H(b, n) = bG(b)n−1 − b < 0. Therefore for any n > 1,

there is exactly one solution ĉ(n) ∈ (`, b) such that H(ĉ(n), n) = 0.

To show that ĉ(n) decreases with n, take logs of both sides of Equa-

tion 6 and differentiate with respect to n. This yields the equation

lnG (ĉ(n)) + (n− 1)
ĉ(n)G′ (ĉ(n))

G (ĉ(n))

(
ĉ′(n)

ĉ(n)

)
=
ĉ′(n)

ĉ(n)
(32)

and hence

ĉ′(n)

ĉ(n)
=

lnG (ĉ(n))

1− (n− 1)G
′(ĉ(n))
G(ĉ(n))

(33)

Since 0 ≤ G (ĉ(n)) ≤ 1 and G′ (ĉ(n)) ≤ 0, the numerator of Equation

33 must be negative and the denominator must be positive. It follows

that ĉ′(n) < 0 and hence ĉ(·) is a decreasing function of n.

The sequence ĉ(n) is a bounded monotone sequence. Hence, by

the monotone convergence theorem, this sequence converges to a limit

ĉ ≥ `. Suppose that ĉ > ` ≥ 0. Then G(ĉ) < 1 and therefore for

N sufficiently large, G(ĉ)N−1 < ĉ. Since ĉ is a lower bound for the

sequence of c(n)’s, it must be that ĉ(N) > ĉ. Since G(·) is a decreasing
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function, it must be that G (ĉ(N))
N−1

< G(ĉ)N−1 < ĉ < ĉ(N). But

this contradicts the requirement that G (ĉ(N))
N−1

= Ĉ(N). Therefore

it cannot be that ĉ > `. It follows that ĉ = `.

5.5 Proof of Proposition 7

Proof. With threshold set at c, the probability that any single player

will not take action is G(c) and the probability that at least one player

will take action is 1−G (c)
n
. Individuals will take costly action if and

only if their costs lie below the threshold level c, Before individuals

learn their own costs, the expected value of the costs that each will

have to pay is ∫ c

0

xF ′(x)dx = −
∫ c

0

xG′(x)dx.

Thus, if there are n players and if the threshold is set at c, then, before

individual costs are revealed, the expected utility of every player must

be

b (1−G(c)n) +

∫ c

0

xG′(x)dx. (34)

The first-order necessary condition for c = c̄(n) to maximize Expression

34 is

bnG (c̄(n))
n−1

G′ (c̄(n))− c̄(n)G′ (c̄(n)) = 0. (35)

Let us define

H(c, n) = bnG (c̄(n))
n−1 − c̄(n) = 0 (36)

Since G′(c) > 0 for all c ∈ (`, h), Equation 35 is equivalent to

H(c, n) = 0 (37)
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Since, by assumption, nb > ` and G(`) = 1 it must be that H(`, n) =

nb− ` > 0. Since G(h) = 0, it must be that H(h, n) = −h < 0. Since

H(c, n) is a decreasing function of c, it follows that there is exactly one

solution c̄(n) to the equation H(c, n) = 0. This solution c̄(n) is the

unique symmetric optimal threshold.

5.6 Proof of Proposition 8

Proof. Notice that limn→∞ c̄(n) = ` if and only if for every ε > 0,

there exists N(ε) such that if n > N(ε), then |c̄(n) − `| < ε for all

n > N(ε). To show that limn→∞ c̄(n) = `, let ε > 0 and c ∈ (`, h)

with |c − `| ≥ ε. Then c ≥ ` + ε and since G is strictly decreasing

in c, it must be that G(c) ≤ G(` + ε) < 1. Since G(c) < 1, it must

be that limn→∞ bnG(c)n−1 = 0. It follows that there exists N(ε) such

that bnG(c)n−1 < ε ≤ ` + ε for all n > N(ε). Therefore if |c − `| > ε,

bnG(c)n−1 > c. This implies |c(n)− `| < ε for all n > N(ε). Therefore

lim→∞ c̄(n) = `.

If players use the optimal symmetric threshold strategy, then with

n players, the probability that no player takes action is G (c̄(n))
n

From

Equation 12, it follows that

G (c̄(n))
n

=
c̄(n)

n
G (c̄(n)) (38)

and hence

lim
n→∞

G (c̄(n))
n

= lim
n→∞

c̄(n)

n
lim
n→∞

G (c̄(n))

= lim
n→∞

`G(`)

n

= 0 (39)
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The limiting probability that at least one player takes action is then

1− lim
n→∞

G (c̄(n))
n

= 1 (40)
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