
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
LUsim: A Framework for Simulation-Based Performance Modeling 
and Prediction of Parallel Sparse LU Factorization

Permalink
https://escholarship.org/uc/item/5w72v5s4

Authors
Cicotti, Pietro
Univ. of California, San Diego

Publication Date
2008-05-08

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5w72v5s4
https://escholarship.org
http://www.cdlib.org/


LUsim: A Framework for Simulation-Based Performance Modeling

and Prediction of Parallel Sparse LU Factorization

Pietro Cicotti∗ Xiaoye S. Li† Scott B. Baden∗

April 15, 2008

Abstract

Sparse parallel factorization is among the most complicated and irregular algorithms to analyze and

optimize. Performance depends both on system characteristics such as the floating point rate, the memory

hierarchy, and the interconnect performance, as well as input matrix characteristics such as such as the

number and location of nonzeros.

We present LUsim, a simulation framework for modeling the performance of sparse LU factoriza-

tion. Our framework uses micro-benchmarks to calibrate the parameters of machine characteristics and

additional tools to facilitate real-time performance modeling.

We are using LUsim to analyze an existing parallel sparse LU factorization code, and to explore a

latency tolerant variant. We developed and validated a model of the factorization in SuperLU DIST,

then we modeled and implemented a new variant of SuperLU DIST, replacing a blocking collective

communication phase with a non-blocking asynchronous point-to-point one. Our strategy realized a

mean improvement of 11% over a suite of test matrices.

1 Introduction

Sparse linear systems of equations arise in a wide range of applications in science and engineering, and

are also computationally intensive. Direct methods are useful in problems that do not have a well-defined

structure, or that are highly ill-conditioned.

Parallel sparse LU factorization has been subject of many studies and analytical models have been

developed [1, 8, 9, 12]. The models developed in [1, 9, 12] focused on the algorithmic variants of sparse

Cholesky which are suitable for solving symmetric, positive definite systems. The theoretical model developed
∗Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093-0404.

{pcicotti,baden}@cse.ucsd.edu.
†Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. xsli@lbl.gov.



in [8] was the first attempt to analyze parallel sparse LU factorization. Although these models expose

performance and scalability limitations qualitatively by making some simplified assumptions, they are far

from being able to predict actual performance of a code on a real machine.

Analyzing the performance of sparse matrix operations on modern computer architectures is challenging

than doing so for the dense counterparts. Memory accesses rather than the floating point operations are often

the bottleneck, but sometimes the combined costs of the two must be taken into consideration. Analytical

performance bounds exist for sparse matrix-vector multiply and triangular solve [13, 14]. In both matrix-

vector multiplication and triangular solve, the matrix needs to be read only once, hence the ratio of flops

to memory accesses is O(1). Since there is hardly any reuse, these sparse kernels are purely memory-bound

on today’s processors where memory speed is growing more slowly than processor speed.1 Therefore, an

analytical model based on cache miss counts could provide a rather accurate performance upper bound [13,

14].

In contrast, the factorization operations exhibit higher reuse, and the ratio of flops to memory accesses

changes during the course of elimination. During early stages of elimination, factors are sparser and workload

is memory-bound. During later stages, the factors are denser; level 3 BLAS operations are appropriate and

hence the workload is compute-bound. It is infeasible to derive a closed form formula that could realistically

predict performance. The inaccuracy is more pronounced for matrices that come from practical applications,

as opposed to model problems, and hence do not have special structures [8]. It is therefore necessary to

characterize system behavior by simulating its relevant components, such as the memory hierarchy and

interconnect.

The authors of [8] developed a realistic simulation model to simulate the right-looking supernodal fac-

torization algorithm implemented in SuperLU DIST. The major improvements include a memory system

simulator, a detailed modeling of BLAS kernels, and a communication bandwidth model for varying message

sizes. The simulation model has greatly improved the prediction accuracy compared with the measured

runtime [7]. However, this model is based on cycle count and requires estimation of the instructions in-

volved in the BLAS routines. In addition, the model is tailored for a specific implementation and a specific

architecture; therefore, it is hard to adapt to different algorithms as well as to different machines.

We have developed a framework for simulating sparse LU factorization that supports the development of

performance models for existing and new algorithms, and eases the deployment to new architectures. The

framework contains
1This phenomenon will continue with multi-core processors.

2



• micro-benchmarks to calibrate the characteristics of the target system,

• a memory hierarchy simulator,

• lookup tables combined with linear interpolation for estimating the cost of BLAS kernels with varying

dimensions,

• functions to evaluate the communication cost

• a supernodal dependency graph for simulating advanced scheduling algorithms.

The micro-benchmarks provide the means of obtaining the parameters required by the simulation tools.

Other tools support the modeling of a factorization algorithm in terms of memory access operations, BLAS

routines, and communication operations. In addition, the supernodal dependency graph facilitates the

implementation of models of dependency-driven parallel factorization algorithms. The approach taken is

general and applicable to any algorithm, however, LUsim is currently integrated with SuperLU DIST.

Our goal is to use LUsim to aid in the design and development of a latency tolerant version of Su-

perLU DIST based on dependency-driven scheduling. To this end we have used LUsim to develop a perfor-

mance model of the algorithm implemented in SuperLU DIST and validated the model on an IBM Power5-

based mainframe. We developed a second version of the performance model to simulate a latency tolerant

variant of the algorithm. This variant reorders communication and computation steps in a phase of factor-

ization, and it replaces synchronous collective communication with equivalent asynchronous point-to-point

communication. We implemented the latency tolerant variant and validated it against the corresponding

model. We also used the model to identify the shape of the processor grid that achieved the best perfor-

mance given a fixed number of processors. Finally, we simulated an asynchronous graph-based elimination

algorithm to speculate and gain insight on the possible performance improvements.

The rest of the paper is organized as follows. Sec. 2 presents the factorization algorithm of Su-

perLU DIST. Sec. 3 presents LUsim framework, its components, and the performance model that we

developed for SuperLU DIST. Sec. 4 presents the latency tolerant variant of SuperLU DIST and the corre-

sponding model. Sec. 5 presents experiments and results, Sec. 6 the conclusions.

2 Parallel Sparse LU Factorization

Gaussian elimination (GE) is a direct algorithm for solving systems of equations and employs two steps [6].

Given a linear system Ax = b, the first phase factors A into two triangular matrices L and U (lower triangular

3



and upper triangular); the second phase determines x by solving the two triangular systems Ly = b and

Ux = y, e.g., via forward and backward substitutions.

LU factorization proceeds in steps. Each step produces a column of L and a row of U . To favor locality

and achieve higher performance, the algorithm can be formulated in blocked form. Each step of the blocked

variant produces a block column of L and a block row of U . Fig. 1 shows the k − th step. In this step,

the block column and part of the block row (Lk,L′
k and U ′

k) is obtained by GE on panel Ck. GE can be

implemented with a sequence of rank − 1 updates. The block row (Uk) is obtained by solving a triangular

system for each of its columns (Rk = L′
kUk). Then, a rank − k update is applied to the trailing sub-matrix

(A′′ = A′ − LkUk).

Figure 1: Step k of LU factorization: block column Ck is decomposed into Lk, L′
k, U ′

k, block row Rk is
updated into Uk, and A′ is updated into A”.

Two issues arise in the implementation of sparse parallel factorization. First, L an U are stored in a com-

pressed format. Second, each processor will store only part of them. The implementation in SuperLU DIST

stores nonzeros in a compressed column storage format within the block boundaries; local blocks of L and U

are stored in column and row major order, respectively. In addition, blocks are distributed with block cyclic

layout on a 2D processors grid. (Fig. 2).

Figure 2: LU block cyclic distribution.

The implementation of SuperLU DIST features a look-ahead technique to overlap communication with

computation (the factorization algorithm is shown in Algorithm 1). Overlap is achieved dividing the update

of A′ in two stages: the first stage updates panel Ck+1 (line 21), the second stage updates the remaining

part of sub-matrix A′ (line 30). Between the two stages, panel Ck+1 is factored, and the new block column

4



communication is initiated. In this way, communication can take place concurrently with the second stage

of the update.

Algorithm 1 SuperLU DIST factorization on each processor
1: if Part of block column L(:, 1) is local then
2: Factorization(L(local, 1))
3: for all p ∈ NEED(L(local, 1)) do
4: ISend(L(local, 1))
5: end for
6: else
7: IRecv(L(remote, 1))
8: end if
9: for k = 1 to N do

10: if Part of block column U(k, :) is local then
11: Update(U(k, local))
12: for all p ∈ NEED(U(k, local)) do
13: Send(U(k, local))
14: end for
15: else
16: Recv(U(k, remote))
17: end if
18: if k < N then
19: if Part of block column L(:, k + 1) is local then
20: /* look-ahead one step */
21: A(local, k + 1)← A(local, k + 1)− L(:, k)× U(k, k + 1)
22: Factorization(L(local, k + 1))
23: for all p ∈ NEED(L(local, k + 1)) do
24: ISend(L(local, k + 1))
25: end for
26: else
27: IRecv(L(remote, k + 1))
28: end if
29: end if
30: A(local, k + 2 : N)← A(local, k + 2 : N)− L(:, k)× U(k, k + 2 : N)
31: end for

3 LUsim

3.1 The Simulation Framework

We developed LUsim, a framework for simulation-based performance models that takes into account the costs

of memory activity, interprocess communication, and compute intensive kernels. The framework consists of

a set of micro-benchmarks, a memory hierarchy simulator, and the functionality to construct a graph (DAG)

that represents data dependencies between blocks. A model is defined in a simulation module that uses the

underneath tools to simulate a factorization algorithm.

5



3.2 Micro-benchmarks

LUsim provides a set of micro-benchmarks to probe the system’s speed of memory operations, interprocess

communication, and the relevant BLAS routines. The benchmarks are run off-line and the timings of the

sample points are calibrated for later use in performance modeling. Time measurements are collected using

provided timers. The current implementation supports times, MPI Wtime, or PAPI get real usec, but others

can be added as needed.

3.2.1 Memory micro-benchmark

The purpose of this benchmark is to obtain an estimate of the memory access time so that it can be accounted

for in the simulation of a factorization algorithm. The access time is obtained by timing memory updates.

Each level in the memory hierarchy is measured in isolation to expose its access time. Given a level in the

memory hierarchy, update locations are chosen systematically to hit in the selected level while missing in the

lower levels. This operational regime can be achieved by carefully selecting the size of the range of addresses

(N) and the access stride (s) [11]. Intuitively, for a given cache level l, if the N/s lines accessed (assuming

s at least as large as a cache line) do not fit in the lower level caches but fit in the cache at l, every access

will miss in the lower levels and hit at level l. Typically this condition is met by choosing N and s equal to

the capacity and line size of the cache at the selected level. When N is larger than the largest cache, the

operational regime is characterized by cache misses at every level and leads to an estimate of main memory

access time.

The benchmark also measures the cost of a memory access in the case of a TLB miss. To collect this

measure, the benchmark senses the page size and sets up an operational regime that guarantees misses at

any level of the cache and in the TLB. Now the memory access time can be adjusted because the previous

measurement included a TLB miss penalty every pagesize
s accesses.

3.2.2 Network micro-benchmark

Point-to-point communication is benchmarked using a ping-pong program implemented in MPI where two

MPI processes repeatedly exchange messages. The exchange is synchronous and when timed, provides a good

estimate of the cost of point-to-point communication. By varying the size of the messages and timing the set

of operations, the benchmark measures the transfer time for a number of representative message sizes. The

times and sizes are plugged into the communication model time = α + β × size to evaluate communication

6



latency (α) and bandwidth (β−1). First, α is obtained using messages of size 0; then α is considered constant

for any larger message size and β is estimated for several representative sizes. On systems with SMP or

multicore nodes, the cost of communication is much higher when communicating off-node, therefore it is

important to run the benchmark for both cases. During the simulation of a factorization algorithm, the

transfer time for a message can be approximated by using the same communication cost model. The cost is

assessed distinguishing between intra-node and inter-node communication and selecting the value of β that

is appropriate for the given message size.

LUsim provides a broadcast benchmark as broadcast is a form of collective communication that can be

used in factorization (e.g. during panel factorization). Broadcast times are heavily dependent the processor

geometry, since broadcasting occurs over rows, columns, and rectangular subsets of processors. To this end

LUsim provides a broadcast benchmark. The benchmark times a sequence of broadcasts operations rooted

on the same processor and repeats the measurements over the same spectrum of message sizes as with the

point-to-point benchmark, and over a range of processor and node configurations. In this way, the benchmark

exposes how the number of nodes and the number of processors on each node affect the cost of the broadcast.

The number of nodes and processors should be taken into account to define a cost model based on α and β

as before. By default, LUsim uses the following model:

log2 Pn × (αn + βn × s) + log2 Ps × (αs + βs × s) (1)

where Pn is the number of nodes involved, αn and βn are the parameters for inter-node communication, Ps is

the number of processors involved on each node, αs and βs are the parameters for intra-node communication,

and s is the size of the message. When the model does not agree with the results of the benchmark, it may

be changed to reflect the results.

3.2.3 BLAS micro-benchmark

Three BLAS routines are used during factorization:

dger is used to factor block columns of L: this step is implemented using a sequence of rank-1 updates,

each corresponding to a row elementary operation in Gaussian elimination.

dtrsv is used to update the block rows of U : Ar = LcUr and the new block row Ur is the result of a sequence

of triangular solves Urc ← L−1
c Arc, one for each column c ∈ Ar.

7



dgemm is used to update the trailing sub-matrix: A′ = A− LcUr.

The micro-benchmarks time these routines with varying input dimensions. For dger, the dimensions of

the two vectors correspond to the dimensions of the parameter space. The size of the vector that belongs

to U is limited by the maximum size of a supernode, which is an adjustable parameter. In our experiments,

we chose this to be ≈ 64 columns to strike a balance between parallelism, local process performance and

load balance. However, there is no such limit on the size of the other vector in L. In our experiment, we

calibrated the timings with sizes up to 4096; for the matrices we used, 4096 is an approximation of the

maximum number of rows of a block column that a processor owns. For dtrsv, the first dimension of the

parameter space is the size of the triangular block (which also corresponds to the size of the solution vector).

The second parameter is the leading dimension of the block column to which the triangular block belongs.

The leading dimension determines the stride within the columns of the triangular matrix, which affects

the load/store speed of the operation, e.g. spatial locality. Again, in our calibration, we limit the leading

dimension to be no more than 4096. For dgemm, the parameter space has three dimensions corresponding

to the size of matrices to be multiplied (m,k,n). The three dimensions are limited by the maximum size of

a supernode.

The parameter spaces are large and in some cases ranging from one to 4096 or more possible values in

just one dimension. Timing each possible point of the parameter space is prohibitively expensive because

it would be time consuming, and it would require a large amount of space to store the results. To reduce

these requirements, in some areas of the space, only a subset of the points is tested. For the points that are

not tested, the values are calculated using linear, bilinear or trilinear interpolations, or linear extrapolations

when required during the simulation (the interpolation method depends on the number of parameters).

The micro-benchmarks are run once and the estimations are stored in files. The estimation can be loaded

into tables when the simulation starts. LUsim provides support for loading and retrieving values via table

lookup.

3.3 Memory Hierarchy Simulator

LUsim provides data structures and functions to simulate the memory hierarchy, populating the data struc-

tures with information obtained form the micro-benchmarks described in section 3.2.1. Hardware charac-

teristics include cache capacity, line size, associativity, and the access times . Functions are provided to

simulate access to the memory hierarchy. An access causes the simulator to update its state, and return an

8



estimated time for the operation. Access functions evaluate differently the cost of accesses to memory during

the BLAS calls. In this case, part of the memory access time is already accounted for by the benchmarks

(section 3.2.1), but since the benchmarks are executed with a pre-warmed cache, the memory simulator only

evaluates the cost of bringing the data block to the lowest level cache that is sufficiently large for storing it.

3.4 Data Dependency Graph

LUsim creates a dependency graph to represent the data dependencies between blocks of matrices. The

graph is built on top of the L + U data structure. In the graph, a block D depends on a block S (there

is an edge directed from S to D) if and only if the nonzeros in S are operands of operations that produce

nonzeros in D. The dependencies can be summarized as follows:

• each block in the diagonal has edges directed to all the blocks below the diagonal and in the same

block column (for the panel factorization and rank-1 updates),

• each block in the diagonal has edges directed to all the blocks above the diagonal and in the same

block row (for the triangular solves), and

• each pair of blocks Lrk and Ukc have edges directed to the block Arc for the rank-k update.

Fig. 3 shows the dependencies relevant to step 2 in a sample matrix. The arrows from block 1 to blocks

4 and 7 indicate that the nonzeros in 1 are required for the panel factorization. The arrows from block 1

to blocks 2 and 3 indicate that the nonzeros in 1 are required for the factorization of the block row. In

the trailing sub-matrix, dependencies from the pairs of blocks (4, 2), (4, 3), (7, 2), and (7, 3) indicate the

blocks required for the updates of blocks 5, 6, 8, and 9, respectively. Each vertex of the graph maintains

additional information such as the number of rows and columns in the block, leading dimension, number of

nonzeros, number of floating point operations needed to update the block, and the starting address of both

the value and index vectors. This graph serves as computational meta data [10] which LUsim uses to model

an algorithm that schedule operations according to block dependencies. This approach is general purpose,

and is not restricted to LU factorization.

3.5 The Model

Under LUsim, we replace the factorization with a simulation module. The execution of SuperLU DIST

proceeds as in the original application, i.e., with all the preprocessing steps. When the factorization is

9



Figure 3: LUsim dependency graph example: dependencies involved in step 2

reached, the BLAS timing tables are loaded and control is transferred to the simulation module.

Algorithm 2 SuperLU DIST: U block row update
1: for all b ∈MY UBLOCKS(k) do
2: for all j ∈ b do
3: read row subscripts in column j
4: if column j is not empty then
5: dtrsv(L(k, k), j)
6: end if
7: end for
8: end for

Algorithm 3 SuperLU DIST: simulated U block row update
1: for all p ∈ Processors ∧ UBLOCKS OF P (p, k) 6= ∅ do
2: time[p] = time[p] + memory update(p, stack)
3: time[p] = time[p] + memory read(p, index)
4: end for
5: for all b ∈ UBLOCKS(k) do
6: p← OWNER(b)
7: time[p] = time[p] + memory read(p, b)
8: for all j ∈ b do
9: if column j is not empty then

10: time[p] = time[p] + lookup(dtrsv, sizeof(j))
11: end if
12: end for
13: end for
14: for all p ∈ Processors ∧ UBLOCKS OF P (p, k) 6= ∅ do
15: time[p] = time[p] + memory update(p, stack)
16: end for

The simulation module is a software module that combines several components of the framework to

simulate an algorithm running on a specific architecture. To set up the environment, the simulation module

simply instantiates the memory system. Then, the factorization algorithm is simulated in terms of BLAS

routines, memory operations, and communication primitives.

We developed three models: one for simulating the algorithm currently implemented in SuperLU DIST

(Algorithm 1), one for a latency tolerant variant (discussed in Sec. 4), and one for a dependency-driven

algorithm (discussed in Sec. 5.4). The simulations proceed by increasing a timer for each processor in the

10



computation. Time is added for each BLAS routine, according to the value retrieved from the tables; for

each memory access, according to the value returned when updating the state of the memory simulator; and

for each communication according to the transfer time returned by the evaluation functions. In addition,

when communication involves synchronization the timers are synchronized accordingly.

For illustrative purpose, Algorithm 2 shows the procedure that implements the update of a block row

of U (Algorithm 1, line 11) and Algorithm 3 shows the corresponding procedure in the simulation module.

Algorithm 3 shows how the cost of each simulated operation is collected. Memory access functions (e.g.,

memory update, memory read) take a parameter p to indicate the instance of the simulated memory system

that belongs to processor p.

4 New Latency-reducing Factorization

The factorization in SuperLU DIST implements a right-looking algorithm with a look-ahead technique [6].

The look-ahead enables overlapping the communication of an updated block column with the computation of

the trailing sub-matrix update. However, the other communication phases are not overlapped with compu-

tation. In particular, communication during panel factorization is implemented with a series of broadcasts.

The broadcasts, which are rooted at the processor that owns the diagonal block (we refer to this processor

as a diagonal processor), carry a row of the upper triangular block in the diagonal to the processors owning

part of the panel. In this way, these processors can factor the block column concurrently.

A sequence of broadcasts is expensive. The size of the broadcasted message is limited to the size of a row

of the block column and decreases until it is just one number. Therefore, this communication phase does

not take advantage of the available bandwidth. In addition, not only the delays due to latency increase with

the number of broadcasts (which is equal to the number of columns in the panel), in many implementations

the broadcast is a synchronous operation and keeps the sender waiting if the receivers are not ready.

Since the upper triangular block of the diagonal is not modified after the panel factorization, in an

alternative implementation, the diagonal processor may perform all the local computation and then issue a

series of non-blocking sends. There are three advantages: only one large message is sent taking advantage

of the available bandwidth, each receiver experience just a latency delay, and there is no need to enforce

synchronization at the sender.

The time of the panel factorization can be expressed as a function of number of processors owning part of

the block column (P ), columns in the block (n), latency (α), bandwidth (β−1), and time spent in the local

11



computation (c). For simplicity and for the purposes of discussion, we assume that the processors spend c

time in the local computation to factor the panel concurrently. This assumption implies that the panel is

equally divided between the processors. Under these assumptions, the time to complete a panel factorization

in the current implementation can be represented as:

n∑
r=1

log2 P (α + βr) + c = log2 P (αn + β
n× (n + 1)

2
) + c (2)

On the other hand, the time to complete a panel factorization in the proposed implementation can be

represented as:

P (α + β
n× (n + 1)

2
) + c + c (3)

At first, the cost expressed in Eq. (3) looks higher than that of Eq. (2). The local computation cost

c contributes to the overall cost two times: first because no message is sent before the sender finishes

computing, then because all the other processors compute their local factorization. In addition, the prefactor

of the parenthesized expression is now P instead of log2 P . However, the contribution of α does not depend

on n. More importantly, the diagonal processor completes the local computation in time c, then proceeds

immediately and starts the look-ahead send earlier. This send is relevant because it provides the data for the

linear solves for the block row update. In contrast, even if the other processors are delayed (c time), their

dependents for the next sub-matrix update will also likely be waiting for the solves of the corresponding

block-row; therefore, this wait might have less of an effect than it appears in Eq. (3).2 Finally, though

the communication cost strongly depends on the input matrix and the processor grid, the total number of

messages sent is considerably reduced in the second case.

Other alternative methods can be considered in the future. For example, one broadcast can be used

instead of multiple asynchronous point-to-point messages. This reduces the prefactor from P to log2 P in

Eq. (3) but introduces synchronization. Another possibility is for the diagonal processor to factor only the

diagonal block and immediately initiate the send message before finishing the local panel factorization. This

reduces the wait time of the other processors to a fraction of c. Although we are currently considering all

these alternatives, in this paper we focus only on the algorithm described above. To better evaluate its

performance, we developed a model which differs from the model described in Sec. 3.5, and simulates the

Latency-reducing factorization algorithm. In addition, the model uses the estimate of the local computations

based on the actual panel distribution with no assumption of even distribution.
2It is difficult to quantify the amount of overlap between communication and computation.

12



5 Experimental Results

5.1 Testbed

We run our experiments on Bassi, a scalable system located at the National Energy Research Scientific

Computing Center (NERSC). Bassi has 111 compute nodes. Each node hosts eight Power5 dual-chip modules

running at 1.9 GHz, with a single active core. The active core has exclusive access to 32KB of L1 cache,

1.875MB of L2 cache, 36MB of L3 cache. Processors on a node share 32 GB of memory and a two-link

network adapter card. Nodes are connected through an High Performance Switch (Federation switch).

Relevant characteristics of the Power5 are summarized in Table 5.1.

Table 1: Power5: Bassi Configuration
Clock Speed 1.9 GHz
L1 Data Cache Size 32KB
L1 Data Cache Associativity 4
L1 Data Cache Line Size 128
L2 Cache Size 1.875MB
L2 Cache Associativity 10
L2 Cache Line Size 128
L3 Cache Size 36MB
L3 Cache Associativity 12
L3 Cache Line Size 256
TLB Entries 1024
TLB Associativity 4

We ran the memory and network micro-benchmarks on Bassi. Table 2 shows results collected running

the memory micro-benchmark on one processor. The timings are for cache access time, memory access time,

memory access time adjusted taking TLB misses into account, and memory access time with TLB miss

penalty. When all the processors on a node are utilized, we did not observe any difference in the timings.

This is not surprising because in the benchmark, processes do not share memory and and run with task

and memory affinity. The measured latencies were used to set up the memory simulator in our performance

models.

Table 2: Memory Micro-Benchmark Results
L1 L2 L3 Memory Memory (A) Memory (T)

Time (ns) 0.6 5.2 12.8 26.1 22.1 85.7

We ran the network micro-benchmark four times: on one node with 2 processes and with 8 processes to

13



Figure 4: Interconnect bandwidth measured on Bassi.

Table 3: Network Micro-Benchmark Bandwidth Results
Size (Bytes) 64 128 256 512 1K 4K 32K 1M 16M 256M
Bandwidth Intra1 (MB/sec) 30 46 90 171 318 945 2469 4024 5536 3873
Bandwidth Intra8 (MB/sec) 30 44 87 165 309 920 2167 3089 3971 2133
Bandwidth Inter1 (MB/sec) 11 17 34 62 111 325 995 2878 2187 3562
Bandwidth Inter8 (MB/sec) 11 16 32 59 104 281 548 552 543 597

measure the cost of intra-node communication (Intra1 and Intra8), then on two nodes with 2 processes and

16 processes total (Inter1 and Inter8) to measure the cost of inter-node communication. In all the settings,

pairs of processes exchange messages independently from other pairs. Results are shown in Fig. 4 and a

representative subset of the data is presented in Table 3. It can be observed how, when all the processors

are utilized, communication cost rises and the available bandwidth drops. The measured peak bandwidth

for intra-node communication dropped from 5536MB/sec to 3971MB/sec for messages with size 16MB.

The measured peak bandwidth for inter-node communication dropped from 3562MB/sec to 597MB/sec for

messages with size 256MB. The benchmark approximated the point-to-point latency to 2µsec and 5µsec for

intra-node and inter-node communication respectively. The measured latency and bandwidth values were

used for communication cost evaluation in our performance models.

We also evaluated the accuracy of the default cost model (1). We ran the broadcast micro-benchmark

for sizes ranging from 8 to 512 bytes. The range is large enough to cover all possible cases since at most

64 doubles is sent for each row. The runs were also repeated on several node and processor geometries.

Compared to our measurements, the average relative error of the default model is 27%.

One machine-specific modification of the default model is to consider the two-link network adapter card,

14



which leads to the following refined broadcast cost model:

max(dlog2(Pn/2)e, 1)× (αn + βn × s) + log2 Ps × (αs + βs × s) (4)

This model is based on the idea that the cost of sending messages can be reduced effectively by using the

two links simultaneously. Compared to our measurements, the average relative error of the machine specific

model is reduced to 9.5%.

Though relatively accurate, the model requires further improvement in some cases. For example, in the

case of local node broadcast on 8 processors it was observed that the average relative error is 2.6%, for sizes

from 8 to 64 bytes, and 23.7% for sizes from 128 to 512 bytes. Though not so pronounced, a similar trend

is observed in other processors geometries.

Table 4: Benchmark matrices characterization: order(N), nonzeros(nnz), sparsity(nnz(A)/N), and struc-
tural symmetry (Sym).

Name N nnz(A) nnz(L + U) nnz(A)/N Sym
(BB) bbmat 38744 1771722 36074161 45.7 53%
(DD) dds15 834575 13100653 875305401 15.7 NA
(EC) ecl32 51993 380415 41938340 7.3 92%
(GJ) g7jac200 59310 717620 37369148 12.1 3%
(IE) inv-extrusion 30410 1793881 30245222 59 97%
(M1) matrix181 589698 95179212 898865100 161.4 NA
(MT) mixing-tank 29957 1990919 44562362 66.5 99%
(ST) stomach 213360 3021648 140580464 14.2 85%
(TO) torso1 116158 8516500 27742019 70.5 42%
(TT) twotone 120750 1206265 11360029 10.0 24%

Many of our test matrices come from the University of Florida Sparse Matrix Collection [5]. Matrix

dds15 came from accelerator structural design [4], and matrix181 came from the fusion energy study [2]. All

the matrices are instances of real engineering, scientific, and economic problems. Table 4 summarizes the

characteristics of the matrices.

5.2 Validation of the Performance Model

To evaluate the accuracy of our model we factored all the matrices using 8, 16, 32, 64, 128 processors. Then

we used our performance model to produce two estimates: a lower estimate, where we used the best memory

access time (no TLB miss penalty) and the best communication time (only 1 processor per node used), and

an upper estimate, where we used the worst memory access time (always TLB miss penalty) and the worst

communication time (8 processors per node used).

15



In all the experiments, the model underestimated the real factorization time, even with the upper estimate.

In all cases, the upper estimates are more accurate than the lower estimates. Fig. 5a shows the mean relative

error for each processors configuration. Here and thereafter, the “mean” is taken over the ten test matrices.

Noticeably, on 64 processors, the error is much higher than in the other cases. A more detailed analysis of the

case showed that for many matrices, that configuration is very inefficient and doesn’t provide much speedup

compared to the 32 processors configuration. In fact, a profile of execution showed that the communication

cost almost doubles in that case. However, the performance model does not seem to capture such inefficiency.

(a) (b)

Figure 5: Relative Error and Speedup

Despite the relatively large error, the model is capable of predicting the speedup accurately. Fig. 5b shows

the speedup achieved relatively to the 8 processors configuration. It can be observed that the mean speedup

estimated, especially for the upper estimate, is very close to the mean speedup achieved. As expected, the

speedup on 64 processors is not as accurate, but on 128 processors, the estimated speedup agrees again with

the measurement. In the remaining of the paper, we present only results from the upper estimates as it

proved to be more accurate than the lower estimates.

5.3 Evaluation of the Latency-reducing Factorization

The algorithm proposed in Sec. 4 aims at reducing the factorization time by overlapping communication

and computation and by reducing the synchronization of the operations in the panel factorization. The

model developed for the latency-reducing algorithm suggests that its performance compares favorably with

the performance of the original algorithm in all cases but on 8 processors. However, the implementation

compares favorably to the original version in all cases as shown in Fig. 6. The average speedup achieved in

16



this case is 4%, which could explain why is not correctly predicted; however, the negative speedup detected

suggests the need for revising the communication cost model. The performance model is imprecise also on

the 128 processors case where it overestimates the speedup achieved which again, suggests the need for a

deeper analysis of the communication cost model.

Figure 6: Speedup of factorization when using latency-reducing algorithm.

The Latency-reducing factorization algorithm performs better than the original one because of its ability

to overlap communication with computation and to better tolerate the latencies. In almost all the cases

tested, the new algorithm outperformed the original one, achieving an 11% average speedup. Only in four

cases performance degraded by 1% to 4%. Also, a 46% peak speedup was observed for matrix torso1 on 16

processors. Encouraged by the results, we further investigated a latency-tolerant algorithm for the entire

factorization, which will be discussed in Sec. 5.4.

5.4 Speculative Dependency-Driven Execution

We developed LUsim to model the performance of parallel sparse factorization and help predicting the

performance of new factorization algorithms. In fact, the main purpose is to help in the design of a latency-

tolerant algorithm where scheduling is completely dependency-driven. Here we propose a performance model

for a first rough approximation of a dependency-driven algorithm. The model does not take into account the

overhead of scheduling or any cost other than communication, memory access to retrieve data, and BLAS

routines. We believe these overheads to be low, and will comment on them in future work.

The model is based on the model of the original implementation with two notable differences: communi-

cation is always asynchronous, and computations are scheduled according to the availability of the data the

17



operands. While the graph is constructed with supernode granularity, the algorithm here modeled works at

panel granularity. This means that communication is still based on whole block rows and block columns with

the exception of the diagonal block. In that case, however, the broadcasts are replaced by point-to-point

sends as in the modified algorithm described in Sec. 4. Computation is also set at panel granularity; for

example, a block column factorization takes place as a set of local rank-1 updates that span the whole block

column.

The graph is used to check for availability of the operands of the subsequent operation. As a side benefit,

the edges of the graph enables direct retrieval of blocks of data. Since the blocks of a block column are stored

out of order, using the graph saves some of the time spent traversing the index vector to find the desired

block of data.

We ran the graph-based model on all 10 matrices. Table 5 shows in the second column the average

speedup achieved by the model of the new panel algorithm (also shown in Fig. 6), and in the third column

the average speedup achieved the graph-based model. The model of the dependency-driven algorithm is

encouraging as it further improves the speedup achieved by the new panel algorithm. In particular, on 128

processors it achieves 70% speedup on average, where the 35% speedup predicted by the modified model.

Table 5: Dependency-driven model: speedup.
Processors Latency-reducing Algorithm Dependency-Driven Algorithm
8 0.97 1.01
16 1.12 1.21
32 1.11 1.22
64 1.18 1.34
128 1.35 1.70

6 Conclusions

This paper described LUsim, a framework for performance modeling of parallel sparse LU factorization.

With LUsim we developed a model for the factorization algorithm implemented in SuperLU DIST. We

used the model to predict the factorization time for 10 test matrices on 8, 16, 32, 64, and 128 processors.

Despite a relatively large mean error on the 64 processor configuration, the model accurately predicted

the speedups for all five processors configurations. We used the model to predict the performance of an

improved implementation with a new latency-reducing factorization. In this case, the model accurately

predicted the performance improvement over the original algorithm. The implementation of the latency-

18



reducing factorization achieved improvements comparable to the prediction in most cases, and exceeded the

prediction otherwise. Over 10 matrices and 5 processors configurations ranging from 8 to 128 processors,

the new implementation realized a 11% average speedup and a 46% speedup in the best case. Finally, we

developed a model to speculate on the performance gains from a dependency-driven factorization algorithm.

We will extend the work in the following directions:

• We plan to complete a detailed performance model of the factorization algorithm in SuperLU DIST

in order to expose how each phase in the computation contributes to the overall cost, and to which

extent architectural details affect this contributions.

• We plan to investigate and develop latency-tolerant factorization along two directions. We demon-

strated how to increase the overlap of computation with communication and will continue improving

SuperLU DIST as suggested in Sec. 4. We speculated on the potential of a dependency-driven fac-

torization algorithm and we will implement such a dependency-driven algorithm. To this end we are

considering using Tarragon[3], a run-time system for dependency-driven execution.

Acknowledgments

This research was supported in part by NSF contract ACI0326013, and in part by the Director, Office

of AdvancedScientific Computing Research of the U.S. Department of Energy undercontract number DE-

AC03-76SF00098. It used resources of the National Energy Research Scientific Computing Center, which

is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231.

References

[1] Cleve Ashcraft. The fan-both family of column-based distributed Cholesky factorization algorithms.

In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse Matrix

Computation, pages 159–191. Springer Verlag, 1994.

[2] Center for Extended MHD Modeling (CEMM). URL: http://w3.pppl.gov/cemm/.

19



[3] Pietro Cicotti and Scott B. Baden. Poster reception—asynchronous programming with tarragon. In

SC ’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page 159, New York, NY,

USA, 2006. ACM Press.

[4] Community Petascale Project for Accelerator Science and Simulation (COMPASS). URL:

https://compass.fnal.gov/.

[5] Davis Tim. The University of Florida Sparse Matrix Collection. In NA Digest, volume 29. June 1997.

http://www.cise.ufl.edu/research/sparse/matrices/.

[6] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, 1996.

[7] L. Grigori and X. S. Li. Towards an accurate performance modeling of parallel sparse factorization.

Applicable Algebra in Engineering, Communication, and Computing, 18(3):241–261, 2007.

[8] Laura Grigori and Xiaoye S. Li. Performance analysis of parallel right-looking sparse LU factorization

on two dimensional grid of processors. In Proceedings of PARA’04, LNCS 3732, Springer, pages 768–777,

2006.

[9] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix factorization.

IEEE Trans. Parallel and Distributed Systems, 8:502–520, 1997.

[10] P.H.J. Kelly, O. Beckmann, A. Field, and S. Baden. Themis: Component dependence metadata in

adaptive parallel applications. Parallel Processing Letters, 11(4):455–470, December 2001.

[11] Rafael H. Saavedra and Alan J. Smith. Measuring Cache and TLB Performance and Their Effect on

Benchmark Run Times. Technical Report USC-CS-93-546, University of Southern California, 1993.

[12] R. Schreiber. Scalability of sparse direct solvers. In Alan George, John R. Gilbert, and Joseph W.H.

Liu, editors, Graph theory and sparse matrix computation, pages 191–209. Springer-Verlag, New York,

1993.

[13] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, and R. Nishtala. Performance optimizations and

bounds for sparse matrix-vector multiply. In Proceedings of the SC2002, Baltimore, November 2002.

[14] R. Vuduc, S. Kamil, J Hsu, R. Nishtala, J. W. Demmel, and K. A. Yelick. Automatic performance tuning

and analysis of sparse triangular solve. In Proceedings of the ICS 2002: Workshop on Performation

Optimizations via High-Level Languages and Libraies, New York, June 2002.

20




