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Abstract

Spurious correlations were found to be an important factor ex-
plaining model performance in various NLP tasks (e.g., gender
or racial artifacts), often considered to be “shortcuts” to the
actual task. However, humans tend to similarly make quick
(and sometimes wrong) predictions based on societal and cog-
nitive presuppositions. In this work we address the question:
can we quantify the extent to which model biases reflect hu-
man behaviour? Answering this question will help shed light
on model performance and provide meaningful comparisons
against humans. We approach this question through the lens
of the dual-process theory for human decision-making. This
theory differentiates between an automatic unconscious (and
sometimes biased) “fast system” and a “slow system”, which
when triggered may revisit earlier automatic reactions. We
make several observations from two crowdsourcing experi-
ments of gender bias in coreference resolution, using self-
paced reading to study the “fast” system, and question an-
swering to study the “slow” system under a constrained time
setting. On real-world data humans make ∼3% more gender-
biased decisions compared to models, while on synthetic data
models are ∼12% more biased. We make all our of our code
and data publicly available.1

Introduction
Recent work has identified that large-scale models achieve
impressive results on various natural language benchmarks
by exploiting correlations which do not seem semantically
meaningful for solving the task (Gururangan et al., 2018;
Gardner et al., 2021). Leveraging such spurious correlations
is often considered an indication that models do not solve the
actual task, but instead resort to finding statistical “shortcuts”
around the problem (Geva et al., 2021; Savoldi, Gaido, Ben-
tivogli, Negri, & Turchi, 2021).

In parallel, works in cognitive psychology identify that
finding shortcuts may in fact be a feature of human intelli-
gence, which on the one hand helps us cope with missing or
implicit information (H. P. Grice, 1975; P. Grice, 1989), while
on the other hand may also lead to harmful behavior. In the
context of gender bias in coreference resolution, which will
be the focus of our work, studies have found that human sub-
jects tend to prefer the stereotypical reading in various modal-
ities, such as event-related brain potentials, reading times, or
eye movements (Osterhout, Bersick, & McLaughlin, 1997;
Kennison & Trofe, 2003; Duffy & Keir, 2004).

In this work we propose to integrate findings from these
two lines of research and quantify the extent to which model

1https://github.com/SLAB-NLP/Cog-GB-Eval

biases resemble human behavior. We distinguish between
two ends of a spectrum. On the one hand we place annotation
artifacts, which hold only in specific training sets, e.g., asso-
ciating the word “cat” with contradiction in NLI (Gururangan
et al., 2018). On the other hand of the spectrum we place
human-like biases which are sometimes useful in real-world
scenarios (e.g., in common sense reasoning (Lent & Søgaard,
2021)), but also produce harmful, unwanted behavior (as in
gender bias (Schwartz & Stanovsky, 2022)). These are likely
to arise in any real-world dataset, and may require subtle de-
biasing techniques in either modelling or data collection.

To place model biases on this spectrum, we develop human
annotation interfaces and derive evaluation metrics which
compare between humans and models, thus putting them on
the same scale. In particular, we focus on gender bias in
coreference resolution in the English language, which was
widely studied in machine learning and psycholinguistics, al-
lowing us to explore results in the intersection of these areas.

To achieve this, we study human biases through the lens
of the dual-process theory (Evans, 2008), which posits that
there are two cognitive systems participating in humans’ de-
cision making process. System 1 is fast, associative and auto-
matic, while System 2 is slow, conscious and effortful. System
1 heuristics are considered a survival mechanism. Humans
make thousands of decisions a day, and if all of them were
consciously processed, our brain would not handle the cogni-
tive load. But on the other hand, when System 1 “shortcuts”
are wrong and System 2 does not revise it, erroneous and bi-
ased decisions may occur (Kahneman, 2011).

Within this framework, we propose two human experi-
ments to quantify the heuristics made by System 1. The first
experiment tests System 1 directly, by examining how gender
bias manifests in self-paced reading (Jegerski, 2013), which
approximate eye tracking, largely considered to be an uncon-
scious process (Rayner, 1998). The second experiment is
question answering (QA) over coreference-related questions.
QA is likely to invoke System 2, as it requires more conscious
effort (Wang & Gafurov, 2003). We then add different artifi-
cial time constraints, to examine how System 1 heuristics are
expressed in a task that requires more cognitive effort.

Finally, we crowdsource annotations for the two exper-
iments over synthetic and real-world sentences, and make
several important observations, comparing humans to two
state-of-the-art coreference models. Both experiments sur-
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face comparable gender biases to those shown by models.
Specifically, in the QA experiment over the natural sentences,
models’ overall accuracy is significantly lower than humans,
but both show similar biases. In contrast, for the synthetic
sentences, the models’ overall accuracy was closer to hu-
mans, but models have shown larger gender bias.

To the best of our knowledge our work presents a first
quantitative evaluation of gender bias in coreference resolu-
tion models versus human behavior, specifying the conditions
needed to elicit comparable biases from humans through time
constraints. Our results indicate that model biases indeed re-
semble decisions made by humans with restricted attention
span. Future work may leverage our evaluation paradigm and
revisit it for other tasks and future models.

Background
We begin by describing previously published datasets de-
signed to test model biases in coreference resolution . To
measure human performance, we then discuss Maze (Forster,
Guerrera, & Elliot, 2009), a self-paced reading approach ap-
proximating eye-tracking measurements.

Gender Bias Datasets
We use three coreference gender bias datasets as outlined be-
low, and summarized in Table 1.

WinoBias (Zhao, Wang, Yatskar, Ordonez, & Chang,
2018) and Winogender (Rudinger, Naradowsky, Leonard, &
Van Durme, 2018) consist of 3,888 synthetic, short sentences.
Each of the sentences conforms to a similar template con-
sisting of two entities, identified by their profession, and a
single referring pronoun. The datasets are balanced with re-
spect to stereotypical gender-role assignment (e.g., female
secretaries) versus non-stereotypical assignment (e.g., male
nurses). These datasets are good for controlled experiments
but consist of a small variety of linguistic constructions, and
do not represent real-world distributions.

In contrast, the BUG corpus (Levy, Lazar, & Stanovsky,
2021) aims to find such templates “in the wild”. It con-
sists of 1,720 sentences sampled from natural corpora (e.g.,
Wikipedia and PubMed) and better approximates real-world
distribution in terms of sentence length, vocabulary and
gender-role stereotypes. Similar to Winogender and Wino-
Bias, each sentence in BUG presents entities identified via
their profession and a referring pronoun. BUG also provides
a binary annotation for each sentence marking whether is con-
forms to societal norms. For accuracy sake, we use a subset
of BUG which was manually annotated.

Maze
For our proposed evaluation metric presented in the Experi-
ments section, we use Maze (Forster et al., 2009), a platform
for measuring self-paced reading (Jegerski, 2013). This plat-
form is an alternative for eye-tracking measurements (Witzel,
Witzel, & Forster, 2012), that does not require specialized
equipment and in-house annotators. Instead, Maze can be

Original QA MAZE
#pro #anti #pro #anti #pro #anti

WinoBias 1582 1586 756 717 607 603
Winogender 216 216 203 216 35 35
BUG 865 420 431 271 565 315

Table 1: Statistics for coreference gender bias datasets.
“Original” presents the number of sentences in each of the
datasets. “QA” and “MAZE” show the number of sen-
tences in our experiments, further decomposed into pro-
stereotypical and anti-stereotypical sentences. The reduction
in sampling sizes is due to additional filtering and distribution
tuning. See the Experiments section for more details.

easily deployed on crowdsourcing platforms, allowing us to
collect annotations at scale.

As exemplified in Figure 2, Maze iteratively presents two
options for the next word in a sentence, and a human anno-
tator needs to select the most probable alternative given pre-
viously seen words. The time for choosing the correct word
approximates its reading time.

Working Definitions
In this section, we formally define key concepts commonly
used throughout the paper.

Gender. We use existing gender bias corpora, as described
in the Background section, using pronouns with three gram-
matical genders: feminine, masculine, and neutral. These
datasets are generally devoid of other types of pronouns, such
as neo-pronouns.2 Collecting corpora for diverse types of
pronouns is left as an important avenue for future work, e.g.,
as outlined by (Lauscher, Crowley, & Hovy, 2022).

Pro-stereotype/Anti-stereotype. A coreference relation
between a pronoun and an entity in a sentence is deemed
pro-stereotypical if the referring pronoun’s gender conforms
to societal norms (e.g., “nurse” and “she”), otherwise it is
marked anti-stereotypical (e.g., “cleaner” and “he”). These
definitions naturally extend to sentences with a single pro-
noun. These are deemed pro or anti stereotypical according
to the relation between the entity and its referring pronoun.
To estimate the stereotypical gender norm per profession we
use labels provided in the previously-published gender bias
datasets (Rudinger et al., 2018; Zhao et al., 2018), based on
both human annotations and reports published by The U.S.
Bureau of Labor Statistics.3

Gender bias. We adopt the Historical Bias defini-
tion (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan,
2021): “the already existing bias and socio-technical issues
in the world and can seep into from the data generation pro-
cess even given a perfect sampling and feature selection”.
This definition connects between the physical world and how

2https://www.unf.edu/lgbtqcenter/Pronouns.aspx
3We note that these norms may vary between cultures. Adapting

them to other communities is left for an important future work.
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(a) QA calibration interface. A sentence and a question
are shown for an unlimited time. After submitting the
answer, a feedback is shown on screen, including the
correct answer. We record the participants choice and
the time they took to answer.

(b) QA Experiment interface. A sentence is shown for a
limited time. Then, the sentence disappears and only a
question is shown, for an unlimited time. After submit-
ting an answer, a feedback message is shown. Here we
only record the the participants choice.

Figure 1: QA calibration and main experiment interfaces.

it manifests in the the training data. In particular, historical
bias appears when models make predictions based on the gen-
der distribution in the training data, rather than the relations
between entities in the sentence.

Experiments
In the following section we present our two experiments for
measuring human biases. The design choices we make follow
common practices in psycholinguistic literature.

QA Experiment
In this experiment we present a sentence followed by a
multiple-choice question regarding the gender of an entity in
the sentence, eliciting coreference resolution decisions. For
example, given the sentence “The developer talked to the
cashier and invited him for a cup of coffee”, and the ques-
tion: “What is the gender of the cashier?”, the four possible
answers are ‘male’, ‘female’, ‘neutral’ and ‘unknown’, and
the expected answer is ‘male’.

QA is likely to invoke System 2 as it involves conscious de-
cision making. To test System 2 under a constrained setting,
annotators observe the sentence for a limited time before it
disappears and then they can answer the question. See Fig-
ure 1 for an example annotation interface.

Filler questions. Following common practice in human
annotation tasks, we introduce filler questions to prevent par-
ticipants from focusing on certain aspects of the sentence
(e.g., its pronoun). We automatically formulate questions
on predicate-argument relations using a pretrained QA-SRL
model (FitzGerald, Michael, He, & Zettlemoyer, 2018), that
produces different question formats, e.g., asking about the

Figure 2: MAZE experiment interface. At each step, partici-
pants need to distinguish the next word from a distractor, by
pressing the correct keyboard key. We record the time they
took for identifying the pronoun.

subject (“who might be talking?”), object (“who was being
hired?”) and other entities in the sentence. Similarly to other
psycholinguistics works, our filler questions constitute 50%
of the total questions in the experiment (Witzel et al., 2012;
Kim, Gabriel, & Gygax, 2019; Boyce, Futrell, & Levy, 2020).

Calibration. To account for different reading
paces (Rayner, Schotter, Masson, Potter, & Treiman,
2016), we begin with calibrating a baseline reading pace for
each participant. We present the sentence for an unlimited
time along with the question and measure the time it takes
the participant to submit the correct answer. This is then
normalized by the sentence length (in words) to approximate
a participant’s reading pace. See Figure 1a for an example of
this interface.

Annotation interface. Each participant observes a single
sentence for a limited amount of time. Then, the sentence
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Wino BUG
pro anti ∆QA pro anti ∆QA

Humans
baseline

0.75 89.8 89.7 0.1 87.8 82.8 5.0
0.50 88.8 87.6 1.2 85.7 79.1 6.5
0.25 78.7 78.5 0.2 82.6 75.7 6.9

Models SpanBERT 86.5 73.4 13.1 62.2 60.0 2.2
s2e 91.3 77.7 13.6 61.7 59.3 2.4

Table 2: Human and model results in the QA task on the
same sentences. ‘pro’ and ‘anti’ columns show results on pro-
stereotypical and anti-stereotypical gender questions. ∆QA
stands for the difference between the two categories (pro mi-
nus anti), indicating biased performance, approximating Sys-
tem 2 biases.

disappears and a question regarding one of the entities in the
sentence is shown for an unlimited time. The time each sen-
tence is presented on screen is calculated by (α ·avg · l), where
avg is the participant’s reading pace, l is the length of the sen-
tence in words, and α is sampled i.i.d from {0.25,0.5,0.75}
to present the sentence for a fraction of the participant’s pace.
An example of this interface is shown in Figure 1b.

Annotator feedback. Following (Malmaud, Levy, &
Berzak, 2020), we show participants a feedback message in-
dicating if they were correct after every submitted answer,
both for filler questions and for the actual task. Feedback in
multiple-choice questions has been shown to improve perfor-
mance and reduce low-quality annotations (Butler & Roedi-
ger, 2008). To mitigate the risk of affecting responses in un-
intended ways, we use filler questions that prevent annotators
from overspecializing in the task.

Filtering non-coreference errors. This setup may pro-
duce errors which do not relate to coreference. For example,
answering that the gender of the entity is masculine while the
presented pronoun is feminine (and vice versa) does not indi-
cate a coreference error, and is therefore ignored.

Self-Paced Reading Experiment
In the second experiment, we approximate trends in read-
ing time of pronouns in pro-stereotypical versus anti-
stereotypical instances, which is considered an uncon-
scious process, and hence a good proxy for System 1’s bi-
ases (Rayner, 2009).

We use MAZE to approximate the time it takes a partici-
pant to choose the pronoun in our sentences (see Figure 2).
This implicitly measures the timing of a coreference deci-
sion since the pronoun indicates the gender of a previously
mentioned entity. Previous work has identified that self-paced
reading is a good proxy for natural reading when comparing
between readings of different sentences, albeit it may overes-
timate the absolute reading times (Yan & Jaeger, 2020). This
makes self-paced reading adequate for our purposes, as we
are interested in the trends shown in response time between
pro-stereotypical and anti-stereotypical instances.

Filtering ambiguous instances. Since MAZE presents the

Figure 3: Visualization for the results shown in Table 2.
The x-axis is the performance over the anti-stereotypical
sentences, and the y-axis is the performance over the pro-
stereotypical sentences. Values above the dashed black line
show gender biased performance. Datasets are represented
by color, while humans are distinguished from models by the
indicator’s of your shape. {0.25,0.5,0.75} are the fractions
of the baseline reading pace given to humans. All evaluations
found some degree of gender bias.

words in a linear order, we note that there are instances when
the pronoun appears before the context needed to infer its an-
tecedent. E.g., when reading the prefix “The sheriff ques-
tioned the housekeeper as she...” it is yet unclear whether
“she” refers to the sheriff (e.g., as in “...she needed to find
the thief.”) or the housekeeper (e.g., in “... she was clean-
ing”). Since the reader cannot know which of the suffixes
will follow, these instances do not reflect gender bias deci-
sions. To address this issue in WinoBias and Winogender,
we sample only sentences where the pronoun appears after
all verbs in the sentence, e.g., “The tailor thought the janitor
could be good at sewing and encouraged her”. In a prelim-
inary analysis we find that this heuristic may be over-strict,
but leads to high precision, which was most important for our
analyses. From BUG we sampled only sentences where the
pronoun appeared after its antecedent. We find that this sam-
pling works well for the sentences in BUG, which usually
consist of a single entity.

For the synthetic sentences, this sampling produces a sub-
set of 1,335 viable sentences. Most of the instances which
were filtered out come from Winogender, because in most of
its sentences the pronoun appears before one of the verbs in
the sentence. For BUG, this sampling produces a subset of
1,603 viable sentences.

Annotation interface. At each time step participants are
shown two possible words, and they need to choose the next
word in the sentence according to previous context. See Fig-
ure 2 an example. We allow participants to retry in case of an
error, and record the time until their first answer, as well as
the total time until the correct option was chosen.
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(a) Wino (b) BUG (c) delta-stereotype (anti minus pro)

Figure 4: Figures 4a and 4b show the CDF of response times needed to distinguish the pronoun from its distractor in MAZE.
I.e., coordinate (x,y) on the graph implies that x% of the annotations required a response time of y ms or less. Figure 4c shows
∆MAZE for humans, i.e., the difference between anti-stereotypical response time and pro-stereotypical response time, where
values above y = 0 indicate gender biased performance.

Simulating arbitrary time limitations. Similarly to the
QA experiment, we would like to introduce a notion of time
constraints. If we would have limited the amount of time
given to distinguish the next word, a participant would either:
(a) choose correctly (b) choose incorrectly (c) not respond in
time. Instead of testing participants over different discrete
time limitations, we make the following assumption: if a par-
ticipant’s response time for a correct annotation was x ms,
any time limit below x ms would not be enough time for re-
sponding (option (c) above). Following, we do not limit par-
ticipants reading time, but instead compute a cumulative dis-
tribution function over all possible observed response times.
Finally, we use A-Maze (Boyce et al., 2020) to automatically
generate probable distractors.

Results
In this section we summarize the main findings from our two
crowdsourcing experiments. We find that the overall human
accuracy for both tasks was good, reaching 94.48% on the
gender questions in unrestricted QA, and 98.13% in MAZE,
indicating an understandable task and high quality annota-
tions.

Experimental Setup

The two experiments collected annotations from 33 partici-
pants on the Amazon Mechanical Turk platform. Our aver-
age hourly pay was 8.53 USD. The overall cost to produce
our annotations was 1,030 USD. To qualify, workers had to
have at least 5,000 accepted HITs at an acceptance rate of
at least 96%, and hail from English-speaking countries. In
addition, we ran a qualification HIT which required workers
to score at least 85% on an unconstrained version of the QA
task. Following (von der Malsburg, Poppels, & Levy, 2020),
we annotated 3K instances with gender bias signal for each
experiment and each dataset, amounting to 12K annotations.
We deploy the QA task using Anvil,4 and the MAZE task us-

4 https://anvil.works/

ing Ibex.5 Finally, we use the IQR technique to remove out-
liers in the self-paced reading (Vinutha, Poornima, & Sagar,
2018), which may arise due to network connectivity issues.

Evaluation Metrics
Following previous work, we compute gender bias as the dif-
ference in performance between pro-stereotypical and anti-
stereotypical instances (Stanovsky, Smith, & Zettlemoyer,
2019). In the QA task we denote as ∆QA the difference be-
tween accuracy on pro-stereotypical versus anti-stereotypical
gender questions, which is a proxy for constrained System 2
gender bias. In the self-paced reading task we compute the
difference in response time to identify the pronoun, marked
as ∆MAZE , and is a proxy for System 1 biases. For consis-
tency, both metrics are defined such that larger values indicate
more gender biased performance. I.e., for ∆MAZE we sub-
tract the response time for pro-stereotypical instances from
the anti-stereotypical instances, as longer response times in-
dicate worse performance.

QA results
Several observations can be drawn from the results for the QA
task, presented in Table 2 and visualized in Figure 3, showing
the biases caused by limiting the resources of System 2.

Human subjects show more gender bias as they are
given less time to read the sentence. For both natural and
synthetic sentences, we find that ∆QA for humans increases
between when they are given 0.75 and 0.5 of their baseline
reading pace, and for natural sentences specifically we see
this increase also between 0.5 and 0.25. I.e., the difference in
performance between pro-stereotypical and anti-stereotypical
increases the less time participants have. However at some
point, participants will not have enough time to process the
sentence. This is observed in Winogender and WinoBias
when α = 0.25, where human performance equally degrades
across both anti-stereotypical and pro-stereotypical, in paral-
lel with an increase in non-coreference errors from around

5 https://github.com/addrummond/ibex

759



(a) Wino (b) BUG

Figure 5: Model performance versus human annotations. The blue and yellow points are the intersection points with the
different models’ accuracy and their matching category threshold. For example, the blue point intersecting the red line, is the
human threshold that matches SpanBERT accuracy on anti-stereotypical sentences.

2% when α ∈ [0.5,0.75] to 5% when α = 0.25.
Human subjects were found more prone to gender bi-

ased answers on naturally-occurring sentences. Table 2
shows larger ∆QA for natural sentences than for the synthetic
ones, and in Figure 3 the points representing human perfor-
mance on BUG are farther from the diagonal, indicating more
biased performance. This may stem from the templated na-
ture of the synthetic sentences which allows subjects to mas-
ter them.

Self-Paced Reading Results
Several conclusions are drawn from this results of this exper-
iment, shown in Figure 4, approximating System 1 biases.

Higher human gender bias is observed the more pro-
cessing time is needed. Figures 4a and 4b show the CDF
of response times for distinguishing the pronoun from a dis-
tractor over the correct annotations (which consist of 98%
of all annotations). Figure 4c shows ∆MAZE , which is the
difference between anti-stereotypical and pro-stereotypical
instances in 4a and 4b. The longer the response time al-
lowed (and hence more annotations are counted), a more pro-
nounced ∆MAZE is observed.

Human gender bias was observed only when account-
ing for at least 80% of the synthetic sentences. Positive
∆MAZE indicates longer response time for anti-stereotypical
sentences than pro-stereotypical, and so considered gender
bias. Figure 4c shows that ∆MAZE is positive after accumulat-
ing 80% of the annotations on the CDF curve, while for the
natural sentences this effect is found after 50% of annotations.

Comparing Model and Human Biases:
Discussion and Conclusions

We evaluate SpanBERT (Joshi et al., 2020) and s2e (Kirstain,
Ram, & Levy, 2021) on the same sentences annotated by hu-
mans in each of the tasks, and compare the bias in results
between humans and models. Below we outline several key
findings.

Models exhibit gender bias more than humans on syn-
thetic sentences in the QA experiment. Table 2 shows that
∆QA on Winogender and WinoBias is larger for models when
compared to humans on any fraction of the reading pace. Ad-
ditionally, Figure 3 shows that over Winogender and Wino-
Bias, models are farther from equilibrium line than humans,
and the human performance on anti-stereotypical instances is
superior to models. This may indicate that to achieve good
performance, models rely on gender bias more than humans.

Models show more gender bias on synthetic sentences
than in real-world sentences, as opposed to humans where
gender bias is more pronounced over natural sentences.
For the QA experiment this trend is seen in ∆QA columns in
Table 2. As for the self-paced reading task, Figure 4c shows
that human’s ∆MAZE on BUG is above ∆MAZE on Winogender
and WinoBias, while for models ∆MAZE is the distance on
the x-axis between the points in Figures 5a and 5b, which
is smaller on BUG for both models. In humans, this may
arise due to mastering synthetic sentences to the point they
do not rely on gender stereotypes to excel in it. In contrast,
the degraded performance of models on real-world sentences
diminishes the gains from biased predictions.

Conclusion: Model biases reflect human decision-
making under constrained settings. Revisiting our research
question, our findings suggest that gender bias in coreference
resolution is comparable to human biases rather than an anno-
tation artifact, indicating it will likely creep up in real-world
datasets along with other, more desired human behavior, like
common sense reasoning.

Future Work. Follow-up work may compare our results
with competing cognitive theories, e.g., (Bursell & Olsson,
2021), as well as developing some kind of “slow reason-
ing” models, e.g., via early exiting (Schwartz, Stanovsky,
Swayamdipta, Dodge, & Smith, 2020; Laskaridis, Kouris, &
Lane, 2021).
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