UC Irvine
UC Irvine Previously Published Works

Title
An optimal service ordering for a world wide web server

Permalink
https://escholarship.org/uc/item/5mz5d917

Journal
ACM SIGMETRICS Performance Evaluation Review, 29(2)

Authors

Dalal, Amy Csizmar
Jordan, Scott

Publication Date
2001-11-01

DOI
10.1145/572317.572319

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5mz5d917
https://escholarship.org
http://www.cdlib.org/

An Optimal Service Ordering for a World Wide Web Server

Amy Csizmar Dalal Scott Jordan
Hewlett-Packard Laboratories University of California at Irvine
amy_dalal@hp.com sjordan@uci.edu
Abstract The objective of the web server in the system studied here is

to maximize user perceived performance, which is a decreas-
We consider alternative service policies in a web server withg function of the amount of time the user spends waiting for
impatient users. User-perceived performance is modeled asadile to download from a web server. We assume that the net-
exponentially decaying function of the user’s waiting time, revork connecting the client and server is a static quantity and
flecting the probability that the user aborts the download befdemk solely at what the server does in processing requests. Our
the page is completely received. The web server is modeledhastric of interest is a quantity we call “revenue”, defined as the
a single server queue, with Poisson arrivals and exponentiglhpbability that the user has not aborted a request before it is
distributed file lengths. The server objective is to maximize afiled by the server. We describe revenue as a decaying exponen-
erage revenue per unit time, where each user is assumed to pidgl &unction of the time the request spends in the system before
reward proportional to the perceived performance. When fil@mpleting service. Our goal is to find the service policy that
lengths are i.i.d., we prove that the optimal service policy maximizes the average revenue earned per second by the server.
greedy, namely that the server should choose the job with theSeveral previous research efforts have utilized similar queue-
highest potential reward. However, when file lengths are ig methods to analyze quality of service issues in web servers.
dependently drawn from a set of exponential distributions, vBvth [2] and [5], for instance, demonstrate improvements in
show the optimal policy need not be greedy; in fact, processesponse time at a web server by using a non-traditional ser-
sharing policies sometimes outperform the best greedy policwiige ordering (shortest-connection-first and shortest-remaining-
this case. processing-time, respectively) in place of processor sharing. [6]
uses a queueing model to determine how response time at a
. web server is affected by several parameters, including network
1 Introduction bandwidth, processor speed, and adding additional hosts to a
distributed server system. However, [6] only considers first-in,
Most of today’s web servers handle incoming web requestsfirst-out service ordering, and does not study how alternate poli-
a round robin manner. This method of scheduling requestsciss may affect response time. [1] proposed an improvement
partly a consequence of operating system design and partly duer FIFO service at web servers by using a combination of
to the web server software design. Traditionally, it has been haldmission control and a set of priority queues, thus providing
that processor sharing policies such as round robin yield the bestter QoS at the web server and increasing the throughput of a
“user-perceived” performance, in terms of fairness and respomgeb server as seen by the clients. However, none of these studies
time, when service time requirements are variable. Processonsiders the “impatient user” problem.
sharing policies typically allow shorter jobs to complete before The rest of this paper is organized as follows. In Section 2, we
longer jobs, and the average time a job spends in a system He¥cribe the analytical model used to represent the web server
employs processor sharing is linearly proportional to its requirggistem. In Section 3, we derive the policy which will maximize
service time. the server’s average revenue per unit time for this model. Section
Web users tend to be very impatient and will abort a pendidgliscusses the derivations of the optimal policies for two varia-
request if a response is not received within seconds. Users tiais to the original model and presents a counterexample which
time out in such a manner cause the server to waste resourcelinaits the optimal policies we can consider for one of these ex-
a request that never completes. At a heavily-loaded server wihsions. Finally, we present our conclusions in Section 5.
many requests arriving per second, this may lead to a situation
of “server deadlock”, where the server works at capacity without
completing any requests. 2 System model
We use a queueing theory approach to derive an optimal ser-
vice ordering policy for a system consisting of a web server prgy,r model is an abstraction of the actions that occur at the ses-
cessing requests for files, or web documents, from remote usgjsy, layer due to the HTTP/1.1 protocol [4]. We ignore all

*This paper represents research done while both authors were at North\ﬁ&qpn? a$§OCiated with the net\Nork Iayer, inC!Udmg specifics
ern University. about individual TCP connections associated with requests. We

assume the server is not aware if or when a request is aboBgdepeating this method, we in fact show that we can continue
before it is processed to completion. improving the expected revenue until the idle period lies com-

We model the web server as a single-server queue with a gifetely after all requests are servicédl.
gle stream of Poisson arrivals. The service times of incoming
requests are drawn from an exponential distribution with paramemma 2 An optimal service ordering can be found in the class
etery; service times are independent and identically distributest. policies that switch between jobs in service only upon an ar-
The service time of a request is proportional to the number @fal to or departure from the system.
bytes in the requested file. Further, we assume that swap times
are instantaneous. Proof: We prove this lemma by contradiction. We present the

The web server system alternates between idle cycles, wiggBe where the policies are non-processor-sharing; the processor
no requests are awaiting service, and busy cycles, when at leasfring case follows directly.
one request is awaiting service. Busy and idle CyCleS are ||d8uppose there exists an opt|ma| pouﬁy\/hwh switches be-
and the two are independent. tween jobs in service at some time other than a departure time

We denote the arrival time of requesasz; and the depar- or arrival time over some interval of a sample path in the first
ture time of request under some service poligyast;,. The pusy cycle. At some time intervt; — dl, a,) during this busy
response timef request under policyp is t;, — ;. cycle, the server works on job At time ay, the server switches

The server earns an amount of revenue from serving requgsfob (k + 1), and processes that job for at least the interval
i under policyp equal tog;, (t;,) = e “(»~*. The server [q, q, + dI). No arrivals or departures occur at time. At
collects this amount once requéstieparts the system. Addi-some future time,, the server switches back to serving job
tionally, we define th@otential revenuéor request at atimet \We make no assumptions as to the jobs served in the interval
prior to its departure time ag (t) = e~<(t~=4). [a1 + dl, ay).

Let N denote the number of jobs served in the first busy we construct a policy’ which is identical to policy in the
cycle. By the Renewal Reward Theorem, the average rewqfqg;rvms[o, ay — dl), [ay + dl, a3), and[ay + dI, 00). Our con-
per unit time earned by the server under policis V,,(4) = struction ofp’ depends on the potential revenues of jéksnd
E[Y N, gi,(t;,)]/E[Z1], wheres indicates that the policy starts(k + 1) at timea, , denoted agr, (a1) andg(y11) (a1), respec-
during an idle cycle and, is the length of the first busy/idle cy-tively.
cle. The optimal server policy satisfi€s= max, V,(2). If grt1) (a1) > g, (a1), then we construcp’ as follows:

The policy space under consideratiohjncludes all preemp- | the inteFvaI[al —dl,ay), serve job(k + 1). At ay, switch
tive and non-preemptive policies, policies that work on one rgy job k and servek in the intervalfa;, a; + dl). Then, serve
guest at a time, policies that work on multiple requests simulijgb k in the intervallaz, as + dl). In this casep’ differs from
neously, and both idling and non-idling policies. p only over[a; — dl,a;, + dl). The difference in the expected

revenue under the two policies 1[g(+1) , (a1) + gk, (a1 +
3 Derivation of the optimal service or- @1~ Elgr, (@) +9iki), (a1 + dl)]. By definition, there is no
. . departure at time; under policyp, but there may be a departure
deri ng pollcy ata; under policyp’. Also, jobk cannot depart the system prior
to time as + dI. The difference in expected revenues is thus
Given the above assumptions, we can determine an optimal $gfre—(¢1—+1)) (1 — e—c), which is a positive quantity.
vice ordering policy from the set of the policiesdh Sucha |y, however, g(x11) (a1) < g, (a1), then we construcp’
policy must satisfy a set of requirements which we define beloyy, ., thaty serves jopbk in the intervalla, — dl,a; + dl) and
We then deri_ve the optimal policyfrom the set of remaining poliss e job(k + 1) in the interval[as, as + dl). Here,p’ dif-
cies that satisfy these requirements. fers fromp over the interval§a,a; + dl) and[as,as + di).
e difference in the expected revenue under the two policies
Elgr,, (a1 + dl) + gk, (a2 + dl)] = Elggyr) (a1 +
dl) + gi,(az2 + dI)]. There is no departure at timg under
Proof: We show that this lemma holds using a proof by contr®0licy p, but there may be a departure at either + dl or
diction, which we briefly sketch here. The full proof for this an@2 + d! (or both) under policy’. The expected revenue is thus
all other proofs presented in this paper can be found in [3]. Sugile (€™ —e™®2)(e* —e(+1). Sincey(411), (a1) <
pose there exists an optimal polipyvhich is optimal, yet idles 9&, (a1), 7, must be greater thary,, 1), and the last term in this
over a time intervala;,as) of a sample path in the first busyequation is positive.
cycle while requests are queued. We show that by taking anthus, for each policy’, we have shown that with some
infinitesimally small time interval of sizel, whered! is small nonzero probability},, (s) > V,,(¢), and thereforg cannot be
enough that at most one departure can occur with probabiktg optimal policy]
wdl + o(dl), from [a2, Z1) and swapping this interval with an
interval of sizedl in [a1, a2), the expected revenue improves by emma 3 An optimal policy can be found in the class of non-
some nontrivial positive quantity, establishing a contradictioprocessor-sharing policies.

Lemmal An optimal policy can be found among the class c&h
non-idling policies.

Proof: We consider the two-job case; the n-job case follows Similarly, the expected revenue under policy NPS2 is

directly, since service times are independent. Suppose there ex-)

ists a generalized processor-sharing (PS) policy that generat@g @psAt)] = (ci“) e+ ciuc2 (3)
higher revenue than the best non-processor-sharing (NPS) pol-

icy. Then, over some intervat, b], the server splits its resources However, (1) is just a weighted sum of (2) and (3). Therefore,
between two jobs. Prior to tim® job 1 has spent an amount of(1) cannot be greater than both (2) and (3). Thus, policy PS
time equal tor; in the system, and job 2 has spent a time equadnnot earn a strictly higher revenue than both policy NPS1 and
to 7> in the system. After time, the distribution for the total policy NPS2(1

revenue that the server earns from serving the two jobs undefhe above analysis assumes a fixed percentage of resources
policy PS isgps(t) = g1pg(t) + gapg(t) = cre™"r + c;e=T+, expended by the processor on each job under policy PS; the re-
where sults hold for the variable percentage case as well.

e Ty = min(T}, Ty), with T} andT}; defined as the remainingLemma4 An optimal policy can be found in the class of
service times of jobs 1 and 2, respectively;: is exponen- Markov policies; it is independent of both past and future ar-
tially distributed with parameter. rivals.

o Ty =T + Z, whereZ is an exponentially-distributed ran-This lemma is a simple consequence of the exponential interar-
dom variable with parameter. rival times and service times of the requests in the sysfem.
We now present two definitions which will aid in the deriva-
o If Ty = TY, thency = e™°™ = ¢; andes = e~ = ca. tion of the optimal policy. From Lemmas 1 and 3, we know that
Otherwiser; = e~ 7> = ¢z ande; = e = ¢y in each interval in which there is at least one job in the system,
. . . the server will select one job to process in that interval. The
The expected value of the revenue gained over this portionQfi, e hases its selection on its determination of which job will
the sample path is maximize its total revenue and makes its selection from the pool
o oo of jobs that have not completed service and are still in the system
Elgps(t)] = / / (cre™ + cse_CtS)fo,TS (t7,ts)dty dts attimet. Since jobs that have already departed do not affect the
o Jo service selection, the state of the system is defined completely
where fr, . (t7,t5) is the joint density of the service times ofy the arrival times of the jobs presently in the system:
the two jobs, given byfr, z,(ts,t,) = ple rt—te rtr,
Substitutingz = ¢, — t; and integrating yield&[gps(t)] =
pl(e+p) s+ (n/(c+)’ cs.
There are two possible values fef andcs, depending on G, = {g1,(t) g2,(t) ... gm, ()}

which job departs the system first. Thus, if job 1 departs the

system first with probability, the expected revenue from policyVhere M denotes the number of jobs that have arrived at the
PSis system since the start of the current busy cycle and have not

departed prior tot, andg;, (t) = e~c(t=29).

Definition 1 Thestate vectoof the web server system at tithe
under a service policy is given by

2
_ M I
Elgest)] = 4 et (c+u) 02] Since eacly;, (t) is an exponential function, each element of
2 the state vector will decay by the same ratio over each time inter-
+(1—q) |Zge+ (Ciu) 01} (1) val, until the job departs the system, at which point its revenue

function ceases to decay.

If, instead, the server chooses to work on one job first and therBecause the distribution of remaining service time is iden-
the other, there are two possible policies. Define policy NPS1tigal for every job in the system at time t, the expected rev-
the policy that serves job 1 to completion and then serves jobeue gained from serving any one jolwith remaining ser-
and policy NPS2 as the policy that serves job 2 to completigi¢e time ¢; from time ¢ until completion is E[g;, (t;)] =

and then serves job 1. i, (t) 1/ (c + p). The job with the highest expected payoff is
Under NPS1, the total potential revenue ggpsit) = argmax;p/(c+ p)gi,(t) = argmax; g;,(t),i € 1,2,..., M.
cre Tl 4 e o(TitTs) and under NPS2 it ignpst) = We define this job as the “best job” in the system.

cre(Ti+Ts) 4 coe—cTs, whereT!, T}, 1, 75, ¢, andc, are We now state the following theorem about the optimal policy:

as defined previously. T

. . "heorem 1 An optimal policy is greedy. That is, it chooses the
The expected revenue under policy NPS1 over this InterVal‘gestjob” to seer; at anF;/ timye rggardliss of the order chosen

Elgwesi(t)] = [[e~ (1 + cpe—cls) for the other jobs in the system.

e e gt dt, Proof: Assume there exists an optimal polipythat is work-
conserving, switches jobs in service only at an arrival or de-

2
= e+ (g_ﬁ) C2 (2) parture epoch, is non-processor-sharing and Markov, but not

greedy. That is, at some timein a sample path during a4.1 Extension 1. Varying initial reward
busy cycle, the server chooses to serve joat time¢, com-
plete that job, and then serve job + 1) to completion, where

. t) > t). . . .
91, (£) > 91, (1) L . _ tem under an arbitrary poligyis Cje—¢(t=%i) = Cigi, (t). This

The state vector at timeis given in Definition 1. We can gy giem is a natural extension of the original web server model.
reorder these values in terms of the order in which the jobs &igg gerivation of the optimal policy is identical to the derivation

served under policy: G, = {gx, () 9(k+1),(t) .- 9um, ()} presentedin Section 3, with the exception of the definition of the
The revenue obtained from poligyfrom ¢ until the end of the state vector:

current busy cycle iié‘ik 9j, (t)e‘czfzk tip, wheret;p is the
remaining service time of thiéh job served after timeé under Definition 2 Thestate vectoof the web server system at tihe
policy p. under a service policy is given by

We construct a policy’ that performs an interchange of job .
k and(k + 1), such that the server processes(bb- 1) at time i, = {C101, () Co2, (1) - Car gy, (1)}

¢ to completion and then processes jolto completion. The where) andg;, (t) are as defined in Definition 1 ar@; is the
revenue earned under polig§/from ¢ until the end of the current jnitial reward of request.

busy cycle isg(x+1), (t)e_Ctl(k+1)p + 9k, (t)e_c(t;cp—‘rték‘i*l)p) + . .
M eS8 The “best job” is nowargmax; C; g;, (t) p/(c+p) =
2 j=t+2 9ir (D)e " argmax; C; g;, (t), and the optimal policy can be stated as fol-
The remaining service times for joband job(k + 1) are |gys:
the same under policy and policyp’. Since service times are
identically distributed, we let; denote the service time of theTheorem 2 An optimal policy is greedy; it chooses the best job
first job served after time in both policyp and policyp’ and to serve at any time regardless of the order chosen to process
t;, denote the service time of tisecondob served after timeé the rest of the jobs in the web server system, where the best job is
under both policies. the pending request with the high&3g; (¢) value in the state
The difference in expected revenues between the two polickestor.
is Ele= (1—e~%2)(g(p11), () — gr, (¢))]. Butthe term inside o _
the expected value operator is always positive, so its expected he proofis identical to the proof of Theorem 1, with the new
value will also always be positive. Therefore, since the expecfgﬂ‘inition of potential revenue to account for the differing initial
time of the busy cycle is the same under policgnd policyp’, rewards. In this system, the optimal policy processes requests

we conclude tha¥/,, > V,, and thusp cannot be an optimal @S follows: At any time, the web server will choose to serve the
policy. O request that is the most profitable combination of time-in-system

gw_d initial payoff.

In this system, each incoming requég weighted by some ini-
tial rewardC;. The potential revenue for requedor this sys-

For the system we have defined here, with identical cost ¢
stants and identical service time distributions, the greedy policy _) o
defaults to a preemptive-resume last-in-first-out (LIFO-PR) s&-2 Extension 2: Varying mean file size

vice policy. To see why this is so, we apply the argument fro L
the proof of Theorem 1. Clearly, the newest job has the higi\%ghls section, we consider a system in which service times are

potential revenue value in the state vector, and is thus the * independently drawn from a set 8f exponential distributions.
job” ' e defineS’ as the set of policies under consideration for this

system. For reasons which will be explained sho8lyis a sub-
set ofS that excludes policies which do not work on one request
at a time (such as processor sharing policies) and which switch
4 Two extensionsto the origi nal mode between requests in service at times other than arrival or depar-
ture epochs. Recall that these sets of policies were excluded by
) .]] proof from the original system; here we exclude thepriori.
In this section, we consider two permutations of the web serveigijyen the above assumptions, we can derive an optimal ser-

model presented previously. In the original model, all incomingce ordering policy from the set of policies § that satisfies
requests initially have a probability of one of remaining at thge following requirements:

server until they complete their required service times. In the

first extension, we modify the model so that the initial probabil-emma5 An optimal policy can be found among the class of
ity, or initial reward, varies among the incoming requests. In thgon-idling policies.

second extension, we consider the case where the file sizes of

incoming requests are drawn from a family of exponential di®roof: The proof is similar to that of Lemma 1. We construct
tributions, each with a unique mean. This case is analogoughe alternate policy’ by taking an infinitesimally small time

a web server that hosts several different types of content filaterval of sized! from [a», Z1) and swapping it with an inter-
(HTML files, image files, CGI scripts, et cetera) that are begtl of sized! in [a1,a2), the period over which the server idles
described by different exponential distributions. while requests are queued. At most one departure can occur in

this interval with probabilitys;, + o(dl), wherek is the request where M is the number of requests in the system at time
that the server works on during the interdal Performing this Clearly the numerator of (4) is positive, and therefpris not
switch increases the expected revenue by a nontrivial amowmtimal.

establishing a contradictiofl The optimal policy for this system, then, chooses to serve the

, . request with the highegt_(t) u; product at any time.
Lemma 6 An optimal policy can be found among the class of ?

Markov policies.

4.2.1 A counterexample
Proof: The proof is similar to the proof of Lemma 4. The ser-

vice time distributions of each request are exponential; thefearlier in this section, we mentioned several restrictions on the
fore, service decisions will depend only on the present stateset of possible optimal policies which were assumed rather than
the systemU demonstrated by proof. We explain the reasoning behind these
Because we now have additional information about each restrictions now in more detail by means of a counterexample.
quest in terms of the expected service times, the state vectoBuppose there exists a sample path in which the server pro-
must incorporate this additional information: cesses two requests during a busy cycle. We label these requests
o . . “job 1" and “job 2”. There are no further arrivals to this system
Definition 3 The state vectoof this system at time under a {qr the remainder of the current busy cycle. In this sample path,
service policy is job 1 arrives at time zero, and job 2 arrives at some time0,
Gr = 1{(g1,(®), 1) (g2, (), p2) - (gar, (), iar)} wherea is less than the service time required by job 1. The busy
! i ! ! cycle ends at some tinigb > a.
where)M andg;, (¢) are as defined in Definition 1 antd/1.; is e consider three service policies, labeled NPS1, NPS2, and
the expected remaining service time of request PS. NPS1 and NPS2 are selected fi8mwhile PS is selected

, !
The “best job” is nowarg max; g, (¢) jii ,i € 1,2,..., M. fromS SL_Jch that P&I S’. The three policies behave as follows
4 \er the intervala, b]:

That is, the best job corresponds to the request with the highoe
expected revenue weighted by the request’s expected completiop NPSL: The server processes job 1 to completion, queueing

time._ . _ job 2. Upon job 1's departure, the server processes job 2 to
Using an argument similar to the one presented in the proof completion

of Theorem 1, we show that the following theorem holds:

e NPS2: The server processes job 2 to completion, queueing
t job 1. Upon job 2's departure, the server resumes process-
ing job 1 to completion.

Theorem 3 The optimal policy for this system is greedy. At any
timet, it chooses to serve the pending request with the highes
gi, (t) p; product.

Proof: We sketch the key idea of the proof here. We consider® PS: The server processes both job 1 and job 2 simultane-

an optimal policyp which does the following: at time, serve ously, by means of some sort of resource sharing, until one
requestk to completion, and upok’s departure, serve request ~ Of the jobs completes service and departs, at which time
(k + 1) to completion, whergy, ()i < g(ri1) (E)i(hs1)- AS the server dedicates all of its resources to processing the
in the proof of Theorem 1, we assume no arrivals feamtil the remaining job to completion.

end of the current busy cycle. We then construct an optimal pol- _ .
icy p' which serves requegt + 1) to completion starting at time We are interested in the revenue the server expects to earn over

¢ and then serves requésto completion. Here, the proof devi-this sample path_ under each of the three policies. We derive the
ates slightly from that of Theorem 1, because we cannot m&kgeral expressions for the expected revenue earned under the
the claim that the remaining service times of the two reque&i&ee policies first, and then describe a specific example where

are distributed identically. Therefore, we take the difference i€ €xpected revenue eamned by the PS policy is greater than
expected values of the revenue generated by policiesdp’ the expected revenues earned by the NPS1 and NPS2 policies

from ¢ until the end of the current busy cycle, which yields ~ Separately. _ N
The associated revenue decay for the two jobs at tine

M M c1 = e ““andey; = e 0 = 1, respectively. We defing;

E Zga‘p/ (t]-p,) —-E Zgjp (t,)| = as the remaining service time for job 1 beyond timandT'»
j=1 j=1 as the service time for job 2 beyond time Due to the mem-

) I (k+1) L oryless property o_f the exponential distribut_i(fiﬁb andTy are
I(k+1), \1) k1) c+ i equnentlallymstnbuted with parameter; 1> is exponentially

’ distributed with parameters.
— Gk, (1) Hi (— ﬂ) We consider the two non-processor sharing policies first. Un-
C+ g C+ U(k+1)

der policy NPS1, the time job 1 spends in the system past time
ais T7. Job 2's total time in the systemT§ + T». The revenue
earned by the server during this sample path under this policy

B c(gk+1), (O k1) = G, () 1in) @
B (c+ pr) (e + pi(ren))

IS gnps1 = €1 e Tl 4 ¢y e ¢(TitT2) The expected revenue ispolicy exceeds the expected revenues of both policies NPS1 and

given by the equation NPS2. Let us assume that the server splits its resources evenly
oo poo o (1) between the two jobs, such that= 0.5. Let us also assume
Blgwes] = [, Jy lere™ ™ 4 cpem] thatc = 1. We have already established that= 1. We set
fro iy (8], t2)dt] diy c1 = 0.45, up = 20, andyus = 10. Plugging these values in to

e revenue expressions yielB$gnpsy] = 1.2987, E[gnpsd =

Because the service times are independent, this equation evtj';ﬂﬁlg—44 and E[ged — 1.3008. Clearly, E[gpd > Elgnps] and

ates to Elgrg > Elgnesd. Thus, for this sample path, neither of the
Elgnes] = 1 Mo ¢y H K2 (5) NPS revenues is strictly greater than the revenue generated by
c+ CHprct i the PS policy, and the conjecture does not hold.
In a similar manner, we derive the expected revenue earned hus, there exists at least one sample path in which a PS
by the server in policy NPS2: policy outperforms a pair of equivalent NPS policies. In fact,
more sample paths like this one exist, and therefore we cannot
Elgnpsd = 1 o i +c Fa (6) completely eliminate PS policies from consideration in systems
CH+ e+ p2 c+ 2

where file size distributions are variable.

Under the PS policy, the server devotes a fracjioffiits total
resources to processing job 1 ahe ¢ of its total resources to)
processing job 2 while both requests are in the system, whére Conclusions
0 < ¢ < 1. DefineT’; as the time at which the first job to com-) _
plete service departs the system with respect to timehere We have shown that when network delays are ignored, an im-
T; = min(T}, T») and is exponentially distributed with paramePatient user populatlo_n is bgst served using a nontrgdltlonal,
ter (qu1 + (1 — q)uz) = p. Also, defineT as the time at which ‘.‘gr.eedy” service ordering pollcy. Ser\'/er' performance is max-
the remaining job departs the system. WeBgt= T; + Z, imized when the concept of falrnegs is |g_nored. The possible
whereZ is the remaining processing time for the job remainingSs Of revenue from requests that give up is compensated by the
in the system past tim&; + a. The probability that job 1 com- greater _payoff from the requests that are served to cgmplgnon.
pletes its service and departs the system firgyjs,)/, and Additionally, we presented a numerical example in which a

the probability that job 2 completes its service and departs fH@Ccessor sharing policy performs better than its non-processor-
system first i§(1 — q)u2]/p. sharing counterparts. The implications of this are still under

To defineZ, we letZ = Z, given that job 1 finishes first, andStudy, as we have not been able to reproduce this behavior under
7 = 7, given that job 2 finishes first. Thug, is distributed large sample paths in simulation.
exponentially with parameter, with probabilitygu; /u andZ,
is distributed exponentially with parameter with probability
(1 — q)u=/p. The distribution of Z is given by the equation References

qu (1 —q)p2 [1] Nina Bhatti and Rich Friedrich. Web server support for
fz(2) = 7f21(z)+ ,u fz,(2) tiered services. IEEE Network 13(5):64-71, Septem-
ber/October 1999.

— M[qe*uzz + (1 _ q)e*ulz]
K [2] Mark E. Crovella, Robert Frangioso, and Mor Harchol-
We find thatT; and Z are independent; thus, the joint Balter. “Connection scheduling in web servers”USENIX
distribution of the service times of the two jobs is given by Symposium on Internet Technologies and Systgrages
fr, (tg) fz(2) = papae #5[ge #2* 4+ (1 — q)e #1%]. In addi- 243-254, Boulder, Colorado, October 1999.
tion, if Ty = T, then we define; = ¢; ande; = c»; otherwise,
we definecy = ¢ ande; = c».
The revenue collected by the server during the sample path
is gps = cre 11 + cie= T = cpeTr 4 e (Tr+4) and
the expected value of this revenueli§gps| = cru/(c +) + [4] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk
cspn/(c+ pa)pz/ (e + p2). Nielsen, and Tim Berners-Leelypertext Transfer Protocol

If job 1 completes first with probabilitygu1)/p, then we —HTTP/1.1 June 1999. RFC 2616.
make the proper substitutions and obtain

[3] Amy Csizmar Dalal. Characterization of User and Server
Behavior in Web-Based NetworkBhD thesis, Northwest-
ern University, December 1999.

[5] Mor Harchol-Balter, Mark E. Crovella, and Sung Sim Park.
Elged = L (A= g)eanz “The case for SRPT scheduling in web servers”. Technical
c+ Report MIT-LCS-TR-767, MIT Laboratory for Computer
1 Science, October 1998.
+ _LL[QQIM + (1 =qcip] (7)

petpin et [6] Louis P. Slothouber. “A model of web server performance”.
We now show that there exist nonnegative values of StarNine Technologies, Inc.

c1, Ca, 11, i12, ¢, andg for which the expected revenue for the PS

