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Abstract 

 

Increasing mobility in cities by controlling overcrowding 
 

by 
 

Nikolaos Geroliminis 

Doctor of Philosophy in Engineering-Civil and Environmental Engineering  

University of California, Berkeley 

Professor Carlos F. Daganzo, Chair 
 

 
Various theories have been proposed to describe vehicular traffic movement in cities on 

an aggregate level. They fall short to create a macroscopic model with variable inputs and 

outputs that could describe a rush hour dynamically. This dissertation work shows that a 

macroscopic fundamental diagram (MFD) relating production (the product of average 

flow and network length) and accumulation (the product of average density and network 

length) exists for neighborhoods of cities in the order of 5-10km2. It also demonstrates 

that conditional on accumulation large networks behave predictably and independently of 

their oigin-dstination tables. These results are based on analysis using simulation of large 

scale city networks and real data from urban metropolitan areas. The real experiment uses 

a combination of fixed detectors and floating vehicle probes as sensors. The analysis also 

reveals a fixed relation between the space-mean flows on the whole network and the trip 

completion rates, which dynamically measure accessibility. This work also demonstrates 

that the dynamics of the rush hour can be predicted quite accurately without the 



 2 
knowledge of disaggregated data. This MFD is applied to develop perimeter control 

strategies based on neighborhood accumulation and speeds and improve accessibility 

without the uncertainty inherent in today’s forecast-based approaches. The looking-for-

parking phenomenon that extends the average trip length is also integrated in the 

dynamics of the rush hour.  

 

 

 

 _________________________________ 
 Carlos F. Daganzo 
 Dissertation Committe Chair 



 
 
 

 

 To my parents with all my love. 
 They made it all possible. 
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Chapter 1 

 

Introduction 

 

 This dissertation seeks to shed some light in the macroscopic modeling of traffic flow 

for overcrowded cities. Understanding the physics of congestion is a necessary first step 

towards developing policies for mobility improvements, such as pricing and control. 

 Traffic congestion is increasing in major cities. The Texas Transportation Institute 

(2005) estimated that in 2000 the 75 largest US metropolitan areas experienced 3.6 

billion vehicle-hours of delay, resulting in 5.7 billion gallons in wasted fuel and $67.5 

billion in lost productivity. Furthermore, between 1980 and 1999, the total length of roads 

in the United States increased by only 1.5 percent, while the total number of miles of 

vehicle travel increased by 76 percent (FHWA, 2004). The construction of new 

infrastructure is not a feasible solution to decreasing congestion, not only because of the 

tremendous cost to keep pace with population increases and the resulting increase in 

travel demand, but also because of  the phenomenon of induced demand (Small, 2004).  

 From the above, it is apparent that to decrease congestion in large cities and 

improve urban mobility society has to focus on better utilization of the existing
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infrastructure. To do this models of traffic in cities are needed. Existing models can be 

coarsely divided in two main categories: microscopic and macroscopic. 

 For the last 50 years, the development and evaluation of transportation policies for 

urban mobility improvement has relied heavily on forecasting models and the trend has 

been toward microscopic models. Given correct inputs, modern computer models can 

produce much detailed information on a disaggregate basis (link flows, travel time in 

each route etc) on any large transportation network. Unfortunately, this approach turns 

out to be quite fragile when dealing with congested systems. 

 Firstly, these models require disaggregated time-dependent origin-destination (O-D) 

tables. But for a model with a reasonable spatio-temporal resolution the entries of the 

time dependent O-D tables are so numerous that in some cases they can exceed the whole 

population of a city. For example, a metropolitan area with 4 million people could be 

modeled with 400 zones (approximately 10000 people per zone). To model the morning 

and evening peak hour in 24 time intervals the total number of entries would have to be 

almost equal to the population of the city. Moreover, even if this information was 

available, the stochasticity and variations in individual driver behavior would make the 

estimation of derived vehicle movements unreliable. 

 To further complicate matters, even if we were able to predict this huge amount of 

input information, detailed performance measures such as vehicle hours of travel on 

specific links would be hard to predict because the outputs of congested systems are 

hyper-sensitive to the inputs. It is known that small perturbations to O-D tables or small 

changes to drivers’ route choices can drastically change link flows; see Daganzo (1998). 
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We conclude that existing microscopic models for large scale urban networks are not a 

panacea to deal with crowded conditions.  

 Despite the intense complexity of a city’s transportation system, averages of pertinent 

variables could be functionally related as a consequence of collective effects. The idea of 

describing a complex physical system with averages of variables is not new. For a simple 

physical system consisted of few particles that are in interaction the dynamical laws can 

describe accurately the state of the system in a future time. But, physical systems 

containing many particles, complex to be described in details, can often been 

characterized by averages of few variables (such as pressure or temperature in the Ideal 

Gases Law). We shall show that the same idea applies to urban traffic systems. Perhaps, a 

macroscopic approach could offer more insights. After all, the research on this 

dissertation pursues this idea: we develop observation-based models that alleviate the 

fragility problems of traditional models. In this approach, monitoring replaces prediction, 

and the system is repeatedly modified based on observations. To succeed this goal a city 

is modeled at an aggregated manner and relations between state variables are developed. 

Macroscopic feedback control strategies are introduced which rely on real-time 

observation of relevant spatially aggregated measures of traffic performance.  

  

1.1 Macroscopic modeling background 

 The literature review that follows examines past efforts with macroscopic approach, 

but it is not an exhaustive examination. Rather, it illustrates the general approaches that 

have been used and focuses on the limitations that will be addressed by this dissertation. 
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 Much of the work over the past 40 years has been empirical: observing and 

examining general traffic characteristics among various cities and using these data to 

estimate an assumed functional dependence among network-wide traffic variables, such 

as average speed, road density, average signal spacing etc. Existing theories of this class 

propose a variety of macroscopic traffic relations but the results are tentative since they 

are based on few data points. 

 Early work by Wardrop (1952) and Smeed (1968) dealt with the development of 

macroscopic models for arterials, which were later extended to general networks. Smeed 

(1966) theorized based on dimensional analysis that the maximum flow that can enter the 

central area of a city should be a function of the area of the city, the fraction devoted to 

roads and the capacity of the roads, expressed in vehicles per unit time per unit width of 

road. Although seminal, this work does not say what happens to speeds and trip 

completion rates when demand exceeds capacity during a rush hour. 

 Thomson (1967) found from data collected from streets in central London for many 

years that there seemed to be a linear-decreasing relationship between average speed and 

flow.1  On a more theoretical approach, Wardrop (1968) proposed a generic relation 

between average speed and flow, which depended on average street width and average 

intersection spacing, but it still decreased monotonically. Zahavi (1972) analyzed 

relations for various cities in United Kingdom and United Stated by combining data 

across different regions of a city for the same time period (one day or peak period), and 

proposed that speed was inversely related to flow; i.e., still monotonically. Monotonicity 

only makes sense if traffic is light, since it cannot capture crowded states with very low 

                                                 
1 This suggests that the streets in the data set were not very congested. 
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speeds and flows; e.g., approaching gridlock. Thus, these models cannot be used to 

describe the rush hour in a congested city. 

 A helpful work which establishes macroscopic relations in vehicular traffic in large 

cities is the “two-fluid model of town traffic” by Herman and Prigogine (1979). The 

authors assumed that the speed distribution splits into two parts; one part corresponding 

to moving vehicles and the other to the vehicles that are stopped due to local conditions 

as congestion, traffic control devices, accidents etc., but not parked cars since there are 

not components of the moving traffic. The basic postulate of the theory relates the 

average speed of the moving vehicles vr, to the fraction of moving vehicles, fr as follows: 

 k
r m rv v f= ⋅ ,  (1.1) 

where vm is the average maximum running speed and k is a parameter denote the quality 

of traffic service in the network. The parameter vm can be interpreted as the average speed 

of a test vehicle moving randomly in the network without any interference with other 

vehicles, but stopping only because of the control devices.  

 The two-fluid model assumes that a city traffic network is ergodic. In other words, the 

fraction of stopped time of a single vehicle circulating in the network over a sufficiently 

long period of time is equal to the mean fraction of the stopped vehicles over the same 

period of time fs. Under this assumption the following relation is obtained in terms of 

average travel times: 

 
1

1 1
k

k k
r mT T T+ += ⋅ , (1.2) 

where Tr and Tm are the inverse of vr and vm respectively and T is the average total trip 

time (including stopped time Ts), all per unit distance. The log transform of equation (1.2) 
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allows the least square estimation of k and Tm, given observations of stopped and moving 

time in the network. 

 Herman and Ardekani (1984) further developed and validated the two-fluid model for 

data collected in Austin, Houston and other US cities with chase cars following randomly 

selected cars in designated networks. Later, Herman et al. (1988) studied the influence of 

driver behavior in the two-fluid parameters. They found that the two-fluid model is 

sensitive to driver’s behavior (aggressive vs. conservative drivers).  

 Williams et al. (1987) and Mahmassani et al. (1987) investigated through simulation, 

network level relationships between the three fundamental variables of traffic flow, 

speed, flow and density. To derive these relationships they assumed an additional relation 

between average fraction of vehicles stopped from the two-fluid theory and the network 

concentration (density).  

 One aspect of the two-fluid model that has not been analyzed yet is its validity under 

different O-D demands. If these relationships are valid and insensitive they could be 

realized as network properties and be used as an important tool to monitor a large system 

and test different control strategies. Also, this model allowed for a more realistic 

representation of crowded conditions in the steady state, but the idea was not sufficiently 

developed to create a macroscopic model with variable inputs and outputs that could 

describe a rush hour dynamically.  

 More recently, Daganzo (2007) proposed a simpler and more general model that 

could bridge this gap. The initial conjecture is that if a network is homogeneously loaded 

and congestion is uniformly distributed over the network, then travel production P, (the 

number of veh-km traveled per unit time) under steady state conditions can be expressed 
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as a function of the total accumulation of the network, n, independently of the 

disaggregate link data: 

( ) ( ) ( )i i iP n P n P n≅ ≡∑ ∑ , (1.3) 

where Pi is the travel production for the individual link i with accumulation ni. While the 

1970 models yield monotonic curves between travel production and accumulation (see 

figure 1.1), the new proposal was that this relationship (which we call the macroscopic 

fundamental diagram—MFD) has 3 different regimes, as it happens for a single link: 

Uncongested when few vehicles are there (regime I), congested when n is large (regime 

III) and capacity (regime II) when n is in a “sweet-spot” accumulation range.  

 

  

 

 

 

 

 

Figure 1.1: The shape of the MFD 

 

 The same reference showed that if production-accumulation conjecture were true, and 

drivers were to make trips of random lengths with a given average, l, then drivers would 

be exiting the network at a rate O(n)=P(n)/l. It was conjectured that since drivers 

naturally flock to underused parts of a network, entrances and exits should not disturb the 

distribution of speed and that city traffic could be treated macroscopically as a single-

P
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n

III

II

I

P
1970

n

III

II
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neighborhood dynamic (queueing) system with n as a single state variable. The dynamics 

of the system are described by this ordinary differential equation: 

 ( ) ( )( ) , for 0.dn f t O n t t
dt

= − ≥  (1.4) 

where f(t) is the input flow to the system. Daganzo (2007) also showed that these types of 

queueing systems exhibit a form of congestion (called gridlock) that can be eliminated 

with equitable control policies that require no demand data if the state can be observed. 

The general idea of this policy is to “meter” the input flow to the system and holding 

vehicles outside the system if necessary. In Daganzo (2007), the model has never been 

tested. Therefore, whether it is a good representation of the real world is unknown. In 

particular, it is not known if the MFD exists, and if so, whether it is a property of the 

city’s infrastructure or also depends on the demand characteristics. We also do not know 

whether the O(n)/P(n)  relation is stable over time. On the theoretical side, the dynamics 

of the rush hour and control strategies will be developed for cities that are not uniformly 

congested. This will be done by introducing a multi-neighborhood model. The thesis will 

also discuss how to estimate the models using existing technologies. These experimented 

questions will be addressed in this dissertation. 

 There are some examples of cities around the world, where macroscopic control 

strategies have been applied. Therefore, the results of this thesis can help refine these 

efforts. For example, a novel traffic light operating system designed for active 

management of the high demand central area was developed and set up in Zurich. The 

traffic lights are internally coordinated based on the logic that the flow towards an 

overloaded area should be restricted while the flow towards an underutilized area should 
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be promoted. Prevention of overcrowding on the city centre is achieved by metering of 

access to maintain the mobility of cars at a stabilized level. For example, longer red times 

are applied in the periphery of the centre during peak hours for phases which direct 

vehicles to the centre (Joos, 2000). A congestion charging scheme was introduced in 

central London, covering 22 km2, in 2003. The main aims of the scheme are to reduce 

traffic congestion in and around the charging zone, to improve the bus services, journey 

time reliability for car users and to make the distribution of goods and services more 

reliable, sustainable and efficient. The reductions in both traffic and congestion that had 

been observed in the charging zone are around 30 percent. There are 65,000 fewer car 

trips into or through the zone per charging day as result of the scheme. The reliability of 

buses in and around the charging zone had also improved significantly (Transport for 

London, 2004). The models in this thesis can predict the outcomes of policy actions, such 

as those in Zurich and London with more accuracy than previously provided. 

 
 
1.2 Dissertation overview 

1.2.1 Main contributions 

 The main contributions of this research include: 

• Demonstration of existence and characterization of a macroscopic fundamental 

diagram for two cities with different demand profiles. 

• Development of the invariant relationship between production and output for 

these cities.  

• Development of a methodology to estimate the macroscopic fundamental diagram 

by combining data from fixed detectors and floating vehicle probes. 
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• Development of the dynamics for cities with an inhomogeneous structure. 

• Development of the first model of cruising-for-parking with realistic physics of 

overcrowding. This model shows that the effects for users with destinations 

outside the “cruising region” are significant, and provides tools to estimate the 

total system delays due to parking effect. 

• Development of perimeter control strategies for cities with complicated structures, 

and the study of their effectiveness and limitations. 

 

1.2.2 Organization 

 The thesis is organized in a series of self-contained chapters. Chapter 2 scrutinizes (i) 

if an MFD exists for one-dimensional arterials and urban networks, using micro-

simulation tools, and (ii) if this MFD is sensitive to different demand patterns. It also 

examines how the dynamics of the rush hour for simple systems, can be predicted 

without the knowledge of disaggregated link by link measures and O-D tables. Chapter 3 

designs and analyzes a natural experiment with real traffic in Yokohama city (Japan) to 

ascertain whether a MFD exists in that city. It also explains how data from the fleet of 

taxi cabs can be fused with detector data to obtain consistent city-wide estimates of 

average speeds, flows and densities and how an MFD can be estimated it in other cities. 

Chapter 4 develops the dynamics of cities with more complicated structures. It also 

presents a model, consistent with the physics of traffic, for the cruising-for-parking 

phenomenon and provides tools to estimate the delays for different types of users. 

Chapter 5 extends the analysis of chapter 4 to provide perimeter control strategies in 

cities with complicated structure. It also examines under what cases perimeter control can 
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have a significant positive effect in mobility improvements and when its efficiency is 

limited. Finally, chapter 6 presents some conclusions and discusses possible extensions 

and future work. 



 

 

 

 



 

 

 

 

Chapter 2 

A Macroscopic Fundamental Diagram – 

Simulation Evidence 
 
 This chapter demonstrates using micro-simulation tools that a Macroscopic 

Fundamental Diagram (MFD) relating production (the product of average flow and 

network length) and accumulation (the product of average density and network length) 

exists for one-dimensional arterials and urban networks and that this MFD is the same for 

vastly different demand profiles. It shows that the trip completion rate (rate at which 

vehicles leave the network) is proportional to the production. It also shows that the 

dynamics of the rush hour can be predicted quite accurately without the knowledge of 

disaggregated link by link measures and Origin-Destination (O-D) tables. Section 2.1 

describes the study sites, Sections 2.2 and 2.3 present the simulation results and Section 

2.4 provides discussion. 

 
2.1 The study sites 
 
 The existence of a Macroscopic Fundamental Diagram was initially tested by 

simulation in two arterial test sites: (i) Lincoln Avenue in Los Angeles and (ii) 

Downtown San Francisco Area. The first site is typical of one dimensional multilane 
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major arterials on urban/suburban areas; the second site is a two dimensional network 

with varying geometric characteristics.  

 
2.1.1 Major Arterial  
 
 This test site is 1.42 mile long stretch of a major urban arterial (Lincoln Avenue) 

north of the Los Angeles International Airport, between Fiji Way and Venice Boulevard, 

in the cities of Los Angeles and Santa Monica.  The study section includes 7 signalized 

intersections with link lengths varying from 500 to 1,600 feet.  The number of lanes for 

through traffic per link is three lanes per direction for the length of the study area.  

Additional lanes for turning movements are provided at intersection approaches. The free 

flow speed is 40 mph. Traffic signals are all multiphase, operating as coordinated under 

traffic responsive control, as part of the Los Angeles Automated Traffic Surveillance and 

Control (ATSAC) system. System cycle lengths range from 100 seconds early in the 

analysis period (6:00 to 6:30 am) to a maximum of 150 sec during the periods of highest 

traffic volume (7:30 to 8:30 am).  

 A field study was undertaken obtain a comprehensive database of operating 

conditions in the study area. First, basic data on intersection geometrics, spacing and free-

flow speeds were obtained from field surveys. Next, manual turning movement counts at 

each intersection and floating car studies were undertaken for a four hour period (6-10 

am) on Wednesday May 26th, 2002. Finally, signal timing data for the study period were 

obtained from the ATSAC database. Figure 2.1 shows a sketch of the study site. 

 

Figure 2.1: Study site I: Lincoln Avenue, LA 
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2.1.2 Downtown City Center  

 This test site is a 2.5 square mile area of Downtown San Francisco (Financial District 

and South Of Market Area), with more than 100 intersections and link lengths varying 

from 400 to 1,300 feet. This site consists of more than 800 link-lanes, and the total length 

of roads is about 76km. The number of lanes for through traffic varies from 2 to 5, and 

the free flow speed is 30 miles per hour. Traffic signals are all multiphase, fixed-time, 

operating on a common cycle length of 100 seconds for the west boundary of the area 

(The Embarcadero) and 60 seconds for the rest. Data on the study network, including 

geometrics and traffic volumes, were available from previous research studies on traffic 

control.  

 

2.2 Simulation Results for One-Dimensional Major Arterial 

 Traffic was simulated in the Lincoln Ave. study site with CORSIM microscopic 

simulation model (FHWA, 2003) for a period of 4 hours (6am-10am) with time- and 

space-dependent demand.2 Data for the simulation were obtained from the field study, 

described in subsection 2.1.1. During this study period a wide range of traffic conditions 

was observed: (i) low volume off-peak conditions (6am-7am), (ii) peak period conditions 

(7am-9am) and (iii) post-peak mid-day flow conditions (9am-10am). Traffic demand was 

high especially during the peak hour. Traffic volumes were heavily directional with the 

higher through and turning volumes in the northbound direction. Observed travel speeds 

                                                 
2 Turning movement percentages and flows generated from origins change every 15 min during the 
simulation 
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on the test section were 25 mph during the off-peak times and dropped to about 10 mph 

during the peak hour in the heavily traveled northbound direction.  

 During the simulation, the vehicle-meters travelled (VMT), vehicle-hours travelled 

(VHT) and exit rates (vehicles exiting Lincoln Ave. either from the downstream end or 

turning in one of the cross streets) every 15 seconds were recorded for every link in the 

network. These quantities were aggregated every two cycles (~4min) and travel 

production P, output (trip completion rate) O, average flow q , speed v and density k  

according to Edie’s definitions (1963) were calculated for the whole network. The reason 

for this aggregation with time is to smooth the variations of traffic during a cycle.  

 Figure 2.2 shows scatter plots of ( q , k ) and ( v , k ) pairs. It is clear that a 

Macroscopic Fundamental Diagram (MFD) holds for the study site. The three different 

regimes described in Section 1.3, are clearly noticeable. While ( q , k )  pairs observed in 

regime I, flow-density pairs for individual links mostly observed in regimes A and B 

(shown in figure 1.2). For ( q , k ) pairs in regime II most of the links operate at capacity, 

while in regime III individual links are observed in regimes B and C of figure 1.2. 

Congestion would be unevenly distributed over the network if individual links in regimes 

A and C persisted simultaneously. This could create points beneath the curve of figure 

2.2a.  
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Figure 2.2: MFD for Lincoln Ave. (a) q  vs. k ; (b) v  vs. k  

 
 Figure 2.3 shows total output and production pairs for the major arterial network. 

Notice that they are linearly related. The inverse of the slope of this line describes the 

average distance travelled in the network per trip completion and can be considered as the 

average trip length (approximately 1760m). The high degree of correlation (R2=0.98) 

(a) 

(b) 
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suggests that the traffic production is a good proxy for the aggregate output, which 

cannot be easily observed. 

 

Output = (1/1760)*Production
R2 = 0.98
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Figure 2.3: Output vs. Production pairs per 2 cycles for Lincoln Ave. 

 
 
2.3 Simulation Results San Francisco Business District (SFBD) 

2.3.1 The demand 

 Traffic was simulated in the second study site for many periods (~10) of 4 hours with 

time- and space-dependent demand. We scaled up the estimated real demands by a factor 

to make sure that the city was severely congested. The simulation package did not allow 

importing time-dependent origin-destination (O-D) tables. This was possible by changing 

the turning movements at intersections and the generated flows at the “edge nodes” of the 

network with time. To test the sensitivity of the proposed macroscopic relations to 

different O-D tables, many runs were made while varying turning movement percentages 

between runs, and within each run the generated flows were changing every 15 minutes.  
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RUN 1     RUN 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RUN 3     RUN 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Total Trips Originated per node per run 

 
 Figures 2.4 and 2.5 shows the total number of trips generated and completed per node 

in a period of 4 hours for four different runs. Runs differed vastly in the geographical 

distribution of demand. For example, in some of the runs (run 4) more than 70% of the 

demand origins were internal to the SFBD whereas in others (runs 1 and 2), 80% of the 

traffic was external, entered the SFBD from either the north or the south. Trip endings 
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followed similar profiles (mostly external in runs 1 and 2, evenly distributed in run 3, 

mostly internal in run 4). 

 
 

RUN 1     RUN 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RUN 3     RUN 4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Total Trips Ended per node per run 
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2.3.2 A Macroscopic Fundamental Diagram for SFBD 

 It is now shown that the SFBD network has an MFD with less scatter than for 

individual links and that the MFD is reproduced under different demand conditions. 

 First, figure 2.6 shows scatter plots of flow-density pairs for two single representative 

links of the network with a 2 min sampling interval for a period of 4 hours (one run). 

Although one can discern the trapezoidal edge (representing steady state conditions) of an 

one-link Fundamental Diagram, it is clear that transitions between points in the steady 

state regimes occur by following different paths, creating a high disorder and scatter 

especially when the flows are maximal (k≅ 0.05vh/m). But, when all the links are 

aggregated this disorder disappears.  
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Figure 2.6: Scatter plot of q vs. k for three individual links (without aggregation) 
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 Figure 2.7 shows travel production-accumulation pairs and speed-accumulation pairs 

aggregated per 2 cycles for the whole network for four different runs. Note that the points 

line along a well defined Macroscopic Fundamental Diagram (the orderliness is clear).   

0

3000

6000

9000

12000

0 2000 4000 6000 8000 10000
n  (vh)

P
 (v

h-
m

/s
)

RUN 1 RUN 2 RUN 3 RUN 4

 

0

2

4

6

8

0 2000 4000 6000 8000 10000
n  (vh)

v 
(m

/s
)

 
Figure 2.7: MFD for different runs in SFBD 

(a) Travel Production vs. Accumulation; (b) Speed vs. Accumulation 
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 Particularly, since Figure 2.7 includes points for runs with vastly different O-D tables 

it suggests that this diagram is property of the network and is independent of the demand 

and the disaggregated link data. Also, the maximum value of travel production, reached 

for an accumulation of about 3200 vehicles, is the same for all the runs. Note as well that 

production values are near the maximum (difference <5%) for a wide range of 

accumulation (2500-4000 vehicles).  Four different states of the system (A, B, C and D) 

have been highlighted in Figure 2.7a. 

 Figure 2.8 shows snapshots of the network corresponding to these four states. State A 

belongs to regime I when the system is undersaturated and the average speed is about 

25km/hr. As demand increases system moves to state B where the vehicle – travel 

production is near the maximum and the average speed is 17km/hr. In state C congestion 

is broad, long queues are observed and the average speed drops to 7km/hr.  In state D 

output is near to zero and the majority of vehicles are stopped. It was found that when 

traffic conditions are very near gridlock (point D), the system does not easily return to 

better traffic states (B or C) even if the demand decreases significantly. This means that it 

is necessary to prevent traffic in cities to move to states of very high accumulation and 

apply control in a preventive form. 

 We also tested whether the ratio of the output O to production P is insensitive to 

demand by plotting (P, O) pairs, sampled in 2 min periods, for the runs of figure 2.7. 

Figure 2.9 shows the result. The resulting curve suggests that the ratio is indeed invariant. 

Statistical tests cannot reject the hypothesis that the P/O ratio is 1743m of travel, per trip 

completed throughout the day.3 

 
                                                 
3 We fitted a 5th degree polynomial to the points of Figure 2.9 and only the linear coefficient is significant. 
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Figure 2.8: Views of the San Francisco network for different traffic regimes  

(white dots are vehicles; black sections are vacant portions of the pavement) 
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Figure 2.9: Output vs. Travel production for different runs in San Francisco network 

 

2.3.3 Description of Dynamics 

 The existence of a Macroscopic Fundamental Diagram connecting accumulation and 

output in SFBD implies that if the boundary conditions change slowly with time we can 

model the dynamics of accumulation as if this network was a single reservoir, described 

by equation 1.4. To test this hypothesis, queueing diagrams with cumulative input-output 

curves where constructed from the simulated records for 4 runs with vastly different 

demand. The diagrams were also constructed with the single reservoir method, using the 

following discrete version of equation 1.4: 4 

  ( )1t t t tn n f O n+ = + − ,  (2.1) 

where nt, tf  are accumulation and input flow at time t, and O(n) is the MFD function that 

gives the output for a given accumulation. The function O(n) was estimated by least 

                                                 
4 Given n0, G(n) and in

tq  for every t, we apply finite differences and solve Equation 2.1 for all t>0.    
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squares method using data points from all the runs.5 The result is shown in figure 2.10a. 

Figure 2.10b shows the residuals, i.e. the differences between the observed and predicted 

pairs.  

   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10: a. Output vs. Accumulation for all runs 
b. Residuals 

 

 We tested the dynamic model predictions under different traffic conditions. Figure 

2.11 shows the resulting queueing diagrams, including the simulated and predicted output 

values and the accumulation during each run. In all cases, the two output curves fit quite 

closely and they are almost perfectly superimposed when accumulation values do not 

belong to the decreasing branch of the diagram (Regime III). Predictions of regime III are 

more difficult, as expected, because congested systems are chaotic (Daganzo, 1998). This 

is only a minor problem because any control strategy should try and avoid states in this 

regime.   

 

                                                 
5 A 4th degree polynomial was applied. The best fit curve was (R2=0.97):  
O(n)= -1.0718×102+7.5225×10-1 n + 1.9213×10-4 n2 + 1.8558×10-8 n3 +  6.8381×10-13n4 
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Figure 2.11: Queueing diagrams for different runs in San Francisco network  
(Left axes: Cumulative inflow or output (vehicles), right axes: Accumulation (vehicles)) 
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2.4 Discussion 

 The outcomes of this chapter are encouraging. Our simulation experiment suggests 

that a macroscopic fundamental diagram exists for a network with a hundred signalized 

intersections. It also suggests that, conditional on accumulation, large networks behave 

predictably and independently of their Origin-Destination tables.  

 If these results hold up to further tests, practitioners will have reliable tools to 

anticipate the consequences of “simple and smart” traffic management policies and plan 

without the uncertainty of today’s forecast-based approaches. These further tests should 

include field experiments since simulations must assume particular forms of driving and 

navigating behavior, which may or may not be realistic.  

 On the other hand, these findings are of limited use because accumulation and output 

are not easily observable (i.e. measurable) in real life. Thus, it is fair to ask (i) whether an 

MFD can be observed in real networks (even if it exists) and (ii) whether we can develop 

the necessary tools for estimating the relevant quantities to an MFD. Chapter 3 answers 

both of these questions by presents a natural experiment from Yokohama, Japan.



 

 

 

 

Chapter 3 

Existence of urban-scale macroscopic 

fundamental diagrams: Experimental findings 
 

 The outcomes of Chapter 2, even though encouraging, are based on simulation. 

Chapter 3 describes a field experiment in Yokohama (Japan), and reveals that a 

macroscopic fundamental diagram (MFD) linking space-mean flow, density and speed 

exists on a large urban area. The experiment uses a combination of fixed detectors and 

floating vehicle probes as sensors. The space-mean speeds and densities at different 

times-of-day are estimated for the whole study area using relevant parts of the detector 

and taxi data sets. The analysis also explores the relation between the space-mean flows 

on the whole network, and the trip completion rates, which dynamically measure 

accessibility. Section 3.1 describes the study site and the data; Section 3.2 presents some 

results using only the detector data; Section 3.3 extends these results for the whole study 

site (including streets without detectors) by combining all the data and Section 3.4 

displays final remarks. 
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3.1  Site and data description 
 

 Yokohama is a major commercial hub of the Greater Tokyo Area. It developed 

rapidly as Japan's prominent port city with a population of 3.6 million. Its road network 

includes streets of various types, with closely spaced signalized intersections at its center 

(~100-300m), and a few elevated freeways. Streets have 2 to 4 lanes in each direction. 

The speed limit is 50 km/hr on arterials. Major intersections are centrally controlled by 

multiphase traffic signals, with a cycle time that responds to traffic conditions: 110-120 

sec long at night and 130-140 sec during the day.  

 The part of downtown Yokohama examined in this paper is approximately a 10 km2 

triangle with corners at Yokohama Station, Motomachi-Chukagai Station and the Shin-

Hodogaya Interchange. Yokohama’s center is congested during peak hours with speeds 

considerably less than 50% of the average speed during the off-peak; average speeds 

under 10 kilometers per hour are observed for extended periods during morning and 

evening peak in weekdays in the arterial network.  Figure 3.1 shows a sketch of 

Downtown Yokohama (the perimeter of the study site is shown as a dashed line). Data 

from the following two sources, and spanning one month (December 2001), were 

available: 

• Fixed sensors: 500 ultrasonic and loop detectors positioned midblock on arterial lanes 

of most major intersections in the study area. The detectors are located about 120m 

upstream of the stopline in case of long links and about 50m in case of short links. They 

provided 5-min vehicle counts and occupancy measurements.  
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• Mobile sensors: 140 taxis, called Internet Protocol probe car System (IPCar), 

equipped with GPS and a data logger reported their position and other data (all the data 

were time stamped). These data included activations and deactivations of the parking 

brake, the left or right blinker and the hazard lights, as well as the beginning and end of 

all stops lasting more than a few seconds. The format of the data is shown in Figure 3.2.  

 

Figure 3.1: A map of Downtown Yokohama 

 For each taxi ID and date the IPCar System does not store the GPS position at regular 

intervals. Instead it logs the time (Column 1 in Figure 3.2 - hh:mm.ss) and position 

(Column 6 - Latitude and Column 7 - Longitude) every time that the state S of the vehicle 

changes, away from an old state (Column 2). The possible states are: short trip (S=1), 

short stop (S=2), right blinker (S=4), left blinker (S=8), hazard light (S=16), parking 

brake (S=32). A change from short trip to short stop/short stop to short trip occurs when 

vehicle speed drops below/increases above 3km/hr. There is a maximum of 30 sec 

2km 
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duration for a short trip, but there is no time limit for short stop.6 Column 3 and Column 4 

display the time (duration) and distance that the corresponding state had persisted. Note 

that this duration matches the change in time from Column 1, ∆(time), for S=1 and S=2, 

but not in case S>2. This happens because when a taxi uses some special equipment 

(S>2), it should be also reported if it is moving (S=1) or stopping (S=2), i.e. the taxi is at 

two states at the same time. For example (see Figure 3.2) from 9:18.50 to 9:19.39 vehicle 

was moving with speed continuously <3km/hr (short stop, S=2) and traveled 23m in 

49sec, and from 9:19.39 to 9:20.09 was moving (short trip, S=1) for 30sec and traveled 

210m. In the mean time it had on the right blinker (S=4) for 114sec and traveled 99m 

ending S=4 at 9:19.43. Thus, the total distance traveled for one hour is estimated by 

summing all the numbers from Column 4 for S=1 and S=2, ignoring S>2. The system 

also records if the GPS works properly or not (Column 5). 

Taxi ID 1046
Date 12/14/2001

1 2 3 4 5 6 7
Time State Duration Distance GPS Latitude Longitude

091645 1 28 296 1 32676902 128678449
091650 2 5 26 1 32676997 128678395
091720 1 30 335 1 32678413 128675699
091750 1 30 316 1 32679908 128673160
091759 1 9 9 1 32680059 128673096
091841 2 42 16 1 32680213 128673208
091850 1 9 6 1 32680062 128672440
091939 2 49 23 1 32680282 128672640
091943 4 114 99 1 32680464 128672827
092009 1 30 210 1 32681685 128673859
092024 2 15 30 1 32681744 128674079
092041 8 6 23 1 32682259 128675520
092054 1 30 202 1 32682371 128675369
092119 4 6 11 1 32681982 128673969

 

Figure 3.2: Format of mobile sensors data 

                                                 
6 If a taxi is moving (with speed >3km/hr) for 2 min, four consecutive short trips will be recorded. 
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 The taxi data were not linked to a digital map of Yokohama, so it was not possible to 

tell without human intervention and great effort whether or not a taxi had passed over a 

particular detector at a particular time. More details about the IPCar System can be found 

in Sarvi et al. (2003). 

 

3.2 Results from detector data 
 

 This section shows that the part of Yokohama’s network covered by detectors has a 

Macroscopic Fundamental Diagram (MFD) with less scatter than for individual links, and 

that the MFD is reproducible under different demand conditions.  

3.2.1 Existence of the MFD 
 

 The initial data consist of time-series of flow and occupancy at about 500 locations 

upstream of signalized intersections in the city center. Denote by i a road lane segment 

between intersections, and by li its length. Let qi and oi, be the flow and occupancy 

measured by the corresponding detector in a particular time slice. We use A for the set of 

lane segments in the study area, and A’ ⊂ A for the subset with detectors. As is well 

known, the density at a detector location is ki = oi/s, where s is the space-mean effective 

vehicle length, which is about s ≅ 5.5 m (Kuwahara, 2007). We are interested in patterns 

of these variables produced by both individual detectors and all the detectors combined.   

 To do this, data have been aggregated according to Edie’s definition (1963) as 

follows: 

• Weighted average flow: /w
i i i

i i
q q l l=∑ ∑  for all lane segments i with detectors , 
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• Unweighted average flow: / 1u
i

i i
q q=∑ ∑ , 

• Weighted average occupancy ow and density kw: /w w
i i i

i i
o k s o l l= =∑ ∑  and  

• Unweighted average occupancy ou and density ku: / 1u u
i

i i
o k s o= =∑ ∑  . 

 Note that the numerator of qw is the production P, defined in Chapter 1. The 

unweighted averages are representative of the part of the network covered by detectors; 

i.e., space-means for this part, which we denote A”. Note that A” is disjoint and that      

A’’ ⊂ A’. The weighted averages would be space-means for A’ if the detectors are at 

representative locations within each link. This can only be guaranteed for flows (for all 

the locations along a link), on time slices large compared with a traffic cycle. This is 

because on this time scale link, flows are roughly the same. But obviously, the same is 

not true for density or speed, as it matters where these are measured within a link.  

 Consider a single link for the moment. Figure 3.3 is a scatter-plot of qi vs. oi, for a 

whole weekday with time slices ∆t = 5 min, for two different detectors. It is not clear that 

the points belong to a well defined reproducible curve, especially under congested 

conditions. The disorder persists at the link level, after aggregating data for the lanes of a 

single link. For the same value of occupancy, variations in flows are high (Root Mean 

Square >0.2, for values of occupancy that capacity occurs). Non steady-state conditions, 

variations in turning movements or different types of platoon arrivals at the intersections 

are usual phenomena that can cause this kind of disorder in the traffic data.  
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Figure 3.3: Flow vs. occupancy pairs for two single detectors across a day 

 To see what happened to this pattern when data were aggregated, we considered two 

different days: a weekday (12/14/2001) and a weekend day (12/16/2001). Figures 3.4a 

and 3.4b show the time-series of unweighted average flows and occupancies, qu and ou, 

that were observed. The one day period is divided in 4 time periods A, B, C, D based on 

the occupancy series for the weekday representing different demand profiles (AM and 

PM peak growth and decay). Based on this categorization, we code the data according to 

8 different time periods (4 per day) and we present the results of aggregation in figures 

3.5 and 3.6. Note that there is severe congestion in the weekday’s afternoon rush hour, 

but not on the weekend; e.g., at the time of maximum occupancy (around 17:00 hrs) the 

average flow is below the maximum on the weekday -- but this does not happen on the 

weekend. Note as well that flow and occupancy varied considerably by time-of-day, on 

both days. These time periods represent not only various values of total demand but also 

strong variability across origins and destinations as people make different types of trips 

during AM or PM (entering vs. exiting the city center), during weekdays or weekends 
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(work vs. leisure trips).These substantial variations within and across days suggest that 

the demand rates and origin destination (O-D) tables varied considerably. 
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Figure 3.4: Loop detector data, Time-series: (a) average flow; (b) average occupancy 
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Figure 3.5: Scatter plot of average flow vs. average occupancy:  
(a) unweighted average flow; (b) weighted average flow 

 

 Figures 3.5a, 3.6a and 3.6b are scatter plots of pairs of: qu, ku = ou/s and vu = qu
/ ku. 

These are the averages representative of the detector locations A”. The high degree of 

ordering (compare with Figure 3.3) strongly suggests that an MFD exists on A’’, i.e. the 

disjoint portion of the network covered by detectors. Note that each set of symbols cannot 

(b) 

(a) 
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be distinguished from the others despite the substantial variations in O-D demands across 

time periods. Plots involving weighted averages exhibit similar behavior. These plots are 

of great interest because they extend these results to A’, i.e. the part of the network 

including all the streets with detectors. Figure 3.5b shows how well qw , the production 

per unit length on all of A’, can be predicted from the detector data. 

0

10

20

30

40

0 20 40 60 80 100

o u

vu
 (k

m
/h

r)

0 0.1 0.2 0.3 0.4 0.5

k u  (vh/ln-km)

A1
B1
C1
D1
A2
B2
C2
D2

 

0

0.05

0.1

0.15

0 10 20 30 40
v u  (km/h)

qu
 (v

h/
se

c)

A1
B1
C1
D1
A2
B2
C2
D2

 

Figure 3.6: Loop detector data across two different days: (a) average speed vs. average 
occupancy; (b) average flow vs. average speed. 
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 Note as well (see Figure 3.6a) (i) that the flow-speed relation is not monotonic as 

mentioned in Chapter 1; (ii) that the maximum flow is reached for an average occupancy 

of 0.3 (Figure 3.5) and an average speed of 13 km/hr (Figure 3.6b) and (iii) that these 

values are consistent across time periods (morning and evening peaks). This confirms 

that “aggregation is good” and O-D tables do not matter in predicting vehicle-kilometers 

traveled in an area from occupancy data.  

 There is also no hysteresis, a common phenomenon clearly observable from 

experimentally obtained flow-density plots (e.g. Treiterer and Myers, 1974). Average 

flow and occupancy pairs during AM and PM do not separate and instability in drivers 

behavior during acceleration and deceleration does not create any difference between the 

growth and decay of demand.7  

 The consistency of these results indicates that if the trip completion rate in A’ is 

linearly related to qw then dynamics models based on the MFD can both provide an 

accurate representation of a city’s traffic and suggest realistic ways of improving it. 

Based on these diagrams we can develop simple perimeter control strategies for which 

production P or exit flow is maximized. This can be achieved by preventing average 

occupancy measured from the detectors to exceed sweet-spot occupancy of figure 3.5 

(approximately 30%) or average speed to decrease below “sweet-spot” speed of figure 

3.6b (about 13km/hr). Given Yokohama’s heavy congestion, its residents would benefit 

                                                 
7 Daganzo (2002) attributed the hysteresis phenomenon to lane changing and the non-conservative nature of 
flow in a single lane. The fact that hysteresis disappears when we aggregate lanes supports this 
interpretation.  
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substantially from this kind of applications.8 Therefore, we now examine the relationship 

between the trip completion rate and qw. 

 

3.2.2 Existence of a linear relation between exit flows and network flow 
 

 To describe the dynamics of the rush hour for A’, as this expressed by equation 2.1, it 

is necessary to estimate a relation between trip completion rate O’, i.e. output for A’, and 

average density kw. This would be easy if we were able to know a relation between the 

average network flow qw and rate O’. Rate O’ is the sum of (i) the rate at which cars 

exiting the perimeter from streets with detectors and (ii) cars that leave internally A’.  But, 

cars are most readily observed along the perimeter where there are detectors. In that sense, 

we focus for now on this observed outbound perimeter flow (veh/hr), D’. This perimeter 

flow includes a considerable part of the trip-ends. So, a connection between D’ and qw 

aims to shed some light on relation between qw and rate O’, although it excludes internal 

trips. 

 Figure 3.7a shows the time series of D’ and qw for the weekday of 12/14/2001 where 

the flows are sampled in 5 min intervals. They appear to be correlated. Other weekdays 

and weekends are similar. Figure 3.7b confirms this fact; it reveals that the ratio qw/D’ is 

close to 0.033 in every 5-min time slice of the day. Note there is no trend. The best-fit 5-

degree polynomial deviates from the straight line by less than 0.2% (Root Mean Square) 

and all the coefficients, except the intercept, are statistically insignificant (see Figure 3.8 

for t-statistic and P-values). The residuals can be explained by statistical variations in trip 

lengths across individual cars. 
                                                 
8  Reference (Daganzo, 2007) showed that these kinds of strategies are Pareto optimal for single 
neighborhood cities, which is a valid assumption if the whole city is uniformly congested. 
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Figure 3.7: Average network flow and exit rates measured by detectors on 12/14/2001 
(5-min time slices): (a) Time series of the two variables; (b) time series of their ratio. 

 
Coefficients t  Stat P -value

Intercept 0.0328 36.01 <10-20

t -7.31×10-6 -0.10 0.92

t 2 -2.74×10-7 -0.15 0.88

t 3 3.77×10-9 0.20 0.84

t 4 -1.72×10-11
-0.21 0.83

t 5 2.63×10-14
0.20 0.84

 

Figure 3.8: Statistical test for a 5th degree polynomial of qw/D’ with time t 

 We conclude that an MFD exists for the set of streets where detectors are 

implemented. These detectors are typically placed near traffic signals, where observed 

speeds are lower. Thus, the results may not be representative of the whole network. It is 

(b) 

(a) 
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fair to ask whether these relations can extend to the whole neighborhood of a city and to 

trips that end internally. Section 3.3 below utilizes taxi data to expand the results from A’ 

to A. The section also demonstrates that a trip completion relation similar to Figure 3.7b 

also holds for A, including trips that end internally and leave A from the perimeter.  

3.3 Results from taxi data  

 Fixed detectors’ data do not provide information about the average speed, number of 

vehicles moving or average flow on all the streets of the study area, A. Therefore, we 

cannot guarantee that the results of the previous section apply to A. Taxis are useful 

markers because they can be identified; if e.g. 10% of the vehicles are taxis we would 

conclude that 10% of vehicles are observed in exiting from the boundary of a region. 

Therefore we can have an unbiased estimator of the number of vehicles in a city. 

 Nevertheless, taxis do not behave identically as ordinary vehicles because they stop 

more frequently to pick up passengers, or follow circuitous routes when searching for 

passengers (e.g. trip between points A4 and A5 shown in figure 3.9). We use passenger-

carrying taxis as markers that behave identically as ordinary vehicles as far as (i) the 

distribution of speeds and (ii) average trip completion rate per unit length traveled, are 

the same.  

 We can estimate the flow of all cars in A by scaling up the observed flow of all cars in 

A’ with a factor determined from the observed flows of passenger-carrying (full) taxis in 

A and A’. With this scaling method we can also estimate the trip completion rate, the 

vehicular accumulation and the space-mean speed in A. To do this effectively, we need a 

set of full taxi trips. Subsection 3.3.1 presents a filtering method to exclude time periods 

when taxis do not carry passengers; subsection 3.3.2 describes how to estimate 
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macroscopic traffic characteristics (accumulation, and speed) for the whole area A; and 

subsections 3.3.3 through 3.3.5 show the results.  

 

3.3.1 Filtering method for passenger-carrying taxis  
 

 We assume that passenger-carrying taxis follow routes through Yokohama’s center 

similar to those of cars. Although the events in the data set did not include “boarding” or 

“alighting” moves, the data set included other information (as described in section 3.1) 

that revealed whether a particular stop was a passenger move in or out of the taxi. From 

this we identified the passenger-carrying (full) trips.   

To tag a stop as a passenger move, at least one of the following hypotheses (H) should be 

satisfied: 

• H1: A short stop (S=2) is greater than 60 sec  or 

• H2: Taxi turns on the hazard lights   or 

• H3: Taxi uses the parking break   or 

• H4: Taxi turns on the left turn light and stops for more than 45 sec9 

 Hypothesis H4 was used to capture stops where the taxi driver does not activate any 

safety devices when serving a passenger, while filtering out stops due to traffic 

congestion. The path traveled by a taxi between two consecutive passenger moves is a 

trip. A taxi route is an alternation of full and empty trips. A trip is considered as 

passenger-carrying (full) if all of the following hypotheses are satisfied: 

                                                 
9 Vehicles in Japan drive on the left side of the streets 
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• H5: Duration of trip is greater than 5min   and 

• H6: Distance of trip is greater than 1.5 km   and 

• H7:  Distance of trip is less than twice the Euclidean distance between its end points. 

Hypotheses H5 and H6 rule out short trips, which are unlikely to be filled with a 

passenger, and are not be representative of car trips. Hypothesis H7 disregards empty taxi 

trips cruising for passengers and not following shorter path routes. 

A1

A3 A2

Taxi ID:1087    Date:12/14/2001

Direction: 
A1→A2→A3→A4→A5→A6→A7→A8

  Time         Position      Trip
17:11.30              A1                       

17:22.00              A2                     

17:26.00              A3                        

17:48.00              A4                     

19:00.30              A5                       

19:34.30              A6                    

19:40.00              A7                        

19:57.00              A8

A5

A4

A8

A6

A7

1km 

SEA

Area of 
Analysis

FULL
EMPTY
FULL

EMPTY
FULL

EMPTY
FULL

 

Figure 3.9: Trajectory of taxi 1087, and area map (in white) produced by a superposition 
of all the taxi trajectories. 

 
 Next, we apply the filtering method to the whole IPCar dataset for the same days 

detector data were analyzed. This method may disregard some full trips, but with high 

probability the subset of censored trips will be full ones. Only on very rare occasions, as 

N
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happens in reality, our method identified consecutive full trips. This indicates that the 

method was effective in eliminating circuitous routes or stops not because of traffic 

congestion. Many taxi routes were plotted and the patterns looked realistic. Figure 3.9 

shows the trajectory of taxi-1807 for 3 hours. The set of streets, i.e. lines in white color, 

have been constructed using the complete set of taxi trajectories for a period of one week 

and is an accurate representation of the area when compared with a real map. The 

perimeter of A is shown by a dashed line. The large symbols A1 to A7 illustrate passenger 

moves (black for boarding and grey for alighting). Note how full and empty trips 

alternate. Smaller symbols mark the position of the taxi every 30 sec. Note how the 

distance between consecutive symbols is greater when the taxi is full than when it is not.  
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Figure 3.10: Observed outbound/inbound flow ratio for all cars (detectors) and full taxis 

 We have stated that full taxi trips are representative of car trips. Figure 3.10 tests this 

hypothesis with the only possible way given the available data; the ratio of outbound vs. 

inbound flows crossing the perimeter of A for full taxis and cars. Time series of both 
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ratios for full taxis and cars are shown. Note how the two curves remain close to each 

other throughout the day, although they vary with time. Significant fluctuations arise only 

when the number of full taxis is so low (<10) that fluctuations are unavoidable. 

 

3.3.2 Estimation of speed and accumulation 
 
 
 The censored taxi data were aggregated into 5-min intervals. The reasons for this time 

aggregation are (i) to smooth the variations of traffic during a cycle because of the signals 

(ii) to match detector data time aggregation resolution. From this information we 

calculated for each time slice and for all the full taxis:  

• the total distance δ traveled in A; 

• the total time τ  spent in A;  

• their space-mean speed in A, vT = δ/τ ;  

• their number in A, nT = τ/∆t;  

• the number NT that exited A along its perimeter and 

• the number MT that finished a passenger-carrying trip inside A. 

 These data are used to estimate the space-mean speed v and accumulation n of all cars 

in A to test if, despite the statistical errors due to the low number of taxis, an MFD as in 

Figure 3.6b appears. We use vT as our estimate v̂  for v, since valid taxi trips are assumed 

to be typical trips; i.e.: 

  ˆ Tv v v≡ ≅  (3.1) 
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 The estimation of accumulation is not so straightforward. If now “full” taxis behave 

identically with ordinary cars, then for any time t the probability π that a randomly 

selected car moving in area A is a taxi is the same across (i) all streets in area A, (ii) for 

points belonging in the perimeter ∂A and (iii) for points belonging in the perimeter for 

streets with detectors ∂A’. If n is the number of vehicles in A; N is the number of vehicles 

exiting A along its perimeter; N’ and N’T are the numbers of vehicles and taxis exiting A’ 

along streets with detectors, then the following three, are unbiased estimators for the 

estimation of probability π: the ratio of cars and taxis observed (i) in area A (ii) in the 

perimeter ∂A and (iii) in the perimeter ∂A’: 10 

 ˆ T T Tn N N
n N N

π
′

≡ ≅ ≅
′

 . (3.2) 

 Thus, an estimate n̂  was constructed as follows (Figure 3.11 illustrates this 

estimation): Firstly, N’ is measured by the detectors, and N’T is approximated as a fixed 

proportion of NT, which is also observed. Measurements of N’T could not be 

automatically extracted from the data base because the detector positions and taxi data 

were not linked to a digital map of Yokohama. We used N’T ≅ 0.7NT. The factor “0.7” 

was estimated manually, after following for a whole day the routes of 10 taxis on the map 

of Figure 3.9, and determining from this map whether each exit point belonged either to a 

street with detector or not. Figure 3.12 displays the result of this effort. Note how the 

fraction of exits from streets with detectors varies little from 0.7. Therefore, we can 

estimate n with n̂ , as follows:  

 
                                                 
10 Note that if accumulation fluctuates rapidly during the time of a trip the conditions of equation (3.2) may 
not be satisfied. But it is intuitive that this is not the case for an area A large comparable with a street link. 
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  n ≅ nT N’ /N’T  ≅ nT N’/[0.7NT] ≡ pnT  ≡ n̂ ,   (3.3) 

 

where p ≡ N’/[0.7NT] is an observable expansion factor, which approximates the ratio of 

vehicles vs. full taxis exiting the zone from streets with detectors. Next subsection 

presents the estimation results. 

Taxi moving in A

Car moving in A

Taxi crossing ∂A

Car crossing ∂A

Taxi moving in A

Car moving in A

Taxi crossing ∂A

Car crossing ∂A

 

Figure 3.11: Moves of taxis and cars along the network 
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Figure 3.12: Fraction of full taxis exiting the perimeter of A that exit  
through A’ at different times of the day 
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3.3.3 Existence of an MFD in A: Estimation results 

 Subsection 3.3.2 described the methodology to estimate accumulation and average 

speed for the whole area A based on the available data. However, if δ and τ are low (as 

occurs at night) the estimate could have a significant error due to small sample size. To 

alleviate this problem we aggregated our data and used ∆t = 30 min. Average speed of 

taxis and exit flow from the detectors are smooth enough to allow a 30min aggregation 

with no loss of information regarding the traffic patterns. This aggregation ensures that 

the coverage of A is reasonable when the number of full taxis in A is on the order of 10 -- 

a value that is consistently exceeded during the day time. 

 Figure 7a is a scatter plot of v̂   vs. n̂  with ∆t = 30 min. Time slices are displayed 

every 5 min. Triangles are used for the morning and circles for the afternoon and evening. 

Triangles of consecutive time slices are linked by a dark line. The figure shows that the 

pattern is the same at all times of the day, without hysteresis. We conclude that an MFD 

exists in A.   

 But, what about the errors in the estimator n̂ ? This can be explained by considering 

the low number of taxis. These errors are of three types: (i) error in the estimation of 

speed; (ii) error in the estimation of N’T from NT and (iii) error in the estimation of π from 

N’T /N’. The first error is not important because average speed over 30min interval is 

representative of a region which is roughly homogenously congested. The second error is 

not substantial, as shown in figure 3.12.  

 The most severe error is the third one. We can approximate the number of taxis 

leaving randomly A’ as a Poisson distribution. The reason for this is that the probability 
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of more than one taxis exiting at the same interval (t, t+∆t) with ∆t→0 is about zero. Thus, 

it is assumed that the number of occurrences (taxis exiting) follows the law of small 

numbers, which describes events that happens rarely, but have very many opportunities to 

happen (Bortkiewicz, 1898). We consider that this approximation is valid for TN ′  > 25, 

because when zero taxis are exiting accumulation cannot be estimated from equation 

3.3.11 

 We now show that the average error for n̂ is about 1/ 2
TN −′ .Both the mean and the 

variance for the number of taxis exiting are equal to ˆTn N n′ . Then, a reasonable range 

for the number of taxis exiting is the average value plus or minus one standard deviation: 

   
ˆ ˆ

T T
T

n N n NN
n n

′ ′⋅ ⋅′ ≅ ± . (3.4) 

Solving for n̂ using the top of the range (equation 3.4 with a plus sign) we get: 

 
( )2

4ˆ
11 4 1

T

T T T

T TT

T

n N
n N n N Nn

N NN
N

′⋅
′ ′ ′⋅ ⋅

≅ ≅ =
′ ′−′− + −

′

. (3.5) 

The second approximate equality is accurate since 4 1TN ′  for N’T > 25. Finally, by 

applying a first order Taylor expansion in ( )1/ 21 1 TN −′−  we get:12 

                                                 
11 The probability of zero taxi exits in 5min interval for a Poisson Distribution with mean equal to 
25exits/30min is <1.5%.  
12 We know that 1 1 ...

1
x

x
≅ + +

−
for 0<x<1 
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 1ˆ T T

T T T

n N n Nn
N N N

′ ′⋅ ⋅
≅ − ⋅

′ ′ ′
. (3.6) 
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Figure 3.13: Yokohama’s estimated MFD: (a) Scatter plot of v̂   vs. n̂ ;  
(b) 1- and 2-standard deviation bands. 

  By repeating this procedure for Equation 3.4 with a minus sign, and solve for n̂ , 

we get the same result with Equation 3.6 with a plus sign. Figure 3.13b shows the 1- and 

(b) 

(a) 



3 Existence of an MFD: Experimental findings 

 

52 
2-standard deviation bands arising from this formula on each side of a fitted curve. 

Regarding the fitted curve, we estimated the best 4th degree polynomial that fits Figure 

3.6a, and scaled it horizontally by the factor L= 131 lane-km, that resulted in the best 

agreement.  This factor, however, is not necessarily the true length of A.  The bands only 

apply to the points with N’T > 25. 

 The white squares arise mostly during the night when the number of taxis is small 

(<10) and their higher scatter should be expected both because the approximation does 

not hold when N’T is low, and also because speed estimation for small number of taxis 

introduces significant errors in the vertical direction.  

 

3.3.4 Existence of a linear relation between the trip completion rate in A 

and total production in A 

 Using the detector data, we showed in Subsection 3.3.2 that the outbound perimeter 

flow D’ is highly correlated with the average network flow of A’, qw. This perimeter flow 

included a considerable part of the trip-ends, but not the internal ones. To estimate the 

trip completion rate O at which vehicles depart the network including trips that end 

within the study area, we expand the rate at which full taxis exit A or finish a trip within 

A as follows: 

 ( )ˆ
T TO p N M t∆= ⋅ +  (3.4) 

 The space-mean network flow q cannot be estimated in the same way because we do 

not know the total network length L required to express the space-mean flow of full taxis 

in A, which is δ/∆tL. Therefore, instead of average flow we estimate travel production P 
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and focus on the relation between production and the trip completion rate. Since the full-

taxi production in A is δ/∆t, we estimate total production in A as:  

  P̂  = pδ/∆t.  (3.5) 

 Figure 3.14 is a time-series of ˆP̂ O , which supports the hypothesis that ˆP̂ O  is 

relatively constant and equal to about 2.3 km, i.e. a trip is completed on average for every 

2.3 km traveled. Again a 5-degree polynomial does not improve the fit in a statistically 

significant way, and the best fitted 5th degree polynomial has an RMS < 0.1% (See figure 

3.15 for values of coefficients and statistical tests).This constant is the average vehicular 

trip length in A.  

 

 

 

 

 

 

 

 

 

 
Figure 3.14: total production over trip completion rate time-series (12/14/2001) 
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Coefficients t  Stat P -value
Intercept 2.333 20.23 <10-20

t 4.07×10-4 0.04 0.97

t 2 5.18×10-5 0.22 0.83

t 3 -9.35×10-7 -0.38 0.71

t 4 5.17×10-9
0.46 0.65

t 5 -9.13×10-12
-0.50 0.62

 

Figure 3.15: Statistical test for a 5th degree polynomial of ˆP̂ O  with time t 

 

3.3.5 Prediction of outbound perimeter flows 

 As the macroscopic fundamental diagram for Downtown Yokohama is reproducible 

among different days and for different demand profiles, it seems that we can predict exit 

flows (a measure of accessibility) from either occupancy or accumulation or speed data. 

Results shown in figure 3.16 demonstrate this postulate.  

 Figure 3.16a shows a scatter plot of exit flows (outbound perimeter flows) measured 

from the detectors and average speed of taxis for 12/14/2001.  First, we estimated the 

best-fit 4th degree polynomial to these points. Next, we applied the filtering method of 

section 3.3.1 for a different day (12/6/2001) and calculated average speed of passenger-

carrying taxis. We also predicted exit flows for this day using speed of full taxis, vT, and 

the fitted curve, and we measured the exit flow from streets with detectors in the 

perimeter of area A’. Figure 3.16b shows an oblique plot of the predicted and the 

measured cumulative exit flow. The two curves are quite close (maximum error less than 

2%).   
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Figure 3.16: Prediction of exit flows from streets with detectors:  
(a) exit flow vs. average taxi speed (12/14/2001); (b) Oblique plots of predicted vs. 

measured exit flow (12/6/2001) 
  

  

3.4. Final Remarks 

 In summary, the results of chapters 2 and 3 show that (i) an MFD exists on 

neighborhood-sized sections of cities independently of the demand and (ii) that it can be 

used to control demand and improve mobility. Also, the findings of section 3.3 are 

important (i) because they establish that the MFD is not a property of the detectors’ 

(a) 

(b) 
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locations (only of the network itself); (ii) because they show how to estimate 

accumulation and speed for the whole network and (iii) because perimeter control can be 

more easily applied to the whole network than to the part which includes only streets with 

detectors. A question that arises from the above is whether cities experience congestion 

with production-accumulation pairs in regime III, with speeds considerably less than 50% 

of the average speed during the off-peak.  

 The answer is yes. In many European cities, speeds in the centre are under 10 

kilometers per hour at midday and slower during the rush. For example, the Hellenic 

Institute of Transportation Engineers (HITE) reports that during year 2005 average 

speeds in major arterials in the city of Athens during peak hours were three to five times 

smaller than the off peak average speeds (e.g. Alexandras Avenue – 5km/hr for peak hour, 

25km/hr for non peak, Mesogion Avenue – 8km/hr for peak hour, 40km/hr for non peak) 

(HITE, 2006). Developing countries face up similar problems. Drivers in Bangkok spend 

the equivalent of 44 days a year in gridlock (Ressler, 1999).  This suggests that the 

development of control strategies to relieve congestion and increase mobility could have 

a significant payoff. 

 This can be done with pricing, rationing and/or perimeter control strategies based on 

neighborhood accumulation and speeds. Simple versions of these strategies are already 

being used in many cities around the world: e.g., in London, Stockholm and Singapore 

(congestion pricing); in Beijing -- a test in anticipation of the 2008-Olympiad -- and 

Mexico City (rationing); and in Zurich (perimeter traffic control). But by knowing the 

MFD and monitoring the state of traffic continuously, transportation managers can now 
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see whether their system is in a state that is producing the desired levels of mobility at all 

times. Therefore, existing strategies can be redefined.  

 Building in the knowledge of Chapters 2 and 3, macroscopic control strategies are 

explained in Chapter 5. But, prior to developing efficient control strategies to improve 

mobility and avoid overcrowdness, we need to model the dynamics of the rush hour. This 

is described in details in Chapter 4. 

 A question that arises after the analysis of this chapter is that, unlike taxi trips, some 

automobile trips with internal destinations include a “looking-for-parking” portion that 

extends their length, and this extension increases accumulation. This effect should be 

minor in this study because 70% of the trips were found to have external destinations and, 

surely, a significant portion of internal trips have pre-assigned parking. But, this is not 

necessarily the case. The looking-for-parking phenomenon will also be presented and 

analyzed in Chapter 4. 



 

 



 

 

 

 

Chapter 4 

 

Dynamics of multi-neighborhood cities 

 
 Prior to developing control strategies, which will improve the overall mobility of a 

city, we need to describe the rush hour in a congested city dynamically. Daganzo (2007) 

derived an ordinary differential equation (Equation 1.4) for the system dynamics of an 

“one neighborhood (reservoir)” city. This chapter develops the dynamics of cities with 

more complicated structure. Section 4.1 presents a general model of an N-neighborhood 

city and an example for N=2. In this model, it is assumed that when vehicles reach their 

destination find a parking spot with zero delay. Section 4.2 models the cruising-for-

parking phenomenon that under certain conditions can lead to heavy congestion. This 

model is consistent with the physics of traffic and its variables are observable quantities. 

We show that we can obtain some additional insight about the key parameters that matter 

during congestion. Finally, section 4.3 provides some final remarks. 
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 4.1 Dynamics of the rush hour 

 One can model a city as a single or multi-reservoir system depending on the geometry, 

the demand patterns and the distribution of trip destinations among the city. The 

requirement for homogeneity in traffic loads and slow variations in time should 

determine the number N of required reservoirs and the time scale of the model. Fine time 

scales and large N>10 are not recommended because they: (i) make the accuracy of the 

macroscopic relations questionable and (ii) require the knowledge of detailed origin-

destination tables. 

 Consider now a city partitioned in N reservoirs. Denote by i=1,…, N a reservoir in the 

system, ni its accumulation and nij the number of vehicles in i with final destination 

reservoir j, at a given time. Let Pi, i i iV P n and i i iO P l=  be the production, average 

space-mean speed and output at a specific time, where li is the average trip length for 

reservoir i. This average is assumed to be independent of time and destination, internal or 

external, in i. Output Oi is the sum of the exit flows Oij ("j≠i) from i with final destination 

j, plus the internal output Oii (internal trip completion rates at i).  

 We assume that for each reservoir i: (i) there exists a Macroscopic Fundamental 

Diagram (MFD), Pi(ni), between  accumulation ni and production Pi, which describes the 

behavior of the system when it evolves slowly with time and (ii) that Little’s formula 

(Little, 1961) stands for each of the reservoirs, i.e. output is a function of accumulation, 

( ) ( )i i i i iO n P n l= . Also, by definition, we have that: ( ) ( )i i i i iV n P n n .   

 It is also assumed that there exists an entrance function Cij(nj) , which describes the 

maximum inflow or inflow capacity to reservoir j from an adjacent reservoir i as a 
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function of accumulation its nj. The causality of function Cij is that sufficiently large 

accumulations in j restrict its inflow along the periphery. If the inputs, demand and 

controls change slowly with time the system should be near equilibrium all the time, and 

functions G, O, C and V should also, describe the system in the dynamic case. We 

observe that the entrance function Cij(nj) is roughly invariant for a range of accumulation 

up to a critical value and then decreases for larger values. But, how Cij is related to Pi? 

 Figure 4.2 shows how Cij changes with accumulation for the San Francisco network, 

described in Chapter 2, for different runs. Note, however by comparing figure 2.4a and 

4.2 that inflow capacity stays nearly constant for accumulations well into the undesirable 

regime III. Thus, the system should not be allowed to self-regulate. The figure also shows 

that inflow capacity is insensitive to different demand patterns for accumulations beneath 

the critical value, but is less predictable for values of accumulation in regime III. 
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Figure 4.2: Inflow capacity vs. accumulation for the San Francisco network 
for different runs 
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Theorem 4.1: The fraction of exits from i, that correspond to destination j (Oij/ Oi), are 

expressed as ( )ij i ijn n a⋅ , where aij is a constant inversely proportional to trip length li.  

Proof: Using Little’s formula: (i) for the total accumulation of reservoir i and (ii) only for 

vehicles in i with final destination j, we have that (i) ij ij ij in O l V= ⋅  and (ii) i i i in O l V= ⋅ ,  

where lij is the average distance traveled in i, by all vehicles in i with destination j, and Vi 

is the common speed for both families of vehicles.13 Thus, we have: 

 ij ij iji
ij i i ij i

i ij i ij

n n nlO O O a V
n l n l

= ⋅ ⋅ ⋅ ⋅ = ⋅ , (4.1) 

 

Figure 4.1: A multi-reservoir system 
 
 
 Let ( )ijq t  be the exogenous flow generated in reservoir i with destination reservoir j 

at time t and j
i kδ →  be an exogenous binary variable with value equal to 1 if a trip from 

reservoir i to j, passes through k immediately after leaving i, and 0 otherwise. It is 

assumed that all trips generated from i with destination j, follow the same sequence of 

reservoirs in their route. We could now list endogenous variables. Let ( )j
i kq t→  be the 

transferring flow from reservoir i to k at time t, with final destination j (see Figure 4.1); 

                                                 
13 Evidence from the Yokohama’s experiment (Chapter 3) showed that αij=1 for different types of vehicles, 
which simplifies equation 4.1. 
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   j

k
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( )*
ijx t  be a control variable for the inflow capacity for movements from i to j that an 

engineer would set, then the dynamic equations between the state variables nij, the 

auxiliary variables j
i kq → , the control variables *

ijx  and the input qij of a system with N 

reservoirs are (time t is omitted from the equations; i, j, k= 1,2…, N): 

 
1 1

N N
ij j j

ij i k k i
k k

dn
q q q

dt → →
= =

= − +∑ ∑ , (4.2) 

where 

( ) ( )*min , , , if 0,

0, otherwise.

ijj j j
ik i k ik k i k i i i kj

i k ij

n
x a C n a V n

q l
δ→ → →

→

⎧ ⎛ ⎞
⋅ ⋅ ⋅ ≠⎪ ⎜ ⎟⎜ ⎟= ⎨ ⎝ ⎠

⎪
⎩

. (4.3) 

 Equation (4.2) states that the rate nij changes over time equals to the internally 

generated flow from i to j minus the outflow from reservoir i with final destination j plus 

the inflow from all reservoirs adjacent to i with final destination j. Given our assumption, 

the factor j
i ka →  in equation (4.3), which is the fraction of inflow capacity ikC  or applied 

control rate *
ikx   from reservoir i to k, for vehicles with final destination j, is (one can 

derive this by applying Little’s formula): 

 

1

ij ijj
i k N

m
i k im im

m

n l
a

n lδ
→

→
=

=
⋅∑

  (4.4) 

 Equation (4.3) merely explains that the transferring flow from reservoir i to k with 

final destination j is the smallest of (i) the applied control rate (ii) the inflow capacity for 

these movements and (iii) the exiting flow from reservoir k with destination j, as given 

from the exit function Oi(ni). 
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 Let us look how dynamic equations (4.2) and (4.3) are simplified in a case of a city 

partitioned in two reservoirs, R1 and R2. This could be a case of a two-nested-reservoirs 

city where the internal reservoir R1 (city center) attracts most of the trips during the 

morning commute and the external reservoir R2 (periphery) generates most of the trips at 

the same time period. If , , 1, 2ij il l i j= ∀ = and vehicles do not reenter in a reservoir they 

exited from, the dynamic equations for this system are: 

 ( ) ( )*min , , ,ij ij
ij ij ij j i i

i

dn n
q x C n O n i j

dt n
⎛ ⎞

= − ⋅ ≠⎜ ⎟
⎝ ⎠

, (4.5) 

 ( ) ( ) ( )*min , , ,jiii ii
ii ji ji i j j i i

j i

ndn nq x C n O n O n i j
dt n n

⎛ ⎞
= + ⋅ − ≠⎜ ⎟⎜ ⎟

⎝ ⎠
. (4.6) 

 The second term of the right hand side, for both equation (4.5) and (4.6), represent the 

intertransfers between the reservoirs; while the third term of equation (4.6) represents the 

rate vehicles finish their trips inside reservoir i.  

 An important remark is that the middle term in the parenthesis of (4.5) and (4.6) can 

be ignored. The reason is that Cij is invariant for values of accumulation in regimes I, II 

and part of regime III. But, any control strategy will try to avoid accumulations in the 

undesirable regime III. Thus,  (i) *
ij ijx C<   when the system reaches states in regime III 

and (ii) i ijO C< for regimes I and II. 

 There is a caveat in the model of the two-reservoir system. If we control the input by 

restricting the perimeter capacity, we may induce uneven distribution of vehicles on the 

sending reservoir. This may invalidate the homogeneity assumption of traffic loads 

within a reservoir (if the reservoir is too big) and reduce the accuracy of the model. In 
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that case, accuracy can be improved by using smaller reservoirs, i.e. an “onion structure” 

with 3 or 4 nested reservoirs. The issue does not arise with other forms of control, e.g. 

pricing. 

 Next section analyzes the effect of looking-for-parking in the output Oi(ni) and the 

dynamics of the rush hour. 

 

4.2 The effect of cruising-for-parking 

 Cruising for parking creates a mobile queue of cars that are waiting for curb 

vacancies and is an important source of congestion (Shoup, 2006). For example, during 

peak hour in the area around Harvard square in Massachusetts, 30% of moving vehicles 

are searching for parking, with an average searching time of 12 min (O’ Malley, 1985). 

Most of the literature in the effect of parking in traffic is (i) policy oriented--see Shoup 

(2005) for a detailed description; or (ii) analyzes the economics of parking (e.g. Douglas 

(1975), Glazer and Niskanen (1992), Arnott et al (1992), Arnott and Rowse (1999), 

Calthrop et al (2000), Anderson and De Palma (2004) etc).  

 Some useful research in identifying interactions between cruising for parking and 

traffic congestion from an economic prospective was made by Arnott and Inci (2006) and 

Arnott and Rowse (2007). They modeled parking in the steady state by considering three 

different types of vehicles: (i) moving, (ii) cruising and (iii) parked. Although they 

provide some useful relations between these three types and the economic impacts of the 

phenomenon, they fall short in describing (i) the dynamics of parking with realistic 

physics and (ii) how cruising-for-parking can lead to congested traffic conditions. This 
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section shows how the effect of parking can be easily modeled with the framework of 

section 4.1. 

 

4.2.1 Modeling the cruising-for-parking phenomenon 

 The model presented in this section fills three important gaps of the existing policy- 

and economics-oriented models: (i) it describes the physics of overcrowding; (ii) shows 

that cruising-for-parking affects all the users of the system, even those with destinations 

outside the “limited parking region” and (iii) provides tools to estimate the direct costs of 

all users, as these expressed by additional vehicle-hours traveled. Also, it differs from the 

existing economic models because (i) it can describe the dynamics of parking 

phenomenon and most importantly (ii) it contains variables and functions that are readily 

observable or can estimated with field experiments (e.g. this is not possible for a demand 

curve that most of the economic models assume). Therefore the laws of behavior can be 

verified, and the models are expected to produce reliable outputs. 

 Consider a multi-reservoir city, with infinite parking availability for all the reservoirs, 

except one (reservoir R), where vehicles may have to cruise for parking because of 

limited on-street parking. We focus the analysis on on-street cruising for parking at R. Its 

accumulation n is the sum of three families of vehicles: (i) vehicles searching-for-parking 

sn (family s); (ii) vehicles moving towards their destination internal to the reservoir, but 

not yet searching for parking, mn  (family m),  and (iii) vehicles moving with external 

destinations, on (family o): 

  s m on n n n= + + . (4.7) 
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 Denote by pn  the vehicles parked on street (family p) and by Np the total number of 

parking spots. Also, let p pp n N  be the percentage of available parking spots, and d1 

be the average distance traveled between two adjacent spots (from Np). We assume that p 

and d1 do not vary drastically in the dimension of space. When a vehicle reaches its 

destination, it is assumed that it does Bernoulli trials with probability of success p, until 

finding an available spot. The number of trials until the 1st success follows a geometric 

distribution with mean 1/p. In each trial a vehicle travels, on average, distance d1 and the 

average distance traveled while searching for parking is ls=d1/p. To model the effect of 

parking, the reservoir R is divided in three sub-reservoirs: 

(i) A moving reservoir Rmo with m on n+  vehicles 

(ii) A searching reservoir Rs, where vehicles transfer from Rmo, when they arrive close 

to their destination and 

(iii) A parking reservoir Rp, where vehicles transfer from Rs when they find a parking 

spot. Also, trips generated in Rp, transfer from Rp to Rmo and lead to their 

destinations. Figure 4.3 shows this partitioning and movements between different 

families. 

 The output for sub-reservoirs m, s, o, is estimated using Little’s formula (see also 

equation 4.2) in R: 

 ( ) ( ) { }, , , ,x
x x

P nnO n n x m s o
n l

= ⋅ ∈
x

. (4.8) 

 Output from family m is input to family s, output from s is input to p, output from p is 

input to m and o. Output from reservoir i is the sum of outputs from s and o.  

 In the case of x=s (searching), equation (4.8) becomes: 



4 Dynamics if multi-neighborhood cities 

 

68 

  ( )
1

s
s

n pO P n
n d

= ⋅ ⋅ . (4.9) 

 

Figure 4.3: Different movements to model cruising-for-parking phenomenon 

The average cruising time is ( ) ( )( )1sl V n d p V n= ⋅ . The state of reservoir R 

( mn , sn , on , pn ) is described in the dynamic case as follows (time t is omitted from the 

equations): 

 ( ),m
R R R R m m

dn q q O n n
dt ′→ →= + −  (4.10) 

 ( ) ( ), ,s
m m s s

dn O n n O n n
dt

= −  (4.11) 

 ( ),o
R R R R o o

dn q q O n n
dt ′ ′ ′→ →= + −  (4.12) 

 ( ),p
s s R R R R

dn
O n n q q

dt ′→ →= − −  (4.13) 
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where R Rq → and R Rq ′→  is the rate trips starting from Rp with internal (inside R) or external 

destinations (outside R) ; R Rq ′→  and R Rq ′ ′→ are the flows entering from outside with 

internal or external destinations.14 

 When conditions change slowly with time( 0sdn dt ), note that equations (4.11) and 

(4.8) yield: 

 11s

m m

n d
n p l

= ⋅ . (4.14) 

 This suggests that by measuring p, the % of available parking spots and estimating 

the two lengths of the RHS of equation (4.14), we approximate the fraction of vehicles 

searching for parking.  As expected, small values of p, lead to a high number of vehicles 

searching for parking, and as a result the average distance traveled per trip completion in 

R, l, increases.  

 Why do we look for l? The cost of cruising-for-parking, in term of additional vehicle 

miles traveled can be substantial. If, for example, 20% of vehicles search for parking, 

distance traveled per trip completion is 25% higher, which results to 20% smaller outputs, 

even for the same average speed. But the effect is even worse, as average speed V is a 

decreasing function with accumulation and smaller outputs cause higher accumulations. 

Especially, when the system enters regime III of the Macroscopic Fundamental Diagram, 

production decreases with accumulation and system can lead to gridlock. Quantitatively, 

we can estimate l using Little’s formula for the total output O, i.e. the sum of Os and Oo: 

                                                 
14 This model neglects trips starting from R but not from Rp (e.g. trips from garages). This assumption can 
be easily relaxed. 
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1

1 1

s o
s o

s o

s o

o

n V n Vn VO O O
l l l

n np
l n d n l

⋅ ⋅⋅
= + ⇔ = + ⇔

= ⋅ + ⋅
 (4.15a) 

 Now using (4.14) and assuming lo=lm, we get 

 1 11 s

m

n
l n l

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

. (4.15b) 

 We now estimate the total delay, dp, caused by the cruising-for-parking effect by 

comparing the actual vehicle hours of travel with those when NpØ¶. This delay is not 

only experienced by vehicles cruising for parking, but also by all moving vehicles, 

because of decreased speeds. The delay dp during a time period [0,T], can be estimated 

using the queueing diagram of figure (4.5), where ( )n t  is the actual accumulation in i, at 

time t and ( )*n t  the accumulation when NpØ¶. This graph merely explains that (i) the 

difference in accumulation with and without cruising, at time t, is the difference between 

their cumulative outputs ( )tσ  and ( )* tσ , at time t, and (ii) delay dp is the shaded area 

between the cumulative outputs.  

 While ( )n t  can be estimated for real networks (e.g. using methodology from section 

2.3), the state of the system for when NpØ¶ is unknown. Nevertheless, ( )*n t  can be 

approximated as: 

 ( ) ( ) ( )( ) ( )( )
( )

*
*

0

t

m

P n P n
n t n t d

l l
τ τ

τ
τ

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫  (4.16) 

where ( )l t  is given by Equation 4.15. The term inside the integral is the decrease in 

output, at time t, due to cruising-for-parking phenomenon. Next subsection presents a 
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simulation of the phenomenon and gives additional insights in the causes and the results 

of the phenomenon. 

 
Figure 4.4: A queueing diagram for reservoir R 

 

4.2.2 A macroscopic simulation of cruising-for-parking  

 To illustrate numerically the model described in the previous section and see if it 

produces logical results, we now present a cruising-for-parking simulation for different 

supply of on-street parking spots. The simulated network is a macroscopic representation 

of the geometric and traffic characteristics of the San Francisco micro-simulated site (see 

Chapter 2).15  First, a production function P(n) was estimated as the best fit 4th degree 

polynomials in all the (P, n) pairs of figure 2.7a. Next, time-series of total demand rates 

were calculated for “run 4” of figures 2.4 and 2.5. This run did not create severe 

congestion in the system (see figure 2.10). Also, averages for the fraction of demand rates 

with internal or external destinations were calculated across the whole run. On-street 

                                                 
15 In this site, all the internal trips were completed in garaged parking areas and cruising was absent. 
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( ) ( )*n t n t−
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parking spots were evenly distributed in both sides of all streets, without restricting the 

lanes used for traffic movements. Figure 4.5 summarizes the values of the most important 

parameters used in this simulation.  

parameter value description
L 56.25 total steet length (km)
f 11 0.1
f 12 0.2
f 21 0.4
f 22 0.3
lp' 1.743 average trip length without cruising (km)
N p [4750, ∞) total number of on-street parking spots
n p 1500 vehicles parked at t=0
l 1 2×L /N p average distance traveled between two adjacent spots

f ij  = fraction of demand generated from i  with destination j ,        
i , j =1 (internal) or 2 (external) 

 

Figure 4.5: Description of main parameters of the simulation 

 Traffic was simulated for a period of 4.5 hours (10000 time units) for Np œ [5000, ¶) 

using a discrete version of the dynamic equations (4.10)-(4.13). All the trips generated 

from the internal region start from the parking sub-reservoir Rp. Also, in all runs the 

system returns in a state of low traffic where cruising-for-parking is negligible. Thus, the 

total input and output of vehicles is the same for all runs and the results are comparable. 

Figure 4.6 presents the results of the simulations for different values of Np. First, there is 

no cruising effect for Np > 10000.  

 Figures 4.6a and 4.6b show time-series of accumulation and fraction of available 

parking spots. Note that for values of Np smaller than 6000 the network becomes severely 

congested with states in regime III of the MFD, while for Np>7500 remains in regime I. 

Note as well that, during the same time periods, the fraction of available parking spots is 

close to zero (<5%) for small Np, as shown in figure 4.6c. This indicates that there are 
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cases where cruising-for-parking can lead uncongested systems, without very high traffic 

demand, to severely congested states. 

 Figures 4.6b and 4.6d show time-series of the number of vehicles cruising-for-

parking and of cumulative output, i.e. total trip completion rate, expressed as an oblique 

plot. Note that when p is close to zero, the fraction of vehicles cruising-for-parking is 

significant (~30% for Np=5000), which is a value observed in many cities around the 

world(Shoup, 2006), e.g. in Massachusetts, even 20 years ago (O’ Malley, 1985). The 

area under the graph of figure 4.6b is the total delay for vehicles cruising for parking 

(family s), ds. A study on West Portal Avenue on the city of San Francisco, conducted by 

San Francisco State University, found that average cruising time to find a curb space was 

3.2 minutes (Shoup, 2005b). This cruising time is the same as in the simulation for 

Np=6000. But, this delay is not the only cost caused by limited availability in parking. 

 The total delay dp due to limited parking for a value of Np, is the area (see figure 4.6d) 

between the graphs (i) for the given Np and  (ii) for NpØ¶ (for Np>10000 the delay is 

zero). There are cases where dp is 2 or 3 times higher than ds, which is something 

neglected in most of the existing studies. Figure 4.7 shows dp, ds and dp-ds for the whole 

period of the simulation for different values of Np. Note that the effect for non-cruising 

vehicles, as this expressed by dp-ds, i.e. the total delay for all vehicles excluding the time 

cruising-for parking,  becomes more intense than the effect for cruising vehicles (family 

s) as Np decreases--the elasticity of their ratio is about -3% per 100 parking spots for 

Npœ[5500, 7000]. Note also that accumulation ni(t) is a convex function of Np. For a 

given value of Np <10000, ni(t) is higher than the sum of (i) ( )in t  for  Np Ø¶ and (ii) 

( )s
in t for the given value of Np.  
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Figure 4.6: A simulation of searching-for-parking; time series of (a) accumulation; (b) 
vehicles searching for parking (c) % of available parking spots; (d) cumulative output 
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Figure 4.7: Delays dp, ds and dp-ds for different values of Np 
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Figure 4.8: Total delay for vehicles with inner and outer destinations  
for different values of Np 

 

Figure 4.8 shows the total delay for vehicles with inner (including cruising) and 

outer (cruising is zero for these vehicles) destinations. Note that as the number of total 

spots decreases, the effect for vehicles with outer destinations becomes significant. Also, 

the marginal cost of an additional user with external destination is smaller than that of a 
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user who will cruise for parking; and that an additional user with internal destination, 

causes more delays in the non-cruising vehicles, than the cruising ones. This suggests that 

a pricing scheme (e.g. pricing on-street parking) to increase mobility in cities should 

consider all different types of costs for the users of the system.  

 Most of the existing studies evaluate the effect of the cruising-for-parking 

phenomenon by the average time cruising for parking. One should expect that for a given 

demand, average cruising time will increase as parking limitations become intense, i.e. Np 

decreases. But, this is not necessarily true, especially when traffic is congested. A 

“suprising” observation is that (i) ds becomes concave for values of Np<5500, and (ii) ds 

decreases with Np for Np<5000 (e.g. average cruising time is for 4.8min Np=5200 and 

4.3min for Np=4800), as figure 4.7 shows. Thus, cruising delay ds, is bounded but total 

delay is not. The reason for this is that the system reaches quickly regime III of the MFD 

and the output Om, which is the input to Rs (sub-reservoir of cruising vehicles) is very 

small; at the same time, average speed is very low, too (<10km/hr). Thus, vehicles do not 

reach their internal destination because they are “stuck” in congestion and the number of 

vehicles cruising-for-parking is small.16  

 A thorough analysis of the simulated data sheds more light in the previous 

observation. Figure 4.9 shows the trajectory of (Om, Os) pairs, i.e. the input and output of 

the cruising sub-reservoir Rs, during two different runs; for (i) Np=5200 (figure 4.9a) and 

(ii) Np=4800 (figure 4.9b). In the beginning of the simulation Rs is almost empty, vehicles 

find parking almost immediately and Om≈Os. After a while the parking sub-reservoir Rp 

loads with vehicles (p<0.3), vehicles spend more time in cruising and Om>Os. This results 

                                                 
16 Results for values of Np<4750 are not presenting because the system reaches gridlock and all the delays 
approach infinity. 
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an increase in accumulation, and the system reaches regime III of an MFD, with even 

smaller completion rates because of longer trips. This effect is more severe for smaller 

values of Np and it can lead the system in states where Om<Os, i.e. number of vehicles 

cruising-for-parking decreases. Note that for Np=4800 this occurs at time t=3650 and lasts 

until t=6800 (a period of ~1.5hr). For Np=5200 this occurs later, at t=4800, and this effect 

is mild because (i) it lasts less; (ii) accumulation is smaller and (iii) demand decreases for 

t>5000. Thus, number of cruising vehicles and average cruising time are smaller in case 

of Np=4800, but total delay dp is higher, as expected. 

 

 

 

 

 
 
 

Figure 4.9: Trajectory of (Om, Os) for (a) Np=5200; (b) Np=4800 

 
4.3 Final Remarks 

 This chapter has described the dynamics of the rush hour for multi-neighborhood 

cities, where congestion is not evenly distributed across a city. This analysis is an 

intermediate, but necessary, step in developing perimeter control strategies, which can 

increase the mobility of the system, without requiring the knowledge of detailed 

information about O-D tables. These are presented in Chapter 5.  

(a) (b) 
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 Also, this chapter modeled in a parsimonious way the cruising-for-parking 

phenomenon and showed the multiple effects in all the drivers, even those with 

destinations outside the cruising region. These results can be misinterpreted. We are not 

advocating increasing parking to meet the demand for travel. This can be a devastating 

decision because of (i) the tremendous cost to keep pace with increase in travel demand 

and (ii) the phenomenon of induced demand. For example, the city of San Francisco has 

around 450,000 registered vehicles, and this increases by about 35,000 vehicles 

during each workday (Department of Traffic and Parking, 2007). But, dwellers or San 

Francisco in 2007 elections, voted against a proposition, which would prevent all 

reductions in parking spaces, allow developers to provide more parking spaces in 

downtown, and set minimum parking requirements for neighborhoods.  

 Only if we decide to limit parking (e.g. with pricing), we can limit the demand of 

individual cars and have positive consequences for more sustainable and less congested 

cities. In this chapter we have developed all the necessary tools to estimate the total costs 

for a city due to cruising phenomenon, given the total number of parking spots and the 

aggregated demand. We can then estimate the percentage of demand decrease needed, to 

eliminate this effect and improve the mobility of the system. In case of high demand for 

internal destinations, pricing only these types of users (e.g. by pricing curb parking) can 

help. But, in case of high demand for external (with regards to the cruising region) 

destinations, toll pricing can be more efficient. 



 

 

 

 

Chapter 5 

 

Perimeter Control for multi-neighborhood cities 

 

THIS chapter provides all the necessary tools to apply perimeter control strategies, which 

do not rely on forecasting, for multi-neighborhood cities. Control decisions are based on 

monitoring of the system, which replaces prediction. The system is repeatedly modified 

based on observations. The logic is that the flow towards an overloaded area of a city is 

restricted while the flow towards an underutilized area is promoted. Prevention of 

overcrowding on a city centre is succeeded by metering of access to maintain the 

mobility of cars at a stabilized level. For example, longer red times can be applied in the 

periphery of the centre during peak hours for phases which direct vehicles to the centre. 

Section 5.1 shows mathematically how perimeter control can increase mobility and 

system efficiency, expressed by the rate vehicles reach their destinations. Section 5.2 

presents some applications of perimeter control in simulated cities with different 

structures (single or multi reservoir, with or without cruising for parking phenomenon). 
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5.1 Perimeter control for two-reservoir cities 

 Daganzo (2007) proved that, for single reservoir systems, the policy that minimizes 

total delay and maximizes the output from the system, is that which does not allow the 

system to reach states in regime III of the Macroscopic Fundamental Diagram (MFD). 

This policy distributes benefits widely as all car trips end sooner. Analysis also revealed 

the there are fewer vehicle-hours and higher speeds at all times. A simple way to apply 

this strategy is to monitor the system and when accumulation passes a chosen critical 

value in regime II, to restrict input flow.  

 While this strategy is Pareto efficient for single reservoir systems, it ignores the 

delays for users the periphery that do not want to travel to the center. This is not a 

problem in case most of the trips have destinations inside the reservoir, because this 

policy still gives to every user the most advanced departure time possible (assuming a 

first-in first-out system).  But, when there is a significant amount of destinations outside 

the reservoir, this policy may not be the most efficient (in terms of trip completion rate).  

 We now show under what conditions perimeter control can be beneficial for-two 

reservoir cities and increase the rate at which vehicles reach their destinations. Generally 

speaking, this is the case when some parts of a city are more congested than others and by 

controlling the intertransfers the overall mobility of the system can improve significantly.  

 Consider a two-reservoir system (i=1, 2 and i΄=3-i), where (i) output Oi is function of 

accumulation ni and (ii) the state of this system is expressed in the dynamic case by 

equations 4.5 and 4.6.  We assume that the output function, Oi(ni), is non-negative and 

concave with Oi(0)=0 and has 3 different regimes: (regime I) Oi(ni) is monotonically 
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increasing for i in n−≤ ; (regime II) Oi(ni) exhibits constant maxima, at value γi, for 

i i in n n− +≤ ≤ ; (regime III) Oi(ni) is monotonically decreasing for i in n+ ≤ . We consider 6 

different cases for values of accumulations in each of the 3 regimes for each of the 

reservoirs. Cases 1-3 deal with uncongested cities, while cases 4-6 with congested ones. 

 The dynamic equations for the system, after some manipulations in equations 4.5 and 

4.6 and ignoring the term of inflow capacity, Cij, (see section 4.1 for an explanation), can 

be expressed as: 
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where t
in  is the accumulation at reservoir i, at time t; t

iiφ  is the fraction of vehicles in i 

with destination in i, at time t;  t
ix  is a control variable for movements directing to i, at 

time t; t
iif  is the fraction of trips generated at i with destination i, at time t; t

iq  is the 

generated flow at i, at time t. 

 We are interested in maximizing the total output of the system at time t+1, given the 

state of the system at time t, ( ) ( )
22

1 1 1 1
1 11 1 1 2 2 ,t t t t

to O n O nφ φ+ + + +
+ = ⋅ + ⋅  by controlling 

movements in the boundary of the two reservoirs. Figure 5.1 summarizes the perimeter 

control strategy (values of 1
tx , 2

tx ), where quantities A and B are given by equations (5.3) 

and (5.4). Appendix A provides a proof that this strategy will maximize output. 
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Figure 5.1: Perimeter control strategy for two-reservoir systems 
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 Qualitatively, this is an explanation of the strategy: (i) if none of the reservoirs is in 

regime III, you do not restrict any of the movements in both directions; (ii) if only one 

reservoir is in regime III, then you restrict the input to that, only if many trips have 

destinations inside this reservoir and (iii) if both reservoirs are in regime III, you restrict 

the input to the one with higher density of destinations.  

 There is a caveat in the model of the two-reservoir system. If we control the input by 

restricting the perimeter capacity, we will change the spatial distribution of vehicles on 

the sending reservoir. This may invalidate the homogeneity assumption of traffic loads 

within a reservoir (if the reservoir is too big) and reduce the accuracy of the model. In 
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that case, accuracy can be improved by using smaller reservoirs, i.e. an “onion structure” 

with 3 or 4 nested reservoirs. 

 
5.2 Applications  

5.2.1 A single-reservoir city 

 A simulated test of “a single-reservoir” control strategy (Daganzo, 2007), is now 

presented for the San Francisco network, described in Chapter 2. We considered the 

whole network as a single reservoir system and we restricted the input from the boundary 

of the reservoir, by changing the signal settings in the periphery, to keep accumulation as 

close to the critical value. We applied perimeter control for a run which, without control, 

created congested conditions and led the system to gridlock. Our limitation was that the 

demand was changed a priori, without monitoring the system, as the simulation package 

is not interactive. A test under this constraint is strict, since feedback information to 

optimize control is not possible. Figure 5.2 presents the results of this test.  

 The cumulative demand with control was lower than the one without control for 

every time t. By trying to keep the accumulation in regime II the total output of the 

system increased by 34% (60347 trips instead of 45083 in a 4 hour period). The plot for 

the original uncontrolled case shows that the rate of trips ending increases at first as the 

accumulation rises and then drops about half way through the simulation, as 

accumulation surpasses the sweet-spot and traffic congestion prevents vehicles from 

reaching their destinations.  In the signal-controlled case, the higher rate of trips ending is 

maintained by preventing some vehicles from entering the reservoir when its 

accumulation is at the sweet-spot.  This allows more vehicles to reach their destination in 
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the same amount of time.  So, as claimed, the restriction improves everyone’s 

accessibility for the given demand.  Note that this is done with fewer vehicles on the road.  
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Figure 5.2: Time series of cumulative output (left axis) and accumulation (right axis)  
for the San Francisco network with and without perimeter control  

 

  Pre-timed signals controlled the reservoir to maintain a higher output, but signals 

work best when timed to a known demand.  If the system is monitored, the control can be 

varied in response to real changes in accumulation, and the system could be designed 

more efficiently to maintain maximum output by keeping accumulation in the sweet-spot. 

 

 
5.2.2 A two-reservoir city 

 We now simulate a city with two nested reservoirs during the morning commute 

where the majority of people are moving towards the centre of the city. We assume that 

the dynamic behavior of the system is governed by equations 5.1 and 5.2 and we apply 
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perimeter control strategies. We also assume that there are infinite available parking spots 

and vehicles do not cruise for parking.  

 The internal reservoir (R1) is ten times smaller than the external reservoir (R2). 

Vehicles are uniformly distributed in the city and at time zero a few vehicles are moving 

and the rest are parked. Initially, vehicles enter the system at a constant rate; demand 

decreases with time after 350 time units (total duration of the simulation is 1000 time 

units). A trip generated from the interval reservoir (R1), will finish in R1 with probability 

f11=0.7 and in the external reservoir (R2) with probability f12=0.3, while a trip generated 

from R2 has equal probability to finish in R1 or R2 (f21=f22=0.5). A three-regime output vs. 

accumulation function Oi(ni) is assumed for each of the reservoirs, as a scaled up version 

of the output-accumulation function O(n), of the San Francisco simulated network (figure 

2.10a). O(n) was estimated for regime I and III as the best fit 4th degree polynomial for 

the (output, accumulation) pairs and as the best fit zero degree polynomial for 

accumulation in the range [2500,3500]. Figure 5.3 illustrates this result.  Critical values 

of the parameters are assumed to be proportional to the size of the reservoirs, i.e. 

O2(n2)=10×O1(10n1)= 25×O(25n). Also, the same procedure was applied for the inflow 

capacity function Ci(ni), using data from Chapter 2.  
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Figure 5.3: 3-regime MFD based on San Francisco network data 

 
 

 First, we let the simulation run without applying any control in the boundary of the 

two reservoirs. We observe (figures 5.3b and 5.3d) that after some time the internal 

reservoir R1 is subject to gridlock and output decreases to zero.  

 We repeat the simulation for the same demand pattern, but we now apply the control 

strategy analyzed in section 5.1. The philosophy of the control is that we try to keep 

accumulation in the internal reservoir in a range that maximizes output. When 

accumulation is higher than the critical value then inflow capacity in the boundary is 

restricted. This in practice is feasible by increasing the red phases for movements 

directing in the centre.  

 The results shown in figures 5.3a and 5.3c are encouraging and show that perimeter 

control can provide significant benefits to all the users of a city. The number of vehicles 

finished their trips is higher, for both the internal and the external reservoir, and average 

speeds are much higher when control is applied.  
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Figure 5.4: A two-reservoir system simulation: Time-series of (a) cumulative output with 
control; (b) cumulative output without control; (c) accumulation with control; (d) 
accumulation without control.  
 
 

 Furthermore, the proposed control strategy is quite parsimonious. Even if the 

relationship between production or output and accumulation is not accurately known, the 

critical values of accumulation (or average speed) are needed for the control. Even the 

critical value does not have to be precisely known as it can be estimated by tweaking the 

controls over days. 

 

(a) (b) 

(c) (d) 
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5.2.3 Cruising-for-parking 

 The previous sections showed that perimeter control can be beneficial for multi-

neighborhood cities. A main characteristic of this strategy is that it treats equally all the 

users that are metered, independently of their destination. A fair question to ask is if 

perimeter control can improve mobility when “metered” users have different 

characteristics, e.g. when the cruising-for-parking phenomenon is intense. In that case, as 

shown in subsection 4.2.3, people with destinations inside the inner reservoir 

inconvenience the system more than users driving through the inner reservoir, with outer 

destinations. 

 To get a better understanding, we now test how traffic conditions change when 

perimeter control is applied while vehicles are cruising-for-parking. For comparison 

purposes, we simulate the same network used to analyze the cruising-for-parking 

phenomenon (section 4.2.3). For different values of the total number of parking spots Np 

we run the simulation with exactly the same traffic and demand characteristics. The only 

difference is that we apply two different types of perimeter control policies: (Strategy I) a 

simple “single-reservoir strategy” (Daganzo, 2007), where when accumulation enters in 

regime III of the MFD, we meter the inputs from the periphery; and (Strategy II) a more 

strict strategy where we restrict input flows either when accumulation is in regime III or 

when accumulation is in regime II and parking availability is very limited (p<0.2). The 

second strategy aims to moderate the cruising-for-parking phenomenon. We also estimate 

the additional vehicle hours of delay experienced by the metered vehicles, for both 

strategies. For simplicity, we assume that the outer region is completely uncongested and 
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the only delay because of the perimeter control is the one while waiting for entering the 

inner region. Figure 5.5 summarizes the results. 

 Figure 5.5a shows the total delay due to cruising-for-parking, dtot, (including the 

delay of the metered vehicles) and the delay while searching for a spot, ds, for the two 

different strategies. We see that in all the cases the more strict “strategy II” moderates 

some of the searching time, but the penalty experienced by metered vehicles is much 

higher, i.e. strategy II is always worse that strategy I. The reason is that, while the 

perimeter control meters the input from the outer region, it cannot restrict the input from 

the inner region. Thus, the parking sub-reservoir still saturates quickly due to high 

demand of inner trips and perimeter control makes the overall situation worse. Let us 

now compare strategy I with the original case of no control, presented in subsection 4.2.3. 

 Figure 5.5b shows different types of delays for control strategy I and the original case 

for different values of Np. First note that perimeter control has minor effect in the delay of 

vehicles cruising-for-parking, ds. Note also that the delay for all the vehicles of the inner 

region, dp, (excluding metered vehicles) decreases significantly (e.g. more than 30% for 

Np<5200). But, there is major penalty for the metered vehicles, which is increasing when 

the original system becomes heavily congested for smaller values of Np (accumulations in 

regime III). Thus, the overall delay decreases 10-15% and only when the inner region 

reaches states in regime III.17  

   

                                                 
17 As mentioned in subsection 4.2.3, for the given demand when Np is high and cruising negligible, the 
system remains uncongested at all times. 
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Figure 5.5: Simulation results for different values of Np: (a) dtot and ds for two different 
strategies; (b) comparison of control strategy I and no control 

 
 

 These results show that perimeter control cannot have a significant positive effect (i) 

when many trips are originated from the inner zone and (ii) when the cruising-for-parking 

phenomenon is intense. In these cases, it is necessary to decrease the demand of vehicles 

(a) 

(b) 



5 Perimeter control for multi-neighborhood cities 

 

91
on the road. Congestion pricing or parking enforcement are alternative methods that can 

lead to better results, in terms of mobility and accessibility for the system.   

 
5.3 Final Remarks  

 This chapter developed perimeter control policies which can improve significantly the 

mobility of two-reservoir systems in many cases. These ideas can be extended to multi-

neighborhood cities (with N>2). The mathematical analysis for N>2 is tedious in the 

general case, but similar results to the two-reservoir case are expected, when regions in 

regime III are not adjacent. An effective policy would be to control the inter-transfers 

between the reservoirs and keep accumulation in levels, for which output is maximized, 

for areas with high density of destinations. Equity issues should also be considered 

because these strategies may not be Pareto efficient, e.g. when cruising-for-parking is 

intense. It is possible that this control favors people live in the centre of a city to people 

in the periphery. Thus, more opportunities should be given for these people, which 

usually belong to the poorer community groups. These opportunities could include 

attractable alternative modes of transport, congestion pricing for vehicles, bus lanes etc. 



 

 



 

 

 

 

Chapter 6 

 

Conclusions 

 

This final chapter summarizes the results in this dissertation and proposes ideas for future 

research. 

 

6.1 Summary 

 In this dissertation, we have analyzed how we can develop physically realistic models 

of urban congestion in cities and how, based on these models, we can develop control 

strategies to improve mobility. 

 We argued that the traditional disaggregated models provide only limited answers to 

these questions because: (i) they require extensive data that are unavailable, particularly 

in the dynamic case; and (ii) the laws of behavior cannot be verified, and these models 

cannot be expected to produce reliable outputs. We also argued that the existing 

aggregated models (i) fall short in describing the rush hour dynamically, and (ii) their 

behavior for different demand profiles has not been tested. 



6 Conclusions 

 

94 
 As a remedy, we proposed a general analysis framework that for the first time 

incorporates (i) realistic traffic behavior with variable inputs and outputs that could 

describe a rush hour dynamically and (ii) control decisions that are based on observations 

and not on forecasting. This framework builds on the gridlock model in Daganzo (2007). 

 Finding from chapters 2 and 3 (compare figures 2.6 and 3.3 with 2.7a and 3.5a) show 

that large systems observed over long times are predicted more reliably than small 

systems; “bigger is better”. This suggests that large scale (the nemesis of traditional 

models) actually works in favor of the aggregate approach and that we can shift the 

modeling emphasis from microscopic predictions to macroscopic monitoring and control 

based on accumulation or average speed. The system performance in terms of vehicle 

hours, vehicle kilometers, trip completion rates or average speeds can be reliably 

modeled from the vehicle accumulations in a neighborhood of a city, of a size 

comparable with a trip length.  

 This dissertation work showed that a macroscopic fundamental diagram linking 

production (the product of average flow and network length), accumulation (the product 

of average density and network length) and speed exists for neighborhoods of cities in the 

order of 5-10km2. This happens even as the origin-destination table changes. The tests 

also revealed an invariant relation between the space-mean flows on the whole network, 

which are easy to estimate given the existence of an MFD, and the trip completion rates, 

which dynamically measure accessibility and are difficult to observe. No evidence of 

hysteresis in the MFD was noticed. In other words, average flow and density pairs during 

growth and decay of demand followed the same MFD. In addition, the findings of section 

3.3 are important because: (i) they establish that the MFD is a property of the network 



6 Conclusions 

 

95
and not of the detectors’ locations; and (ii) they show how to estimate accumulation and 

speed for the whole network. This means that many cities with this widespread 

supporting infrastructure can readily monitor their state and benefit from control 

strategies, similar to these presented in chapter 5.    

 By exploiting the insights and the properties of the MFD, we were able to describe 

the rush hour dynamically in case of multi-region cities that are not uniformly congested 

everywhere (Chapter 4). Also, in section 4.2 we developed a cruising-for-parking model. 

This model filled three important gaps: (i) it described the physics of overcrowding 

caused by the phenomenon; (ii) it showed that cruising-for-parking affects all the users of 

the system, even those with destinations outside the “limited parking region” and (iii) it 

provided tools to estimate the direct costs of all users, as these expressed by additional 

vehicle-hours traveled. Also, it differed from the existing economic models because: (i) it 

can describe the rush hour dynamically while vehicles search for a spot (properly 

recognizing that delays are greatest when flows are lowest, unlike existing economic 

models) and (ii) it contains variables that are readily observable or can be easily 

estimated with field experiments (unlike the demand curve in most economic models). 

 From a methodological point of view, the models of chapter 4 provided us with all the 

necessary tools to incorporate perimeter control strategies in the general framework. 

Findings from chapter 5 are encouraging because they show that perimeter control can 

provide significant benefits to all the users of a city, and that detailed origin-destination 

tables are not needed for these strategies. Qualitatively, the perimeter control strategy 

restricts the inputs to congested regions of a city which also have high densities of 

destinations. Also, this strategy is quite parsimonious. Even if the MFD is not accurately 
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known, critical values of accumulation (or average speed) are needed for the control. 

Even the critical values do not have to be precisely known as they can be estimated by 

tweaking the controls over days. Also, results from section 5.5 show that perimeter 

control cannot have a significant positive effect (i) when many trips originate from the 

congested zone and (ii) when the cruising-for-parking phenomenon is intense. In these 

cases, it is necessary to decrease the demand of vehicles on the road using other methods 

(e.g. congestion pricing or parking enforcement). 

 
6.2 Future work 
 
 This dissertation is not the final word on the analysis of macroscopic modeling of 

traffic in cities. Several research areas related to this thesis deserve further investigation.  

(a) Macroscopic modeling of multimodal, multi-reservoir systems: The multi-reservoir, 

single-mode models, developed in chapter 4, can also be extended to multimodal, 

multi-reservoir transportation systems. This can be done by treating the system as an 

interconnected network of reservoirs, where each reservoir represents the streets in a 

neighborhood.  The different modes can share the same road space, as when buses 

and cars on city streets or general purpose freeway lanes, or the modes can be 

separated by dedicating road space for some of modes. In this extension, different 

parts of a city can implement different management strategies. Perhaps bus-only 

streets are allocated only in the central business district while other parts of the city 

allow vehicles to operate in mixed traffic.  The effect of changes in one reservoir on 

the behavior of adjacent reservoirs need also to be considered with this model.  The 

basic building block of this theory is the multi-reservoir serving one mode (chapter 4). 



6 Conclusions 

 

97
A question that needs an answer is if an MFD exists for transit systems or mixed 

systems with transit and cars. The field experiment in chapter 3 sheds some light on 

car systems, but further analysis is necessary in understanding the physics of 

multimodal systems. 

  

(b) Congestion pricing control strategies revisited: With reliable estimates of real-time 

accumulations, one could devise many different and effective policies to keep 

accumulations in their sweet-spots so as to enhance mobility and accessibility.  

Perimeter control by modifying traffic signals, as was done in chapter 5, is one 

method of achieving this without affecting the number of trips per mode.  Strategies 

could also be used to change the number of trips per mode, by encouraging the use of 

more sustainable modes, such as shifting trips from cars to buses.  Chapter 4 provided 

all the necessary tools to estimate different types of costs to the system and to 

separate users. Also, chapters 2 and 3 emphasized what is the number of cars that a 

city can afford without experiencing heavy congestion. Parking or peak hour tolls are 

pricing strategies that can do this. But, most of the existing congestion pricing models 

assume a supply curve where speed is a decreasing function of flow, which is a wrong 

assumption according to the findings of this dissertation. The correct physics must 

involve a non-monotonic supply curve, where effects manifest themselves in a time-

dependent fashion. Now, by knowing (i) an experimentally verified supply curve 

(chapter 3) and (ii) estimates of the total delay to the system in a time-dependent 

model (chapter 4), congestion pricing strategies can be redefined and produce more 

effective results. But, it should be recognized that under these strategies, different 
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modes may be competing for scarce resources. Thus, there is another possible avenue 

of future research.  

 

(c) Allocation of urban space between different modes: To avoid “lose-lose” effects, 

significant shifts in mode share should be accompanied by shifts in how road space is 

allocated between modes.  Macroscopic modeling can do more than design policies in 

neighborhoods served by single modes.  The models may also support the design of 

multimodal policies. For example, a fixed number of lanes can be reserved 

everywhere in a network for more sustainable modes (e.g. transit), or this amount can 

vary from place to place (e.g. suburbs vs. city center).  The number of lanes reserved 

can be the same at all times or vary with the time of day.  These spatiotemporal 

decisions allow for customized and targeted control strategies, e.g. a combination of 

congestion charging in the center of the city (e.g. the London example) with 

dedicated bus lanes (e.g. the Athens example) can create an efficient and equitable 

system. But if space is allocated incorrectly, system capacity could be wasted. Then, 

the problem becomes finding the careful balance that gives priority to more 

sustainable modes without creating the kind of waste that does damage. 18 Figure 6.1 

summarizes the proposed future work in the development of control strategies, which 

do not rely on forecasting, but in monitoring of the system. 

 

 

 
                                                 
18 As shown in Daganzo and Cassidy (2007), for freeway systems with high occupancy vehicle (HOV) 
lanes, it is possible to identify when waste is and is not damaging. 
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Figure 6.1: Different types of control strategies 

 

(d) Partitioning of a city to multiple reservoirs: Prior to developing multi-reservoir, 

multimodal control strategies it is necessary to have a methodology on how to 

partition a city in multiple reservoirs, for which a reasonable static and dynamic 

system representation will still exist. It may be considered that each of the reservoir 

should be more or less homogeneous in traffic loads, especially when control is 

applied, e.g. during the peak hour. Also, it should be mentioned that a large number 

of reservoirs will contradict the main motivation of this dissertation research, as it 

may require knowledge of disaggregated demand; a value between 2 and 7 seems 

logical.   

 

(e) System monitoring: Chapters 2, 3 and 4 described how we model a city in a 

macroscopic basis. Chapter 5 described how to apply system-wide control strategies 

to improve mobility. One important support tool both for modeling and control is a 

system for network monitoring. The success of the control methods heavily relies on 
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how accurately we can monitor the network and measure its state variables. Also, the 

partitioning of a city in multiple reservoirs and the estimation of an MFD requires 

knowledge, which can be obtained only from surveillance devices or other similar 

techniques. Section 3.3 provided some insight how to monitor the system using fixed 

and mobile sensors (detectors and taxis). Many crowded cities that could benefit from 

these controls do not have a supporting infrastructure to monitor their state. 

Nevertheless, these cities often have vehicles equipped with GPS that, like the 

Yokohama taxis, can serve as city-wide probes. Thus, more research is needed to 

better understand the quantity and character of the probes necessary for an accurate 

estimation of a neighborhood’s traffic state.  An effort is also needed to produce 

middleware that will support these types of control strategies on traffic signals of 

different types.  
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Appendix A 

 

Perimeter control strategy for two-neighborhood 

cities: A proof 

 

We now prove that given the state of a two-reservoir system at time t, output is 

maximized when the control strategy presented in section 5.1 is applied. 

 

Proposition A: Assume that a function ( )f x  is concave and ( )0 0f = . Then 

( ) ( )1 2 2 1x f x x f x≥   1 2,x x∀   with 1 2 0x x> ≥ . 

Proof:  Using Jensen’s inequality (Jensen, 1906) we get  

( ) ( ) ( ) ( )2 2 2 2
1 1 1 2 2 1

1 1 1 1

1 0 1 0x x x xf x f x f x f x x f x
x x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ − ⋅ ≥ + − ⇔ ≥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

. □ 

 The next lemma states that it is not possible to increase the number of trips ending 

internally in i, by restricting movements in i with destinations outside i. 
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Lemma B: Assume that a two-reservoir system is governed by equations (5.1) and (5.2) 

and iO  is concave for 0,t
i in n+⎡ ⎤∈ ⎣ ⎦ with ( )0 0iO = . Then, it is impossible to increase 

( )1 1 1t t t
ii i iO nφ + + +⋅  by decreasing t

ix ′  if 
t
i in n+< .  

Proof: Consider the case ( )t t t
i ii i ix O nφ′ ′≤ ⋅ , otherwise restriction in control has no effect 

for the system. By decreasing t
ix ′  by 0t

in∆ >  and denoting by 0 and 1 states without and 

with restriction, accumulation in reservoir i is: 

 ( ) ( )1 1

1 0

t t t
i i in n n∆+ += + , (A.1) 

 This restriction does not affect the number of trips willing to finish in reservoir i: 

 ( ) ( )1 1 1 1

1 0

t t t t
ii i ii in nφ φ+ + + += . (A.2) 

 After some manipulations in (A.3) and (A.4), we get: 

 ( ) ( )
( ) ( )

1
1 10

11 0
0

t
it t

ii iit t
i i

n

n n
φ φ

∆

+

+ +
+

=
+

. (A.3) 

By comparing ( )1 1t t
ii i iO nφ + +⋅  before and after the restriction we have: 

 ( )( ) ( )( ) ( ) ( )( )1 1 1 1

0 0 0 0

t t t t t t
i i i i i i i in n O n n O n n∆ ∆+ + + ++ ⋅ ≥ ⋅ + ,  (A.4) 

which is true, according to Proposition A, for 0t
in∆ > . □19 

                                                 
19 Note that if Oi is proportional to ni, i.e. Oi(ni)=a×ni, control has no effect in the internal output of i.  
 



Appendix A 

 

107

Corollary: If t
i in n+< , then ( )1 1 1t t t

ii i iO nφ + + +⋅  cannot decrease when t
ix ′  increases.  

By increasing t
ix ′ , t

in∆  in equations (A.2) and (A.4) is negative so according to 

Proposition A, the number of trips ending inside the reservoir does not decrease. 

Especially, for Οi strictly concave, ( )1 1 1t t t
ii i iO nφ + + +⋅  increases.  □ 

We now analyze the 6 different cases and we show for what values of t
ix  the total output 

of the system ot+1 is maximized. 

Case 1: 1, 2t
i in n i−≤ ∀ =  

 When t
ix decreases, both 1

ii

tφ +  and 1t
in +  decrease; ( )1 1t t

ii i iO nφ + +⋅ also decreases (Oi is 

increasing for )t
i in n−< . According to Lemma B, ( )1 1t t

i i i iO nφ + +
′ ′ ′ ′⋅  decreases, and 

consequently ot+1 decreases. By increasing t
ix , number of trips finishing in i and i΄ 

increases.  So, all the times t
ix  should satisfy inequality (A.5) and intertransfers between 

the reservoirs should be unrestricted.  

 ( )t t t
i i i i ix O nφ ′ ′ ′≥ ⋅   (A.5) 

Case 2: andt t
i i i i in n n n n− − +

′ ′ ′≤ ≤ ≤  

 By decreasing t
ix ′ , ( )1 1t t

ii i iO nφ + +⋅ decreases (Lemma B). Also, 1t
i iφ +
′ ′  decreases and 

( )1t
i iO n +
′ ′  remains constant, so ot+1 decreases. By decreasing t

ix , ot+1 decreases as 

1 1,
ii

t t
inφ + +  and 1t

i iφ +
′ ′  decrease. It is intuitive that the results are the opposite if any of t

ix , t
ix ′  
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increase and equation (A.5) does not hold. Thus, similar to case 1, 1
tx , 2

tx  should satisfy 

constraint (A.5) and intertransfers between the reservoirs should be unrestricted. 

Case 3: 1, 2t
i i in n n i− +< < ∀ =  

 By decreasing any of t
ix , t

ix ′  both 1t
iiφ
+ , 1t

i iφ +
′ ′  decrease and as Oi is constant, ot+1 

decreases. By increasing any of t
ix , t

ix ′ , when inequality  (A.5) is not satisfied, ot+1 

increases. Thus, the result is the same as in case 2. 

 Summarizing cases 1 to 3, if  1, 2t
i in n i+< ∀ = , ot+1 is maximized when inequality 

(A.5) is satisfied. This strategy is Pareto efficient as internal output increases for both 

reservoirs. Let us look at the most interesting cases, where at least one of the reservoirs is 

in the declining branch of Oi(ni), i.e. in regime III. 

Case 4: andt t
i i i i in n n n n+ − +
′ ′≥ < <  

 By decreasing t
ix , the number of trips inside both reservoirs decreases because (i) for 

reservoir i΄: 1t
i iφ +
′ ′  decreases and 1t

in +
′  increases, (Oi΄ is decreasing for i in n+

′ ′≥ ) and  (ii) for 

reservoir i: 1t
iiφ
+  decreases ( iO  is constant for i i in n n− +< < ).By increasing t

ix  when 

equation (A.5) does not hold, this has the opposite effect for both reservoirs; and ot+1 

increases. This means that we should not restrict any movements from i΄ to i. But, 

restrictions in the other direction (from i  to i΄) can have positive effect. 

 By decreasing t
ix ′  by 0ix∆ ′ >  and denoting 0 and 1 states without and with restriction, 

equations (A.1) and (A.3) hold for i. For i΄, we have:  

 ( ) ( )1 1

1 0

t t t
i i in n n∆+ +
′ ′= −  (A.6) 
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 ( ) ( )1 1 1 1

1 0

t t t t t
i i i i i i in n nφ φ ∆+ + + +
′ ′ ′ ′ ′ ′= −  (A.7) 

 ( ) ( ) ( )
( ) ( )
1 1

1 10 0
11 0

0

t t t
i i i it t

i i i it t
i i

n n

n n

φ ∆
φ φ

∆

+ +
′ ′ ′+ +

′ ′ ′ ′+
′

−
= <

−
 (A.8) 

 Let us now look at the rate trips end inside each reservoir. For reservoir i, internal 

output decreases from ( )1

0

t
ii iφ γ+ ⋅  to 

( )
( ) ( )

1
10

1 0
0

t
i t

ii it t
i i

n

n n
φ γ

∆

+

+
+

⋅ ⋅
+

. For reservoir i΄ the 

difference in the internal output 1t
io∆ +
′  is (indexes of time and control (state 0 or 1) are 

omitted for simplicity): 

 ( ) ( ) ( ) ( )
1i i i i i i i i

i i i i i i
i i i

O n n O n O n n
o n

n n n
∆ ∆

∆ ∆ φ φ
∆ ∆

′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′

′

⎛ ⎞− − −
= ⋅ − −⎜ ⎟−⎝ ⎠

 (A.9) 

If (A.9) is smaller than zero then internal output decreases for both reservoirs and no 

restrictions should be applied. Also, note that io ′∆  is monotonically increases with 

accumulation in ′  for iO ′  decreasing and concave. Qualitatively, io ′∆  is positive for high 

values of i iφ ′ ′  and when reservoir i΄ is very congested. Change in the total system output 

∆ot+1 is (indexes are omitted): 

 i
i ii i

i i

no
n n
∆∆ο ∆ φ γ
∆′= − ⋅ ⋅

+
 (A.10) 

 Thus, if ∆ο>0 perimeter control increases the output of the system. Let us give an 

arithmetic example: For a two-reservoir system with (i) the area of the uncongested 

reservoir i, 5 times bigger than the congested reservoir i’; (ii) Oi’(ni’) function, the one 
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estimated for San Francisco20 (figure 2.10) and (iii) Oi(ni)=5 Oi΄(5ni΄),  we have that, 

when the congested reservoir is in state C of figure2.7a (average speed 7km/hr), ∆o is 

positive (perimeter control is effective) for 0.4i iφ ′ ′ > . 

Case 5: andt t
i i i in n n n+ −
′ ′≥ ≤  

 By increasing t
ix  when equation (A.5) does not hold, internal output for both 

reservoirs increases. As also stated in case 4, we should not restrict any movements from 

i΄ to i. 

 By decreasing t
ix ′  by 0t

in∆ >  and denoting 0 and 1 states without and with restriction, 

equations (A.1) and (A.3) hold for reservoir i and (A.6) and (A.8) for reservoir i΄. 

According to Lemma A, internal output decreases in reservoir i. Change in internal 

output for reservoir i΄ is determined by the sign of equation (A.10). Change in the system 

output, ∆ot+1, is (indexes of time and control (state 0 or 1) are omitted for simplicity): 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

1

1

i i i i i i i i
i i i i i

i i i

i i i i i i i i
ii ii

i i i

i i i OA i i AB ii CD ii OD

O n n O n O n n
o n

n n n

O n n O n O n n
n n n

o n s s s s

∆ ∆
∆ ∆ φ φ

∆ ∆

∆ ∆
φ φ

∆ ∆

∆ ∆ φ φ φ φ

′ ′ ′ ′ ′ ′
′ ′ ′ ′

′

′ ′ ′ ′

⎛ − − −
= − − +⎜ −⎝

⎞+ − +
+ − ⇒⎟+ ⎠

= − − + −

. (A.11) 

where , , ,OA AB CD ODs s s s  are the absolute values of slopes for lines shown in figure A.1 and 

perimeter control improves accessibility when ∆ο>0.   

 

                                                 
20 The MFD for reservoir i, is assumed to be a scaled up version of the MFD for i΄. 
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Figure A.1: MFDs: (a) regime I for reservoir i, (b) regime III for i’ 
  

 Analysis in chapters 2 and 3 show that the Macroscopic Fundamental Diagram in 

regime I is approximately linear, for a range of accumulation, with Oi(0)=0. In that case, 

∆ot+1 is given by equation (A.10) and the arithmetic example described in case 4 is valid 

here, too. Note also that for linear Oi(ni) in regime I, the effect of perimeter control in the 

uncongested part of the city is almost negligible. 

Case 6: 1, 2t
i in n i+> ∀ =  

By decreasing t
ix ′  by 0t

in∆ >  and denoting 0 and 1 states without and with restriction, 

equations (A.2) and (A.4) hold for reservoir i and (A.6) and (A.8) for reservoir i΄. Change 

in system output ∆ot+1 is given by equation (A.11), but now the third term inside the 

parenthesis is negative. ∆o is positive when i i iiφ φ′ ′ >  and reservoir i΄ is more congested 

than reservoir i. In this case, perimeter control cannot have a significant effect, as the 

whole city experiences heavy congestion. More drastic strategies are required (e.g. a 

combination of pricing and efficient transit), which will decrease the demand for cars and 

provide users alternative modes. 
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O(n) 
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Appendix B 

 

Glossary of symbols 

 
 
Chapter 1 

Two-fluid model 

rf  fraction of moving vehicles 

k  parameter for the quality of traffic service in the network 

rT  inverse of vr 

mT  inverse of vm 

T  average total trip time (including stopped time) 

rv  average speed of the moving vehicles 

mv  average maximum running speed 

Gridlock model (Daganzo, 2007) 

( )f t  input flow to the system at time t
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l  average trip length 

in  accumulation for individual link i 

n  network accumulation 

O  network output (trip completion rate) 

iP  travel production for individual link i 

P  network travel production 

 

Chapter 2 

q  average flow  

v   average speed  

k  average density  

tn  accumulation at time t 

tf  input flow at time t 

 
 
Chapter 3 
 
A the set of lane segments in the study area 

A’  subset of A with detectors  

i  a road lane segment between intersections 

li  length of i  

qi  flow measured in i by the detector 

oi occupancy measured in i by the detector 

ki   density in i 
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s  space-mean effective vehicle length 

S state of a taxi 

wq  weighted average flow for all lane segments with detectors 

uq  unweighted average flow for all lane segments with detectors 

wo  weighted average occupancy for all lane segments with detectors 

uo  unweighted average occupancy for all lane segments with detectors 

wk  weighted average density for all lane segments with detectors 

uk  unweighted average density for all lane segments with detectors 

A” subset of A covered by detectors 

O’ output for A’ 

O output for A 

D’ outbound perimeter flow  

δ   total distance traveled in A by full taxis  

τ   total time spent in A by full taxis  

vT  full taxis space-mean speed in A  

nT  number of full taxis in A  

NT  number of full taxis exited A along its perimeter and 

MT  number of full taxis finished a trip inside A 

v  space-mean speed of all cars in A 

n accumulation of all cars in A 

π  probability that a randomly selected car moving in A is a taxi 

N’  numbers of vehicles exiting A’ along streets with detectors 

N’T  numbers of full taxis exiting A’ along streets with detectors 
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p ratio of vehicles vs. full taxis exiting the zone from streets with detectors 

 

Chapter 4 

Multi-reservoir system 

N number of reservoirs 

i reservoir  

li  average trip length for i 

ni accumulation in i 

Pi production in i 

iV   average space-mean speed in i  

iO  output in i  

Oij  output from i for cars with final destination j 

Cij inflow capacity to reservoir j from an adjacent reservoir i 

aij  constant inversely proportional to li 

ijn  vehicles in i with final destination j 

lij  average distance traveled in i, by all vehicles in i with destination j 

( )ijq t   exogenous flow generated in i with destination j at time t  

j
i kδ →   exogenous binary variable 

( )j
i kq t→   transferring flow from reservoir i to k at time t, with final destination j  

( )*
ijx t   a control variable for the inflow capacity for movements from i to j 
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Cruising-for-parking 

sn  vehicles searching-for-parking 

mn  vehicles moving towards their destination internal to the reservoir, but not  

 yet searching for parking 

on  vehicles moving with external destinations 

pn   vehicles parked on street 

 Np  total number of parking spots  

p   percentage of available parking spots 

 d1  average distance traveled between two adjacent spots 

ls  average distance traveled while searching for parking 

mO  output for mn  

oO  output for on  

sO  output for sn  

l  average distance traveled per trip completion  

( )*n t   accumulation at time t when NpØ¶ 

dp  total delay due to the cruising-for-parking  

ds  delay while cruising-for-parking 

 
 



Appendix B 

 

118 

Chapter 5 
 

t
in  accumulation at reservoir i, at time t 

 t
ijφ   fraction of vehicles in i with destination in j, at time t 

 t
ix   control variable for movements directing to i, at time t 

 t
ijf   fraction of trips generated at i with destination j, at time t 

 t
iq   generated flow at i, at time t. 

to  total output of the system at time t 
 
 
 
 
 
 
 
 




