
UC Irvine
UC Irvine Previously Published Works

Title
An optimal service ordering for a world wide web server

Permalink
https://escholarship.org/uc/item/5mz5d917

Journal
ACM SIGMETRICS Performance Evaluation Review, 29(2)

Authors
Dalal, Amy Csizmar
Jordan, Scott

Publication Date
2001-11-01

DOI
10.1145/572317.572319

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5mz5d917
https://escholarship.org
http://www.cdlib.org/

An Optimal Service Ordering for a World Wide Web Server�

Amy Csizmar Dalal
Hewlett-Packard Laboratories

amy dalal@hp.com

Scott Jordan
University of California at Irvine

sjordan@uci.edu

Abstract

We consider alternative service policies in a web server with
impatient users. User-perceived performance is modeled as an
exponentially decaying function of the user’s waiting time, re-
flecting the probability that the user aborts the download before
the page is completely received. The web server is modeled as
a single server queue, with Poisson arrivals and exponentially
distributed file lengths. The server objective is to maximize av-
erage revenue per unit time, where each user is assumed to pay a
reward proportional to the perceived performance. When file
lengths are i.i.d., we prove that the optimal service policy is
greedy, namely that the server should choose the job with the
highest potential reward. However, when file lengths are in-
dependently drawn from a set of exponential distributions, we
show the optimal policy need not be greedy; in fact, processor
sharing policies sometimes outperform the best greedy policy in
this case.

1 Introduction

Most of today’s web servers handle incoming web requests in
a round robin manner. This method of scheduling requests is
partly a consequence of operating system design and partly due
to the web server software design. Traditionally, it has been held
that processor sharing policies such as round robin yield the best
“user-perceived” performance, in terms of fairness and response
time, when service time requirements are variable. Processor
sharing policies typically allow shorter jobs to complete before
longer jobs, and the average time a job spends in a system that
employs processor sharing is linearly proportional to its required
service time.

Web users tend to be very impatient and will abort a pending
request if a response is not received within seconds. Users that
time out in such a manner cause the server to waste resources on
a request that never completes. At a heavily-loaded server with
many requests arriving per second, this may lead to a situation
of “server deadlock”, where the server works at capacity without
completing any requests.

We use a queueing theory approach to derive an optimal ser-
vice ordering policy for a system consisting of a web server pro-
cessing requests for files, or web documents, from remote users.

�This paper represents research done while both authors were at Northwest-
ern University.

The objective of the web server in the system studied here is
to maximize user perceived performance, which is a decreas-
ing function of the amount of time the user spends waiting for
a file to download from a web server. We assume that the net-
work connecting the client and server is a static quantity and
look solely at what the server does in processing requests. Our
metric of interest is a quantity we call “revenue”, defined as the
probability that the user has not aborted a request before it is
filled by the server. We describe revenue as a decaying exponen-
tial function of the time the request spends in the system before
completing service. Our goal is to find the service policy that
maximizes the average revenue earned per second by the server.

Several previous research efforts have utilized similar queue-
ing methods to analyze quality of service issues in web servers.
Both [2] and [5], for instance, demonstrate improvements in
response time at a web server by using a non-traditional ser-
vice ordering (shortest-connection-first and shortest-remaining-
processing-time, respectively) in place of processor sharing. [6]
uses a queueing model to determine how response time at a
web server is affected by several parameters, including network
bandwidth, processor speed, and adding additional hosts to a
distributed server system. However, [6] only considers first-in,
first-out service ordering, and does not study how alternate poli-
cies may affect response time. [1] proposed an improvement
over FIFO service at web servers by using a combination of
admission control and a set of priority queues, thus providing
better QoS at the web server and increasing the throughput of a
web server as seen by the clients. However, none of these studies
considers the “impatient user” problem.

The rest of this paper is organized as follows. In Section 2, we
describe the analytical model used to represent the web server
system. In Section 3, we derive the policy which will maximize
the server’s average revenue per unit time for this model. Section
4 discusses the derivations of the optimal policies for two varia-
tions to the original model and presents a counterexample which
limits the optimal policies we can consider for one of these ex-
tensions. Finally, we present our conclusions in Section 5.

2 System model

Our model is an abstraction of the actions that occur at the ses-
sion layer due to the HTTP/1.1 protocol [4]. We ignore all
actions associated with the network layer, including specifics
about individual TCP connections associated with requests. We

assume the server is not aware if or when a request is aborted
before it is processed to completion.

We model the web server as a single-server queue with a sin-
gle stream of Poisson arrivals. The service times of incoming
requests are drawn from an exponential distribution with param-
eter�; service times are independent and identically distributed.
The service time of a request is proportional to the number of
bytes in the requested file. Further, we assume that swap times
are instantaneous.

The web server system alternates between idle cycles, when
no requests are awaiting service, and busy cycles, when at least
one request is awaiting service. Busy and idle cycles are i.i.d.,
and the two are independent.

We denote the arrival time of requesti asxi and the depar-
ture time of requesti under some service policyp as t ip . The
response timeof requesti under policyp is tip � xi.

The server earns an amount of revenue from serving request
i under policyp equal togip(tip) = e

�c(tip�xi). The server
collects this amount once requesti departs the system. Addi-
tionally, we define thepotential revenuefor requesti at a timet
prior to its departure time asgip(t) = e

�c(t�xi).
Let N denote the number of jobs served in the first busy

cycle. By the Renewal Reward Theorem, the average reward
per unit time earned by the server under policyp is Vp(�) =

E[
PN

i=1 gip(tip)]=E[Z1], where� indicates that the policy starts
during an idle cycle andZ1 is the length of the first busy/idle cy-
cle. The optimal server policy satisfiesV = maxp Vp(�).

The policy space under consideration,S, includes all preemp-
tive and non-preemptive policies, policies that work on one re-
quest at a time, policies that work on multiple requests simulta-
neously, and both idling and non-idling policies.

3 Derivation of the optimal service or-
dering policy

Given the above assumptions, we can determine an optimal ser-
vice ordering policy from the set of the policies inS. Such a
policy must satisfy a set of requirements which we define below.
We then derive the optimal policy from the set of remaining poli-
cies that satisfy these requirements.

Lemma 1 An optimal policy can be found among the class of
non-idling policies.

Proof: We show that this lemma holds using a proof by contra-
diction, which we briefly sketch here. The full proof for this and
all other proofs presented in this paper can be found in [3]. Sup-
pose there exists an optimal policyp which is optimal, yet idles
over a time interval[a1; a2) of a sample path in the first busy
cycle while requests are queued. We show that by taking an
infinitesimally small time interval of sizedl, wheredl is small
enough that at most one departure can occur with probability
� dl + o(dl), from [a2; Z1) and swapping this interval with an
interval of sizedl in [a1; a2), the expected revenue improves by
some nontrivial positive quantity, establishing a contradiction.

By repeating this method, we in fact show that we can continue
improving the expected revenue until the idle period lies com-
pletely after all requests are serviced.�

Lemma 2 An optimal service ordering can be found in the class
of policies that switch between jobs in service only upon an ar-
rival to or departure from the system.

Proof: We prove this lemma by contradiction. We present the
case where the policies are non-processor-sharing; the processor
sharing case follows directly.

Suppose there exists an optimal policyp which switches be-
tween jobs in service at some time other than a departure time
or arrival time over some interval of a sample path in the first
busy cycle. At some time interval[a1 � dl; a1) during this busy
cycle, the server works on jobk. At timea1, the server switches
to job (k + 1), and processes that job for at least the interval
[a1; a1 + dl). No arrivals or departures occur at timea1. At
some future timea2, the server switches back to serving jobk.
We make no assumptions as to the jobs served in the interval
[a1 + dl; a2).

We construct a policyp0 which is identical to policyp in the
intervals[0; a1 � dl), [a1 + dl; a2), and[a2 + dl;1). Our con-
struction ofp0 depends on the potential revenues of jobsk and
(k + 1) at timea1, denoted asgkp(a1) andg(k+1)

p

(a1), respec-
tively.

If g(k+1)
p

(a1) > gkp(a1), then we constructp0 as follows:
In the interval[a1 � dl; a1), serve job(k + 1). At a1, switch
to job k and servek in the interval[a1; a1 + dl). Then, serve
job k in the interval[a2; a2 + dl). In this case,p0 differs from
p only over[a1 � dl; a1 + dl). The difference in the expected
revenue under the two policies isE[g(k+1)

p0
(a1) + gk

p0
(a1 +

dl)]�E[gkp(a1) + g(k+1)
p

(a1 + dl)]. By definition, there is no
departure at timea1 under policyp, but there may be a departure
ata1 under policyp0. Also, jobk cannot depart the system prior
to time a2 + dl. The difference in expected revenues is thus
�dl e

�c(a1�x(k+1))(1� e
�c dl), which is a positive quantity.

If, however,g(k+1)
p

(a1) < gkp(a1), then we constructp0

such thatp0 serves jobk in the interval[a1 � dl; a1 + dl) and
serves job(k + 1) in the interval[a2; a2 + dl). Here,p0 dif-
fers fromp over the intervals[a1; a1 + dl) and [a2; a2 + dl).
The difference in the expected revenue under the two policies
is E[gk

p0
(a1 + dl) + g(k+1)

p0
(a2 + dl)] � E[g(k+1)

p

(a1 +

dl) + gkp(a2 + dl)]. There is no departure at timea1 under
policy p, but there may be a departure at eithera1 + dl or
a2 + dl (or both) under policyp 0. The expected revenue is thus
�dle

�c dl(e�ca1�e
�ca2)(ecxk�e

cx(k+1)). Sinceg(k+1)
p

(a1) <

gkp(a1), xk must be greater thanx(k+1), and the last term in this
equation is positive.

Thus, for each policyp0, we have shown that with some
nonzero probability,Vp0 (�) > Vp(�), and thereforep cannot be
an optimal policy.�

Lemma 3 An optimal policy can be found in the class of non-
processor-sharing policies.

Proof: We consider the two-job case; the n-job case follows
directly, since service times are independent. Suppose there ex-
ists a generalized processor-sharing (PS) policy that generates a
higher revenue than the best non-processor-sharing (NPS) pol-
icy. Then, over some interval[a; b], the server splits its resources
between two jobs. Prior to timea, job 1 has spent an amount of
time equal to�1 in the system, and job 2 has spent a time equal
to �2 in the system. After timea, the distribution for the total
revenue that the server earns from serving the two jobs under
policy PS isgPS(t) = g1PS(t) + g2PS(t) = cfe

�cTf + cse
�cTs ,

where

� Tf = min(T 01; T
0

2), withT 01 andT 02 defined as the remaining
service times of jobs 1 and 2, respectively.Tf is exponen-
tially distributed with parameter�.

� Ts = Tf +Z, whereZ is an exponentially-distributed ran-
dom variable with parameter�.

� If Tf = T
0

1, thencf = e
�c�1 � c1 andcs = e

�c�2 � c2.
Otherwise,cf = e

�c�2
� c2 andcs = e

�c�1
� c1.

The expected value of the revenue gained over this portion of
the sample path is

E[gPS(t)] =

Z
1

0

Z
1

0

(cf e
�ctf + cse

�cts)fTf ;Ts(tf ; ts) dtf dts

wherefTf ;Ts(tf ; ts) is the joint density of the service times of
the two jobs, given byfTf ;Ts(tf ; ts) = �

2
e
��(ts�tf)e

��tf .
Substitutingz = ts � tf and integrating yieldsE[gPS(t)] =

�=(c+ �) cf + (�=(c+ �))
2
cs.

There are two possible values forcf and cs, depending on
which job departs the system first. Thus, if job 1 departs the
system first with probabilityq, the expected revenue from policy
PS is

E[gPS(t)] = q

�
�

c+�c1 +
�

�

c+�

�2
c2

�

+ (1� q)

�
�

c+�c2 +
�

�

c+�

�2
c1

�
(1)

If, instead, the server chooses to work on one job first and then
the other, there are two possible policies. Define policy NPS1 as
the policy that serves job 1 to completion and then serves job 2,
and policy NPS2 as the policy that serves job 2 to completion
and then serves job 1.

Under NPS1, the total potential revenue isgNPS1(t) =
c1e

�cT 0

1 + c2e
�c(T 0

1+T
0

2), and under NPS2 it isgNPS2(t) =
c1e

�c(T 0

1+T
0

2) + c2e
�cT 0

2 , whereT 01, T
0

2, �1, �2, c1, andc2 are
as defined previously.

The expected revenue under policy NPS1 over this interval is

E[gNPS1(t)] =
R
1

0

R
1

0
e
�ct01(c1 + c2e

�ct02)

�
2
e
��t01e

��t02 dt
0

1 dt
0

2

= �

c+�c1 +
�

�

c+�

�2
c2 (2)

Similarly, the expected revenue under policy NPS2 is

E[gNPS2(t)] =
�

�

c+�

�2
c1 +

�

c+�c2 (3)

However, (1) is just a weighted sum of (2) and (3). Therefore,
(1) cannot be greater than both (2) and (3). Thus, policy PS
cannot earn a strictly higher revenue than both policy NPS1 and
policy NPS2.�

The above analysis assumes a fixed percentage of resources
expended by the processor on each job under policy PS; the re-
sults hold for the variable percentage case as well.

Lemma 4 An optimal policy can be found in the class of
Markov policies; it is independent of both past and future ar-
rivals.

This lemma is a simple consequence of the exponential interar-
rival times and service times of the requests in the system.�

We now present two definitions which will aid in the deriva-
tion of the optimal policy. From Lemmas 1 and 3, we know that
in each interval in which there is at least one job in the system,
the server will select one job to process in that interval. The
server bases its selection on its determination of which job will
maximize its total revenue and makes its selection from the pool
of jobs that have not completed service and are still in the system
at timet. Since jobs that have already departed do not affect the
service selection, the state of the system is defined completely
by the arrival times of the jobs presently in the system:

Definition 1 Thestate vectorof the web server system at timet
under a service policyp is given by

Gtp = fg1p(t) g2p(t) : : : gMp
(t)g

whereM denotes the number of jobs that have arrived at the
system since the start of the current busy cycle and have not
departed prior tot, andgip(t) = e

�c(t�xi).

Since eachgip(t) is an exponential function, each element of
the state vector will decay by the same ratio over each time inter-
val, until the job departs the system, at which point its revenue
function ceases to decay.

Because the distribution of remaining service time is iden-
tical for every job in the system at time t, the expected rev-
enue gained from serving any one jobi with remaining ser-
vice time t

0

i from time t until completion isE[gip(t
0

i)] =
gip(t)�=(c+ �). The job with the highest expected payoff is
argmaxi �=(c+ �) gip(t) = argmaxi gip(t); i 2 1; 2; : : : ;M .
We define this job as the “best job” in the system.

We now state the following theorem about the optimal policy:

Theorem 1 An optimal policy is greedy. That is, it chooses the
“best job” to serve at any timet, regardless of the order chosen
for the other jobs in the system.

Proof: Assume there exists an optimal policyp that is work-
conserving, switches jobs in service only at an arrival or de-
parture epoch, is non-processor-sharing and Markov, but not

greedy. That is, at some timet in a sample path during a
busy cycle, the server chooses to serve jobk at time t, com-
plete that job, and then serve job(k + 1) to completion, where
g(k+1)p(t) > gkp(t).

The state vector at timet is given in Definition 1. We can
reorder these values in terms of the order in which the jobs are
served under policyp: Gtp = fgkp(t) g(k+1)p(t) : : : gMp

(t)g.
The revenue obtained from policyp from t until the end of the

current busy cycle is
PM

j=k gjp(t)e
�c
P

j

l=k
t0
lp , wheret0lp is the

remaining service time of thelth job served after timet under
policy p.

We construct a policyp0 that performs an interchange of jobs
k and(k +1), such that the server processes job(k +1) at time
t to completion and then processes jobk to completion. The
revenue earned under policyp 0 from t until the end of the current

busy cycle isg(k+1)p(t)e
�ct0(k+1)p + gkp(t)e

�c(t0
kp
+t0(k+1)p) +PM

j=k+2 gjp(t)e
�c
P

j

l=k
t0
lp .

The remaining service times for jobk and job(k + 1) are
the same under policyp and policyp 0. Since service times are
identically distributed, we lett01 denote the service time of the
first job served after timet in both policyp and policyp 0 and
t
0

2 denote the service time of thesecondjob served after timet
under both policies.

The difference in expected revenues between the two policies
isE[e�ct

0

1(1�e
�ct02)(g(k+1)p(t)�gkp(t))]. But the term inside

the expected value operator is always positive, so its expected
value will also always be positive. Therefore, since the expected
time of the busy cycle is the same under policyp and policyp 0,
we conclude thatVp0 > Vp, and thusp cannot be an optimal
policy.�

For the system we have defined here, with identical cost con-
stants and identical service time distributions, the greedy policy
defaults to a preemptive-resume last-in-first-out (LIFO-PR) ser-
vice policy. To see why this is so, we apply the argument from
the proof of Theorem 1. Clearly, the newest job has the highest
potential revenue value in the state vector, and is thus the “best
job”.

4 Two extensions to the original model

In this section, we consider two permutations of the web server
model presented previously. In the original model, all incoming
requests initially have a probability of one of remaining at the
server until they complete their required service times. In the
first extension, we modify the model so that the initial probabil-
ity, or initial reward, varies among the incoming requests. In the
second extension, we consider the case where the file sizes of
incoming requests are drawn from a family of exponential dis-
tributions, each with a unique mean. This case is analogous to
a web server that hosts several different types of content files
(HTML files, image files, CGI scripts, et cetera) that are best
described by different exponential distributions.

4.1 Extension 1: Varying initial reward

In this system, each incoming requesti is weighted by some ini-
tial rewardCi. The potential revenue for requesti for this sys-
tem under an arbitrary policyp isCie

�c(t�xi) = Cigip(t). This
system is a natural extension of the original web server model.
The derivation of the optimal policy is identical to the derivation
presented in Section 3, with the exception of the definition of the
state vector:

Definition 2 Thestate vectorof the web server system at timet
under a service policyp is given by

Gtp = fC1 g1p(t) C2 g2p(t) : : : CM gMp
(t)g

whereM andgip(t) are as defined in Definition 1 andC i is the
initial reward of requesti.

The “best job” is now argmaxi Ci gip(t)�=(c+ �) =
argmaxi Ci gip(t), and the optimal policy can be stated as fol-
lows:

Theorem 2 An optimal policy is greedy; it chooses the best job
to serve at any timet regardless of the order chosen to process
the rest of the jobs in the web server system, where the best job is
the pending request with the highestCigip(t) value in the state
vector.

The proof is identical to the proof of Theorem 1, with the new
definition of potential revenue to account for the differing initial
rewards. In this system, the optimal policy processes requests
as follows: At any time, the web server will choose to serve the
request that is the most profitable combination of time-in-system
and initial payoff.

4.2 Extension 2: Varying mean file size

In this section, we consider a system in which service times are
independently drawn from a set ofN exponential distributions.
We defineS 0 as the set of policies under consideration for this
system. For reasons which will be explained shortly,S

0 is a sub-
set ofS that excludes policies which do not work on one request
at a time (such as processor sharing policies) and which switch
between requests in service at times other than arrival or depar-
ture epochs. Recall that these sets of policies were excluded by
proof from the original system; here we exclude thema priori.

Given the above assumptions, we can derive an optimal ser-
vice ordering policy from the set of policies inS 0 that satisfies
the following requirements:

Lemma 5 An optimal policy can be found among the class of
non-idling policies.

Proof: The proof is similar to that of Lemma 1. We construct
the alternate policyp0 by taking an infinitesimally small time
interval of sizedl from [a2; Z1) and swapping it with an inter-
val of sizedl in [a1; a2), the period over which the server idles
while requests are queued. At most one departure can occur in

this interval with probabilityuk + o(dl), wherek is the request
that the server works on during the intervaldl. Performing this
switch increases the expected revenue by a nontrivial amount,
establishing a contradiction.�

Lemma 6 An optimal policy can be found among the class of
Markov policies.

Proof: The proof is similar to the proof of Lemma 4. The ser-
vice time distributions of each request are exponential; there-
fore, service decisions will depend only on the present state of
the system.�

Because we now have additional information about each re-
quest in terms of the expected service times, the state vector
must incorporate this additional information:

Definition 3 Thestate vectorof this system at timet under a
service policyp is

Gtp = f(g1p(t); �1) (g2p(t); �2) : : : (gMp
(t); �M)g

whereM andgip(t) are as defined in Definition 1 and1=� i is
the expected remaining service time of requesti.

The “best job” is nowargmaxi gip(t)�i ; i 2 1; 2; : : : ;M .
That is, the best job corresponds to the request with the highest
expected revenue weighted by the request’s expected completion
time.

Using an argument similar to the one presented in the proof
of Theorem 1, we show that the following theorem holds:

Theorem 3 The optimal policy for this system is greedy. At any
time t, it chooses to serve the pending request with the highest
gip(t)�i product.

Proof: We sketch the key idea of the proof here. We consider
an optimal policyp which does the following: at timet, serve
requestk to completion, and uponk’s departure, serve request
(k + 1) to completion, wheregkp(t)�k < g(k+1)

p

(t)�(k+1). As
in the proof of Theorem 1, we assume no arrivals fromt until the
end of the current busy cycle. We then construct an optimal pol-
icy p0 which serves request(k+1) to completion starting at time
t and then serves requestk to completion. Here, the proof devi-
ates slightly from that of Theorem 1, because we cannot make
the claim that the remaining service times of the two requests
are distributed identically. Therefore, we take the difference in
expected values of the revenue generated by policiesp andp 0

from t until the end of the current busy cycle, which yields

E

2
4 MX
j=1

gj
p0
(tj

p0
)

3
5�E

2
4 MX
j=1

gjp(tjp)

3
5 =

g(k+1)
p

(t)
�(k+1)

c+ �(k+1)

�
1�

�k

c+ �k

�

� gkp(t)
�k

c+ �k

�
1�

�(k+1)

c+ �(k+1)

�

=
c(g(k+1)

p

(t)�(k+1) � gkp(t)�k)

(c+ �k)(c+ �(k+1))
(4)

whereM is the number of requests in the system at timet.
Clearly the numerator of (4) is positive, and thereforep is not
optimal.�

The optimal policy for this system, then, chooses to serve the
request with the highestgip(t)�i product at any time.

4.2.1 A counterexample

Earlier in this section, we mentioned several restrictions on the
set of possible optimal policies which were assumed rather than
demonstrated by proof. We explain the reasoning behind these
restrictions now in more detail by means of a counterexample.

Suppose there exists a sample path in which the server pro-
cesses two requests during a busy cycle. We label these requests
“job 1” and “job 2”. There are no further arrivals to this system
for the remainder of the current busy cycle. In this sample path,
job 1 arrives at time zero, and job 2 arrives at some timea > 0,
wherea is less than the service time required by job 1. The busy
cycle ends at some timeb, b > a.

We consider three service policies, labeled NPS1, NPS2, and
PS. NPS1 and NPS2 are selected fromS 0, while PS is selected
from S such that PS62 S 0. The three policies behave as follows
over the interval[a; b]:

� NPS1: The server processes job 1 to completion, queueing
job 2. Upon job 1’s departure, the server processes job 2 to
completion.

� NPS2: The server processes job 2 to completion, queueing
job 1. Upon job 2’s departure, the server resumes process-
ing job 1 to completion.

� PS: The server processes both job 1 and job 2 simultane-
ously, by means of some sort of resource sharing, until one
of the jobs completes service and departs, at which time
the server dedicates all of its resources to processing the
remaining job to completion.

We are interested in the revenue the server expects to earn over
this sample path under each of the three policies. We derive the
general expressions for the expected revenue earned under the
three policies first, and then describe a specific example where
the expected revenue earned by the PS policy is greater than
the expected revenues earned by the NPS1 and NPS2 policies
separately.

The associated revenue decay for the two jobs at timea is
c1 = e

�ca and c2 = e
�c0 = 1, respectively. We defineT 01

as the remaining service time for job 1 beyond timea andT 2

as the service time for job 2 beyond timea. Due to the mem-
oryless property of the exponential distribution,T1 andT 01 are
exponentially distributed with parameter�1; T2 is exponentially
distributed with parameter�2.

We consider the two non-processor sharing policies first. Un-
der policy NPS1, the time job 1 spends in the system past time
a is T 01. Job 2’s total time in the system isT 01 + T2. The revenue
earned by the server during this sample path under this policy

is gNPS1 = c1 e
�cT 0

1 + c2 e
�c(T 0

1+T2). The expected revenue is
given by the equation

E[gNPS1] =
R
1

0

R
1

0
[c1e

�ct01 + c2e
�c(t01+t2)]

fT 0

1;T2
(t01; t2)dt

0

1 dt2

Because the service times are independent, this equation evalu-
ates to

E[gNPS1] = c1
�1

c+ �1
+ c2

�1

c+ �1

�2

c+ �2
(5)

In a similar manner, we derive the expected revenue earned
by the server in policy NPS2:

E[gNPS2] = c1
�1

c+ �1

�2

c+ �2
+ c2

�2

c+ �2
(6)

Under the PS policy, the server devotes a fractionq of its total
resources to processing job 1 and1 � q of its total resources to
processing job 2 while both requests are in the system, where
0 < q < 1. DefineTf as the time at which the first job to com-
plete service departs the system with respect to timea, where
Tf = min(T 01; T2) and is exponentially distributed with parame-
ter(q�1+(1�q)�2) � �. Also, defineTs as the time at which
the remaining job departs the system. We setTs = Tf + Z,
whereZ is the remaining processing time for the job remaining
in the system past timeTf + a. The probability that job 1 com-
pletes its service and departs the system first is(q�1)=�, and
the probability that job 2 completes its service and departs the
system first is[(1� q)�2]=�.

To defineZ, we letZ = Z1 given that job 1 finishes first, and
Z = Z2 given that job 2 finishes first. Thus,Z1 is distributed
exponentially with parameter�2 with probabilityq�1=� andZ2

is distributed exponentially with parameter�1 with probability
(1� q)�2=�. The distribution of Z is given by the equation

fZ(z) =
q�1

�
fZ1(z) +

(1� q)�2
�

fZ2(z)

=
�1�2

�
[qe��2z + (1� q)e��1z]

We find that Tf and Z are independent; thus, the joint
distribution of the service times of the two jobs is given by
fTf (tf)fZ(z) = �1�2e

��tf [qe��2z + (1 � q)e��1z]. In addi-
tion, if Tf = T

0

1, then we definecf � c1 andcs � c2; otherwise,
we definecf � c2 andcs � c2.

The revenue collected by the server during the sample path
is gPS = cfe

�cTf + cse
�cTs = cfe

�cTf + cse
�c(Tf+Z), and

the expected value of this revenue isE[gPS] = cf�=(c + �) +
cs�1=(c+ �1)�2=(c+ �2).

If job 1 completes first with probability(q�1)=�, then we
make the proper substitutions and obtain

E[gPS] =
qc1�1 + (1� q)c2�2

c+ �

+
1

�

�1

c+ �1

�2

c+ �2
[q c2�1 + (1� q)c1�2] (7)

We now show that there exist nonnegative values of
c1; c2; �1; �2; c; andq for which the expected revenue for the PS

policy exceeds the expected revenues of both policies NPS1 and
NPS2. Let us assume that the server splits its resources evenly
between the two jobs, such thatq = 0:5. Let us also assume
that c = 1. We have already established thatc2 = 1. We set
c1 = 0:45, �1 = 20, and�2 = 10. Plugging these values in to
the revenue expressions yieldsE[gNPS1] = 1:2987, E[gNPS2] =
1:2944 andE[gPS] = 1:3008. Clearly,E[gPS] > E[gNPS1] and
E[gPS] > E[gNPS2]. Thus, for this sample path, neither of the
NPS revenues is strictly greater than the revenue generated by
the PS policy, and the conjecture does not hold.

Thus, there exists at least one sample path in which a PS
policy outperforms a pair of equivalent NPS policies. In fact,
more sample paths like this one exist, and therefore we cannot
completely eliminate PS policies from consideration in systems
where file size distributions are variable.

5 Conclusions

We have shown that when network delays are ignored, an im-
patient user population is best served using a nontraditional,
“greedy” service ordering policy. Server performance is max-
imized when the concept of fairness is ignored. The possible
loss of revenue from requests that give up is compensated by the
greater payoff from the requests that are served to completion.

Additionally, we presented a numerical example in which a
processor sharing policy performs better than its non-processor-
sharing counterparts. The implications of this are still under
study, as we have not been able to reproduce this behavior under
large sample paths in simulation.

References

[1] Nina Bhatti and Rich Friedrich. Web server support for
tiered services. IEEE Network, 13(5):64–71, Septem-
ber/October 1999.

[2] Mark E. Crovella, Robert Frangioso, and Mor Harchol-
Balter. “Connection scheduling in web servers”. InUSENIX
Symposium on Internet Technologies and Systems, pages
243–254, Boulder, Colorado, October 1999.

[3] Amy Csizmar Dalal.Characterization of User and Server
Behavior in Web-Based Networks. PhD thesis, Northwest-
ern University, December 1999.

[4] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk
Nielsen, and Tim Berners-Lee.Hypertext Transfer Protocol
– HTTP/1.1, June 1999. RFC 2616.

[5] Mor Harchol-Balter, Mark E. Crovella, and Sung Sim Park.
“The case for SRPT scheduling in web servers”. Technical
Report MIT-LCS-TR-767, MIT Laboratory for Computer
Science, October 1998.

[6] Louis P. Slothouber. “A model of web server performance”.
StarNine Technologies, Inc.

