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Coupling of the Random Properties of the Source and the Ground Motion 
for the 1999 Chi Chi Earthquake

Daniel Lavallée1 and Ralph J. Archuleta1,2

1 Institute for Crustal Studies, University of California, Santa Barbara

2 Department of Geological Sciences, University of California, Santa Barbara

Abstract: We show that both the slip distribution and the peak ground acceleration (PGA) for 

the 1999 Chi Chi earthquake can be described by Lévy laws. Furthermore, we found that the tails 

of the probability density functions (PDF) characterizing the slip and the |PGA| are governed by 

a parameter, the Lévy index, with almost the same values as predicted by the Central Limit 

theorem. The PDF tail controls the frequency at which extreme large events can occur. These 

events are the large stress drops–asperities–distributed over the fault surface and the large |PGA| 

observed in the ground motion. Our results suggest that the frequency of these events is coupled; 

the PDF of the |PGA| is a direct consequence of the PDF of the asperities. The physical rationale 

responsible for the coupling is the principle of superposition of wave signals characterized by 

random properties that are governed by the Central Limit theorem.

1. Introduction

Two of the most fundamental principles in physics and mathematics are founded on the 

similitude in properties between a single event and a sum of these events. In seismology, the 

principle of superposition stipulates that during an earthquake, the waveform observed at a given 

distance of the fault is essentially the sum of waves emitted by point sources distributed over the 

fault surface. On the other hand, the Central Limit theorem postulates that the sum of Lévy 

random variables is also a Lévy random variable [Uchaikin and Zolotarev, 1999]. Kagan [1994] 

used the term “self-replication” to characterize this property in a study that showed that the stress 
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increments caused by a fractal set of earthquakes on subsequent earthquakes is also distributed 

according to a Lévy law. 

In studies of source models for several earthquakes —the 1979 Imperial Valley, the 1989 

Loma Prieta, the 1994 Northridge and 1995 Hyogo-ken Nanbu (Kobe)— we have found that the 

spatial distributions of slip are characterized by a Lévy law [see Lavallée and Archuleta, 2003; 

and Lavallée et al., 2005]. This result can be used to deduce statistical properties of the radiated 

field. During an earthquake, the rupture front propagates over the fault surface; as the rupture 

front reaches different points on the fault, each point source emits a wave with an amplitude 

proportional to the stress released or the “stress drop” [Tumarkin and Archuleta, 1994]. We 

assume a linear relationship between the stress released and the slip [Andrew 1980]. Because the 

slip is distributed according to a Lévy law, so will the stress released and the point source wave 

amplitude. The signal observed at a given distance from the source will be the sum of the signals 

emitted by the point sources. Because the point source wave amplitudes are distributed according 

to a Lévy law, the sum of these signal amplitudes observed at a given distance from the sources 

will also be distributed according to a Lévy law. Using these concepts, we investigate the 

statistical properties of both the slip distribution and the peak ground acceleration (PGA) for the 

1999 Chi Chi earthquake.

2. Stochastic modeling of the source model:

In Lavallée and Archuleta [2003] and Lavallée et al, [2005], we proposed and tested a model 

that includes one-point and two-point statistics for the slip distribution of several earthquakes. 

The stochastic model is similar to the fractional Brownian motion fBm [see Peitgen and Saupe, 

1988; and Falconer, 1990]. In fBm, white noise is Gaussian distributed then filtered in the 

Fourier space to generate a signal characterized by a spectrum with a power law behavior. In 

these papers, we relaxed the constraint that the random variables be distributed according to a 
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Gaussian law and assumed the most general case of the Lévy, or stable law, [Uchaikin and 

Zolotarev, 1999]. The Lévy law, which includes as special cases the Gauss and Cauchy laws, is 

the most general law for which the Central Limit theorem applies (see next Section). In this 

stochastic model, the probability law is fixed by the data.

The stochastic model proposed here consists of a convolution in the Fourier space between the 

Fourier transform of random variables (white noise) X  and some function with a power law 

dependence kx
−ν / 2 where kx  is the horizontal wave number. The scaling exponent ν  measures the 

departure from the non-correlated random variable (white noise when ν = 0). In one dimension, 

the stochastic model Yx  is given by the following relationship:

Yx ∝ kx

−ν / 2
Fs[Xx ]exp[−2πi(x −1)(s−1) /N]

s= 2−N / 2

1+N / 2∑  , (1)

for a set of random variables Xx  distributed over a one–dimensional lattice of length N  (an even 

number), where x  is the integer spatial variable on the one-dimensional lattice. The discrete 

spatial frequency s is related to kx  by kx = 2π (s−1); Fs[Xx ] is the discrete Fourier transform of 

Xx  (for s ≤ 0, the index s = N + s in Fs[Xx ]). We assume that kx
−ν / 2Fs[Xx ]→ 0 at s =1. The 

power spectrum P(kx )  associated to Yx  is then given by the following relation:

P kx( )= Fs[Yx ]
2 ∝ kx

−ν (2)

This equation can be used to compute the values of ν  associated with Yx . Using this scaling 

exponent, the underlying random variables Xx  associated with a stochastic model Yx  can be 

computed by using the following relationship:

Xx ∝Fx
−1[Fs[Yx ] × kx

ν / 2] , (3)

where Fx
−1 is the Fourier inverse. The one point statistical properties of the stochastic model are 

completely specified when the probability law and parameters governing Xx  are identified.
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The model outlined above is applied to the slip (along both dip and strike) spatial distribution 

of the 1999 Chi Chi earthquake [Zhang et al., 2003]. The power spectrum of the slip, P(kx ) , is 

computed for each of the horizontal layers (along strike). For slip along dip and strike the mean 

power spectrum of all the horizontal layers has been computed (Figure 1). For each slip 

distribution, the spectrum shows that there are no dominating wave numbers. The curves 

illustrated in Figure 1 show not only that all the wave numbers contribute to the slip variability 

but also that the weight of the wave numbers follows approximately a decaying power law. 

Values of the scaling exponents ν  are reported in Table 1.

After estimating ν , the spatial distribution of slip for each layer is filtered in the Fourier space 

in such a way that the resulting field has a flat mean power spectrum behavior (white noise). We 

assume that the filtered slip can be approximated by random variables of magnitude X . We 

compute the probability density function (PDF) of X  (see Figure 2).

Next we proceed to determine the probability law that provides the best fit to the estimated 

PDF of X . Three laws are considered: Gauss, Cauchy and the more general Lévy law [Uchaikin 

and Zolotarev, 1999]. The Lévy law is characterized by four parameters α , β , γ  and µ. The 

parameter α , with 0 <α ≤ 2, controls the rate of falloff of the PDF tails. The larger the value of 

α , the less likely it is to find a random variable far from the central location. The case α = 2

corresponds to the Gaussian law, while α =1 (with β = 0) corresponds to the Cauchy law. The 

parameter β , with −1≤ β ≤1, controls the departure from symmetry of the PDF curve. When 

β = 0, the PDF is symmetric and centered about µ. The (scale) parameter γ , γ > 0, is mainly 

responsible for the PDF width whereas µ is the translation, or location parameter of the PDF.

For both the dip and strike slip distribution, we computed the probability law parameters that 

minimize the following expression:

PDF(Xt ) − pth (Xt )
t

∑ (4)
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where pth (X) corresponds to the theoretical values of the PDF associated with either the Gauss, 

Cauchy or Lévy law computed for X  [see Grigoriu, 1995 and Lavallée et al., 2005 for a detailed 

discussion]. The PDF of X (the filtered slip) and the PDF curves corresponding to the best-fitting 

Gaussian, Cauchy and Lévy laws are illustrated in Figure 2. For each slip distribution, the 

parameters of the best-fitting Lévy laws are reported in Table 1. For both samples used in this 

study, the Lévy law provided the best fit to the PDF. The results presented in Table 1, in 

particular the values taken by α , are in good agreement with the stochastic parameters computed 

for several other earthquakes [see Lavallée and Archuleta, 2003; and Lavallée et al., 2005]. In 

the second paper, we compare stochastic models computed for different source models and 

discuss the causes of uncertainties in computing the parameters ν , α , β , γ  and µ.

3. The Central Limit theorem, the principle of superposition and the consequences for the 

statistical properties of the ground motion:

According to the Central Limit theorem, a combination of Lévy random variables X α,β,γ,µ( )
will result in a random variable that also belongs to a Lévy law:

A1X1 α,β,γ,µ( )+ A2X2 α,β,γ,µ( )+…=d AX α,β,γ,µ( )+ B=d X α,β,γ ',µ'( ) (5)

where Ai , A  and B are real constants, and =d  stands for equal in probability distribution 

[Uchaikin and Zolotarev, 1999]. Eq (5) indicates that the random variable on the right hand side 

will be characterized by the same α  and β , but different parameters γ ' and µ'. It should be noted 

that since any pair (or combination of terms) on the left hand side of Eq. 5 can be rewritten as 

AiXi α,β,γ,µ( )+ A j X j α,β,γ,µ( )+…=d X α,β,γ ' ',µ' '( ), the Central Limit theorem remains valid 

even if the random variables on the left hand side of Eq. 5 are characterized by different γ  and µ
values. 
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According to the Central Limit theorem, the stochastic model Yx  in Eq. (1) will have its 

amplitude distributed according to a Lévy law. Consequently, the slip, or stress drop, spatial 

distribution is also distributed according to a Lévy law, although the parameters of the Lévy law 

— γ  and µ— will be a function of position. Here, we assume that the stress released is also 

related to the same random variables that characterized the slip distribution through a filtering 

similar to the one given in Eq. (1) but with a different scaling exponent (See Andrew 1980; Mai 

and Beroza, 2002).

On the other hand, the principle of superposition stipulates that during an earthquake, the 

waveform ψ(r j ,t)  observed at a given distance of the fault is essentially the sum of waves 

Ciψi(rij ,t) emitted by point sources distributed over the fault surface.

ψ(r j ,t) = Ciψi(rij ,t)
i=1

N ps∑ (6)

The variable r j  is the distance to the j th  observation site, and t  is time. The parameter Ci

corresponds to the random point source amplitude, and the function ψi(rij ,t)  includes the 

periodic signal, phase, directivity effect and other non-random contributions to the signal. The 

variable rij  is the distance between the point source and the observation. The sum is performed 

over all the N ps point sources over the fault surface. Comparing Eq. (6) to Eq. (5), there is a 

correspondence between Ci  and Xi  as well as between ψi and Ai . Thus, the random contribution 

to ψ(r j ,t)  can be understood as a sum of random variables weighted by constants. In such a case, 

the Central Limit theorem applies.

It should be noted that these considerations are quite general and will apply independently of 

the probability law that governs the slip, the stress drop spatial distribution or the wave 

amplitude Ci . If Ci  randomness is characterized by a Lévy distribution, so will be the random 

properties associated with ψ(r, t) ; if Ci  is characterized by a non-Lévy law, for instance a 
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Uniform law [Oglesby and Day, 2003], the Central Limit theorem stipulates that the sum of such 

random variables will converge to a Gaussian law.

We assume that as an earthquake rupture propagates over the fault surface each point at the 

rupture front emits a wave with an amplitude proportional to the stress released. Because the 

magnitude of the stress released is distributed according to a Lévy law, so is the point source 

wave amplitude. We also assume a linear relationship between ψ(r, t)  and the ground motion 

displacement and acceleration at a given site. Thus, the statistical properties of the ground 

motion are coupled to the statistical properties of the stress released. Both should be described by 

a Lévy law. Note that according to Eq. (6), the functions ψi(rij ,t)  will vary from one position r j

to another. This is equivalent to changing the constants Ai  in Eq. (5) which will affect the values 

of the parameters γ ' and µ' associated with the random variables on the right side of Eq. (6) —

see also Gusev [1996]. However, the parameters α must be the same and independent of the 

constant Ai . We assume that the same property holds for ψ(r j ,t) , i.e., it is independent of 

position r j  (with the qualification that r j  must be close to the fault, see below) and defined by 

the same parameter α.
This theory is tested by computing the PDF of the peak ground acceleration PGA and fitting it 

to a Lévy law. Here, we consider the PDF of the absolute value of PGA as is traditionally done 

in seismology. By doing so, the random variable associated with |PGA| is bounded between a 

minimum and infinity. For this reason, the PDF of the |PGA| is often assumed to be characterized 

by a log-normal law (Abrahamson, 1988; and references therein). Nevertheless other probability 

laws can be considered with an appropriate truncation of the PDF. 

The |PGA| amplitude estimated at different stations as a function of the closest distance 

between the station and the rupture surface is illustrated in Figure 3. This figure suggests that the 

probability density function of the |PGA| is a function of the distance (as it should be for reasons 
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already discussed above). However, we can assume that variations in the statistical properties are 

not too large if we only consider the stations located within distance intervals with limited range. 

To test the effect of the location of the stations on the computed PDF, we computed the PDF of 

the |PGA| for stations located within distance intervals of different sizes. The stations located 

between 0 and 30 km of the fault trace are divided into three groups with a distance interval of 

10 km, four groups with a distance interval of 7.5 km and six groups with a distance interval of 5 

km. We computed the PDF of the |PGA| for each group. Assuming that the PDF of the |PGA| can 

be approximated by a Lévy law, we compute the parameters of the Lévy law that fit the PDF 

curves by minimizing Eq. (4). The results are reported in Table 2 and illustrated in Figure 4 for 

the stations located between 0 and 10 km.

The values of α  are close to 1 for almost all of the PDF’s reported in Table 2 except for two 

cases —stations located between 15 to 20 km and stations located between 25 to 30 km. (The 

PDF computed for stations located between 15 to 20 km has only seven values. Therefore results 

obtained for this group are not significant.) It should be noted that convergence to a value close 

to 1 increases with the size of the distance interval. There is a very small deviation from α =1

for the three PDFs computed with a distance interval of 10 km. The number of stations included 

within a larger distance interval is larger than the number of stations within a smaller distance 

interval. Accordingly the PDF of the former are computed with more accuracy —especially the 

PDF tails— since more PGA values are included in groups with a larger distance interval.

These results show that the Lévy law provides an accurate description of the PDF associated 

with the |PGA|. Furthermore, these results suggest that the rate of decrease of the PDF tails of 

|PGA| —controlled by α— is (almost) invariant for stations located between 0 to 30 km, and 

(almost) independent of the size of the distance interval used to compute the PDF. 

In this paper we ignore site amplification effect either due to nonlinear soil [Field et al., 1997] 

or scattering of waves in the upper kilometers of the earth’s crust [O’Connell, 1999]. We also 
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limit our study to sites located within 30 km. The typical shape illustrated in Figure 4 is 

gradually lost for the PDF associated with sites located at larger distances [Gusev, 1996].

4. Conclusion

In this paper, we have shown that a stochastic model — based on a Lévy law— is best suited 

to reproduce the main features of the spatial variability embedded in the dip and strike slip 

distribution of the Chi Chi earthquake. We found that the tails of the probability density 

functions (PDF) characterizing the slip and the |PGA| are governed by a parameter α  with 

almost the same values as predicted by the Central Limit theorem. These results suggest that the 

statistical properties of the slip spatial distribution and of the ground motions are coupled: the 

PDF of the |PGA| is a direct consequence of the PDF of the asperities [Gusev, 1989]. The 

coupling is physically based on the principle of superposition of wave signals characterized by 

random amplitudes that sum according to the Central Limit theorem.
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Figure and table captions

Figure 1: The mean power spectrum P(kx )  as a function of the wave number kx  and the best 

straight line that fits the log-log curve are reported for the dip slip (hollow black triangle �), and 

the strike slip (hollow gray box �). These results suggest that the scaling behavior is observed for 

scale lengths that range from 3 to 72 km. 
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Figure 2: The (discrete) probability density function PDF (dots and bars) associated with the 

filtered strike slip X  is compared to the curves of the three probability laws that best fit the PDF: 

the Cauchy law (black curve), the Gaussian law (dashed curve) and the Lévy law (gray curve). 

The magnitude of the random variables, i.e., the filtered slip, is given by X . In the inset, the 

positive tails of the curves are on a log-log plot to emphasize the fit for values far in the tail.

Figure 3: The |PGA| amplitude of the three components of recordings estimated at different 

stations as a function of the closest distance between the station and the rupture surface.

Figure 4: The PDF of the |PGA| for the stations located between a distance of 0 to 10 km is 

compared to the curves of the Lévy law that best fit the PDF (gray curve) —see Table 2. The 

variable X  corresponds to the |PGA|. In the inset, the positive tails of the curves are plotted on a 

log-log scale. 

Table 1: Parameters of the stochastic model for the dip and strike slip of the Chi-Chi earthquake. 

The parameter ν  is the scaling exponent of the power spectrum (Figure 1). The parameters of the 

Lévy laws that best fit the PDF(X)  in Figure 2 are given.

Table 2: Parameters of the Lévy law that best fit the PDF of the |PGA| for stations within 

distance intervals with size of 10, 7.5 and 5 km.

Table 1
Scaling Exp. Lévy law

ν α β γ µ
Dip slip 1.11 0.95 -0.3 14.6 79.

Strike slip 1.27 1.0 0.3 12.3 9.7
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Table 2
Lévy lawLocation of the 

stations (km) α β γ µ
0-10 0.95 0.99 46.2 -493.0

10-20 0.96 0.58 33.8 -259.5
20-30 1.03 1.00 28.4 754.3
0-7.5 0.87 0.99 42.1 -161.3

7.5-15 0.87 1.00 25.6 -74.5
15-22.5 1.11 0.22 53.3 168.2
22.5-30 1.21 1.00 45.3 161.1

0-5 0.85 0.98 42.1 -125.8
5-10 1.20 0.99 97.4 279.3

10-15 1.00 0.00 51.9 124.2
15-20 1.47 0.00 169.2 135.2
20-25 1.06 0.90 46.2 463.9
25-30 1.34 0.93 83.1 136.2
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