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ABSTRACT
There exist many natural phenomena where direct measure-
ment is either impossible or extremely invasive. To ob-
tain approximate measurements of these phenomena we can
build prediction models based on other sensing modalities
such as features extracted from data collected by an im-
ager. These models are derived from controlled experiments
performed under laboratory conditions, and can then be ap-
plied to the associated event in nature. In this paper we ex-
plore various different methods for generating such models
and discuss their accuracy, robustness, and computational
complexity. Given sufficiently computationally simple mod-
els, we can eventually push their computation down towards
the sensor nodes themselves to reduce the amount of data
required to both flow through the network and be stored in
a database. The addition of these models turn in-situ im-
agers into powerful biological sensors, and image databases
into useful records of biological activity.

1. INTRODUCTION
Visible-light imagers represent a very powerful and un-

tapped sensing modality. They are typically avoided in
traditional sensing applications because they produce large
quantities of complex data that cannot be easily interpreted.
However, there are many cases where sensing a particular
phenomena is either not possible or too invasive given tra-
ditional sensors. For example, to measure the rate of CO2

uptake (photosynthesis) of a plant requires a complex device
that attaches to the plant containing an infrared gas ana-
lyzer and a mass flow meter. At the moment, these device
are quite cumbersome and expensive. Thus, measuring this
biological process for a single plant is complex, and for an
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entire landscape of plants, impossible.
Our goal in this paper is to explain a few techniques to

model the rate of CO2 uptake of drought-tolerant moss, Tor-
tula princeps, given a time-series of images, Figure 1, taken
of the plant. In general, there is a strong correlation between
photosynthetic capacity and spectral properties of leaves [7].
Additionally, there have been few attempts to use basic, eas-
ily computed, image features to approximate photosynthesis
and carbon gain [9] or plant phenological events [11].

We will generate models of CO2 uptake using Support
Vector Machines (SVMs) as well as Regression Trees. We
then compare the different model’s predictive accuracy to
the error of the in-situ sensors themselves. We are not at-
tempting to produce an optimal model for this task, instead
we are trying to show that effective models exist and can be
used to predict this phenomena. Further, we consider how
the application of these different models, including feature
extraction, will perform on sensor nodes with limited com-
putation capacity. As there is no implementation of these
models on sensors currently, we analyze the runtime and
memory overhead incurred by applying such models. Lastly,
we will address how to generalize these models to work in
the field and simple techniques to collect images that are
more robust to changing lighting conditions.

Given an image-based model of CO2 uptake, we can be-
gin to predict photosynthesis on a much larger scale than is
possible to measure traditionally. For example, estimating
the CO2 uptake of an entire forest would now be feasible.
This information can then be used to more accurately track
the global release of CO2 into the atmosphere, a nearly in-
tractable problem currently.

Using an in-situ imager to predict difficult-to-measure nat-
ural phenomena is the fundamental idea supporting a large
class of problems which have only recently been explored.
Traditionally, imagers have been in the form of security cam-
eras or other equally immovable devices attached to wired
network and power. Data from such devices would be ana-
lyzed offline, searching for faces or other well defined objects
for example.

Only recently have systems like Cyclops [10] become avail-
able to make deploying imagers in sensor networks easier and
collecting their data simpler. The NestBox project [1] built
a sensor network which attempts to understand the behavior
of nesting birds using an imager. This phenomenon can not
be currently measured by an existing sensor. Instead, stud-
ies of behavior involve manual observation, but increasingly
rely on images; scientists watch hours of video to document



(a) Recently watered moss (b) Drying moss

Figure 1: 1(a) shows Tortula princeps with high CO2

uptake, and 1(b) shows the same individual after it
has dried and has a lower CO2 uptake.

bird habits and how they build a nest, lay eggs, incubate
and so on. This project has deployed inexpensive imagers
inside bird boxes producing a potentially large amount of
medium-quality imagery. They have developed simple mod-
els based on custom filters for these images to let scientists
estimate the presence or absence of a bird in the nest at any
moment, and in turn track rates of occupancy as a function
of gestation cycle.

Another example is the use of imagers in the multiscale
light mapping project [12] which attempts to observe the
duration and pattern of light incident on the forest under-
story. Standard Photosynthetically Active Radiation (PAR;
400nm - 700nm) light measurement sensors can not be de-
ployed widely enough to allow for complete characterization
of the light field. Pixel measurements from in-situ imagers
are correlated with incident light measurements taken by ei-
ther fixed or robotic PAR sensors. These correlations allow
them to infer a light field from the imager data, yielding a
so-called multiscale analysis.

There have been similar attempts to model natural phe-
nomena using remote sensing imagery. Sensor networks pro-
vide the unique challenge of processing the image data on
in-situ sensors instead of off-line like conventional remote
sensing applications. This requires models which are com-
putationally inexpensive to apply and using minimal storage
for the computation as well as the model itself. Further, the
sensor network described in this paper takes advantage of in-
expensive, readily deployable, visible light sensors that are
capable of much higher temporal resolution as compared to
a remote sensing platform like a satellite or plane.

Imagers provide a broad, but uncalibrated view of a scene;
uncalibrated in the sense that we have to work to relate
the observations to some quantity of scientific interest. In
many cases we don’t need complex computer vision algo-
rithms, but instead can rely on fast filtering of the image
data to produce a small number of features. These simple
feature extractors, when used together with some form of
statistical learning procedure, can transform in-situ imagers
into sensors. Further, image databases are becoming nearly
ubiquitous in the context of sensor networks as more sensing
apps begin to collect images. In fact, an early requirement
of systems like SensorBase [4] was the ability to store im-
ages effectively. These models have the ability to convert
an image database into an untapped chronology of sensed
events.

2. DISCERNING A CORRELATION
The rate of photosynthesis in plants is known to be corre-

lated with the amount of chlorophyll and other photosynthe-
sis related pigments in the plant’s tissue. Further, the color
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Figure 2: Scatter plot of correlation between the
relative greenness image feature and CO2 uptake

of the plant’s leaves, its reflectance in visible wavelengths
(400nm - 700nm), is largely influenced by such pigments
[7] [8]. The moss we are studying, Tortula princeps, goes
through natural cycles of drying in the field that are asso-
ciated with changes in its photosynthetic capacity causing
changes in its spectral reflectance. Thus, we concluded that
we would be able to predict the rate of CO2 uptake of this
moss using image features alone.

Before trying to predict the CO2 uptake of the moss, we
need to ensure that there is indeed a correlation between
image features and the observed sensor values. First, we ex-
tract a color HSV (Hue, Saturation, Value) histogram from
each image. Then, we compute its quadratic histogram dis-
tance [6] to a known green reference histogram, a metric
we call relative greenness. This distance metric takes into
account the L2 distance between all pairs of colors in the
two histograms, where as simple histogram distance only
compares like buckets in a pair of histograms.

As we can see from Figure 2, there is a distinct corre-
lation between the distribution of greenness over time and
the sensor value over time. Optimally, this plot would be a
straight 45 degree line. However, we see a vertical line near
greenness value 0.76 with a cluster around sensor values of
−1 and 0 representing many CO2 values associated with a
single greenness value. Still, there was sufficient correlation
to prompt further research into a weighted model derived
from large number of simple image features.

Motivation for a weighted model came as a result of achiev-
ing a stronger correlation when we ignored certain buckets
of the HSV histogram; specifically buckets containing black,
white, or other colors sufficiently far from green. This simple
greenness measure is one of a large space of features which
we can extract from these images. Fortunately, the use of a
weighted model allows us to be a bit less deliberate in our
feature selection; our model will heavily weight predictor fea-
tures that are strongly correlated with our measurements,
and lightly weight weakly correlated features.

3. PREDICTING SENSOR VALUES
To predict measured sensor values we need both a set of

features and a method to weight these features into a model.
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Figure 3: 3(a) The mapping of RGB colors onto the
HSV cylinder [15]. 3(b) A window superimposed
over a 1D histogram, the grey boxes represent the
window of values being considered in this feature.

To leverage the known correlation between photosynthesis
and greenness, we choose various features based on HSV
histograms of the images. The features we are extracting are
very simple and computationally inexpensive. We believe
these simple features to be sufficient because the value we
are attempting to predict is highly sensitive to the coloration
of the plant. So, we intentionally do not incorporate complex
vision related techniques, or even rudimentary measures of
texture, because they possess little more expressive power
with respect to the model we are building. Additionally,
they these features are more expensive to compute, taxing
the limited resources available to in-situ sensors.

3.1 Extracting Image Features
Before extracting features from the images, we first con-

verted the images from the RGB (Red, Green, Blue) color
space into the HSV (Hue, Saturation, Value) color space.
This non-linear transformation, shown in Figure 3(a), nicely
separates the notion of color from its intensity. Thus, the
wavelength of visible light reflected from the moss is most
strongly represented in the Hue direction rather than spread
out over all three RGB directions.

Given an image in the HSV color space, we compute a
single normalized 3D histogram containing frequencies of
all (h, s, v) triples and three normalized 1D histograms for
each of the Hue, Saturation, and Value directions individu-
ally. Note that a 3D HSV histogram requires approximately
14MB of memory to store - 360 Hue buckets by 100 Satura-

tion buckets by 100 Value buckets by 4 bytes per bucket. To
reduce the size of this histogram, we down-sampled each of
these dimensions to 100, 10, and 10 respectively, producing
a 40KB histogram [13]. Additionally, the “wider” histogram
buckets produced by down-sampling reduces the histogram’s
variance between images potentially increasing the accuracy
of the model.

We maintain higher accuracy in the Hue direction because
most of the significant color information is contained in that
dimension. Given these histograms, we create a set of equal-
sized windows spanning a contiguous set of adjacent his-
togram buckets. The “value” of a given window is the sum
of the values in each of the buckets it contains as illustrated
in Figure 3(b). This way we can create a large set of image
features by varying the window size.

These features only require the computation of an image
histogram, an operation linear in the number of pixels. How-
ever, computing the value of each feature from the histogram
is an operation which is linear in the number of histogram
buckets. So, the complexity of computing all features values
becomes O(nb) where n is the number of features and b is
the number of histogram buckets. To reduce the runtime, we
computed a Cumulative Distribution Function (CDF) from
the histogram. Given a CDF, we compute the window’s
value by subtracting the value at the lower end-point of the
window from the upper end-point (a constant-time opera-
tion) without having to iterate through the entire window’s
histogram buckets. This makes the complexity of comput-
ing all features O(n), allowing us to consider far more fea-
tures cheaply. This is similar to the integral image technique
used to reduce complexity of computing the value of Haar-
features from images [14].

Though such an optimization is not too beneficial for com-
putation on a typical workstation, saving such computation
on a sensor node is important. Further, once the CDF is
computed, there is no longer any need for the image itself.
The memory cost for storing an CDF of the image is only
O(b) instead of linear in the resolution of the image; this
represents a significant memory savings for a constrained
sensor. This reclaimed space is more than sufficient for the
added memory requirements of applying the models we con-
sider.

3.2 Training and testing methodology
To assess the accuracy of our models, we split our data

into a training and testing set. Since we did not have too
much data for any given run of the laboratory experiment,
our testing set typically had approximately 50 data points.
After training, we applied our models to the test set and
computed the root mean squared error (RMS Error); an ac-
ceptable RMS Error would be approximately 0.5 photosyn-
thetic units. An error of 0.1 photosynthetic units is the limit
of current sensing technology because of changes in temper-
ature, moisture, and other environmental effects. Being able
to approximate this value with an error of 0.5 photosynthetic
units using only a camera is a significant accomplishment.
Further, with such accuracy, it will likely be more accurate
than other sensing modalities which will have to be esti-
mated using nearby sensors as references.

Instead of using a fixed training and test set to build our
model, we could have used boosting. In that setup, we would
have trained our model on a randomly selected subset of the
data and then iteratively retrained by adding the hard to
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(a) Prediction based on 6-class SVM classifier
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(b) Prediction based on a regression tree

Figure 4: Plots of CO2 uptake (measured) and predicted values over time

predict data points to our training set. The iterative grow-
ing of test set makes this method most effective when the
entire dataset can not be considered simultaneously. How-
ever, since each run had limited data, considering the whole
dataset was feasible.

Alternatively, we could have used leave-one-out testing
where we train on the entire dataset minus one point, and
attempt to predict only that single point. This is the other
extreme, where we do not have enough data to extract a
proper test set. Fortunately, we had sufficient data to ex-
tract a test set without compromising our model’s accuracy.

3.3 Prediction using classifiers
Predicting the measured values using a classifier required

training N SVM based classifiers to each recognize a con-
tiguous range of CO2 values. To test initially, we chose to
train a single classifier on half the range of the measured
values. Initially using a linear kernel for the SVM, i.e. no
data transformation, and a minimal feature set we were able
to achieve an 88% accuracy, 82% percision, and 81% recall
on the test set. Here, accuracy is the percentage of correct
classification, precision is the percentage of true positive ex-
amples with respect to all positive examples, and recall is
the percentage of true positive examples which were cor-
rectly classified. With the addition of many more features
and a cubic kernel, we improved accuracy to 92%, precision
to 91%, and recall to 85% on the test set.

These results were sufficient to progress to splitting the
measured range into 6 regions and training the associated
6 classifiers. To expand our model to use multiple classi-
fiers, we leveraged the fact that an SVM classifies a point
by simply computing the distance between the example and
the hyper-surface that separates the two classes being dis-
cerned. So, to combine more than one classifier into a dis-
crete prediction, we define the correct classification to be
the classifier whose normalized prediction distance is fur-
thest from the hyper-surface in the positive direction. We

then predict the value for this example to be the median
value of the range the classifier was trained to recognize.

Using this technique, we made this model more robust to
varying accuracy, precision, and recall in the set of classi-
fiers being used. This classifier variability stems from the
inconsistent number of positive examples (data points in
that particular region). Typical accuracy, precision, and re-
call values of the individual classifiers ranged from approx-
imately 50% to 90%. However, the resulting prediction has
an RMS error of 0.74 on the test set and was quite accurate
as can be seen in Figure 4(a).

Increasing the number of classifiers to 15 and adding ad-
ditional features was able to reduce the RMS test error to
0.70, a smaller improvement than anticipated. The expec-
tation was that as the number of classifiers grew, the pre-
diction would approach the measured values, however this
was not the case. Analysis of the error showed that it was
normally distributed. In fact, the 85th percentile squared er-
ror was 0.61, and nearly all squared error value larger than
0.61 occurred for measurements near 1 or greater than 2.
We will address why such values cause such large errors in
Section 3.6.

Moreover, since we had a limited amount of data, training
an ever growing number of classifiers produced diminishing
returns as the number of positive examples per classifier
approached zero and the computational expense grew. Both
the weak prediction performance and poor scaling properties
caused us to search for a simpler model which could predict
this phenomena.

3.4 Prediction using regression trees
As an alternative to a set of N classifiers, we tried building

a regression tree using recursive partitioning. Instead of
performing a normal regression, we use a decision tree to
partition the data. Then, we perform a regression at leaf
nodes in the tree where examples should be more similar
in nature [3]. Here, a feature and threshold pair that best



splits the data at a given node is chosen recursively until
all of the leaf nodes reach a specified purity or similarity.
Thus, as we traverse the tree from the root, nodes contain
increasingly similar measurements which obey the feature
constraints defined by the tree. To produce a prediction for
the set of values at given leaf node, we average all the values
at that node. The result of a model trained in this fashion,
shown in Figure 4(b), is quite good.

Without significant tuning, we found the RMS prediction
error of this model to be 0.49; already much better than
the error for an SVM based model. Again, analysis of the
error showed it to be relatively normal with the most er-
ror occurring on measured values near 1 or greater than 2.
Decreasing the splitting threshold of a node and increasing
the required purity of terminal nodes only reduced the error
slightly at the expense of a larger tree.

In all cases, the regression tree outperformed the SVM
classifiers with respect to RMS error. Further, a regression
tree based model is better suited for an embedded device
because of the brevity of its model definition (only the tree
itself is needed) and nominal computational complexity re-
quired to apply the model to an example. In contrast, the
SVM based models need many large model definition files
(one for each classifier), and require performing significantly
more math to classify an example. For these reasons, a re-
gression tree based model is superior for this application.

3.5 Other prediction methods
There are various other methods we could have used to

build a model of this phenomena. Similar to our use of
SVMs would be the application of Support Vector Regres-
sion (SVR) [5]. Analogous to the SVM computation, SVRs
iteratively compute an increasingly better hyper-surface re-
gression of the data, attempting to minimize a specified loss
function at each step. As an extension to our use of regres-
sion trees, we could have used random forests [2] to better
approximate our measurements. This technique combines
multiple regression trees generated from a random subset of
the feature space into a single approximation of the system.
We will address the use of both of these modeling strategies
in future work.

3.6 Hard to predict measurements
The fact that our error distribution is heavily skewed, indi-

cates that our models are likely missing a predictor variable.
Interestingly, the largest error occurs around zero valued
measurements, an area which was not well distinguished by
color as seen in Figure 2. As an attempt to find the missing
feature, we produced a large number of features by varying
the window size and using larger histograms which were not
down-sampled to save space. We concluded that we can’t
accurately predict values in this range from color features
alone.

This result is supported by the biology of this moss. As
the plant dries and becomes more brown, its CO2 uptake de-
creases and eventually becomes slightly negative. However,
there is a period when the moss is almost completely dry
when its CO2 uptake rate becomes even more negative but
its color changes only slightly. Also, periods of darkness dur-
ing the experiment facilitated rehydration of the moss, the
3 pronounced spikes in Figure 3.1. The resulting inconsis-
tent drying rate caused similar colors to represent dissimilar
rates of change in CO2 uptake.
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Figure 5: Prediction error of a regression tree based
model

Both of these facts help to explain why our error is so pro-
nounced in the region of near zero photosynthesis; the moss
can be in two distinct states which are hard to discern using
only color. In future work we plan to extract other simple
image features, like texture, to see if it can identify differ-
ences between these two photosynthetic states to produce a
more accurate model.

Another area of poor prediction, as shown by Figure 5,
is the region of CO2 measurements above a photosynthetic
rate of 2. The error in this region can be attributed to lack of
training examples as opposed to a lack of discerning features.
Also, a number parabolic shapes can be seen in the error
values. This is due to the fact that our model has a fixed set
of possible prediction values. Thus, squared prediction error
increases quadratically centered at each possible prediction
value.

4. MODEL ROBUSTNESS
Images taken in the laboratory have relatively consistent

lighting, whereas field imagers experience scenes that change
more radically. To make these models more robust to the
lighting conditions, we employed various simple pre-processing
techniques to standardize images before we extracted fea-
tures. First, we tried to use histogram equalization to in-
crease contrast in the images. Unfortunately, this procedure
alters each image differently depending on their individual
lighting conditions. We expected such non-uniform modi-
fications to adversely effect our model, yet, we found that
such a transformation did not change the model in any sig-
nificant way.

More useful would be to uniformly correct the image’s
white balance to eliminate changes in lighting. One simple
solution would be to include a white reference in the image
during data collection to facilitate white balance correction.
Another solution would be to get the white balance, or color
temperature, from the imager so that we can reverse the
effects of auto white balancing to make the resulting images
more uniform.



5. FUTURE WORK
The work presented in this paper explores only the first

steps required to build robust models for resource-constrained
sensors. As mentioned in Section 3.5, there are numerous
potential models left unexplored that may be better suited
for in-situ sensors. Additionally, to produce more accurate
models we can consider searching for a set of optimal fea-
tures representing the correlation between image histograms
and the CO2 uptake.

Though we considered the cpu and memory impacts of
these models, we neglected their affect on power usage. By
implementing these models on actual sensors, we will gain
insight into how to optimize the models to increase the lifes-
pan of the sensors without sacrificing predictive accuracy.

6. CONCLUSION
In this paper we have outlined how to predict the CO2

uptake of a moss plant given an image of that plant. We
have described different models building strategies, and con-
cluded that regression tree models based on color features
are quite effective for this data. Specifically, its prediction
performance, brevity of model description, and efficiency of
application to new examples make it ideally suited for use
on a sensor node. Though regression trees may not be the
correct model for every application, the process which we
followed and criteria we used to choose between models in
this instance are generally applicable.

Combined with models of natural phenomena, imagers be-
come extremely powerful sensors which can measure a wide
range of different sensing modalities. Performing image pro-
cessing closer to the sensor reduces the network load needed
to transmit the images and truly transforms the imager into
a first class sensor. Moreover, such models unlock sensor
data from the confines of the images contained in image
databases. Yet, the true power of this type of model lies
in estimating measurements of phenomena which cannot be
measured by any other means.
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